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Accurate numerical integration algorithm

for the Kepler motion

Yosuke NAKANISHI, Yukitaka MINESAKI, Yoshimasa NAKAMURA

Abstract. The two and three-dimensional discrete Kepler motions
were presented in [5, 6] which conserve all of the constants of motion includ-
ing the Runge-Lenz vectors. Sequences of points described by the discrete
Kepler motions exactly lie in the continuous orbits of the Kepler motions.
However, the time evolution of the discrete Kepler motions is different from
that of the continuous Kepler motions. In this Letter new formulas are pre-
sented which describe the time when the two and three-dimensional continuous
Kepler motions arrive at the points located by the discrete Kepler motions.
As an application a time adjustment of the discrete Kepler motions is per-
formed. Consequently an accurate numerical integration algorithm for the
Kepler motions is designed.

1. Introduction
In [5] two of the authors presented a discrete system
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where 70711 is a difference of the time variable t() defined by
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and P,gj), Q,(Cj) are values of Py, Qy at the discrete time tU), respectively. hog
is the value of the energy. These constants are the same as those in [5] up to a
constant factor. In the limit (P,EJ), Ql(f)) = (pr,qr), k=1,2, as 7@+ 0, the

two-dimensional discrete Kepler motion (1) goes to
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Egs. (3) do not look the Hamiltonian system of the two-dimensional Kepler mo-
tion. However, through the inverse of well-known canonical transformation by
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Levi-Civita (cf. [7], p. 21)
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the Hamiltonian system (3) leads to that describing the two-dimensional Kepler
motion in the zy-plane. Consequently, (1) can be regarded as the discrete analogue
of the two-dimensional Kepler motion. The discrete system (1) is named the two-
dimensional discrete Kepler motion in [5].

In a manner similar to the above, the three-dimensional discrete Kepler motion
is derived in [6]. It is
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where hgq is the value of the corresponding energy. In the limit (P,Ej ), ff )) —

(Pryqr), k=1,--+,4, as 70341 5 0, the three-dimensional discrete Kepler motion
(5) goes to
dgr 1 Pk dp 2h34qp
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Egs. (6) do not seem the Hamiltonian system of the three-dimensional Kepler
motion. Through the inverse of the Kustaanheimo-Stiefel (KS) canonical transfor-
mation [4, 7]
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the Hamiltonian system (6) leads to that describing the three-dimensional Kepler
motion in the xyz-plane.

The discrete Kepler motions (1) and (5) preserve all constants of motion such
as the Hamiltonians, the angular momenta and the Runge-Lenz vectors [5, 6.
As a result, each point described by (1) and (5) exactly traces the orbits of the
continuous Kepler motions providing the initial points in phase spaces are the same,



Accurate algorithm for Kepler motion 137

namely, (P,go)7 ](CO)) = (pu(t?), g (t?)). However, the time evolution of the
discrete Kepler motions is different from that of the continuous Kepler motions in

the sense in which the discrete Kepler motions locate the points (P]Ej ), ,(cj )) which

are different from the points (py(t9)), g (t\9))) located by the continuous Kepler
motions in the same orbits. For example, when hog < 0, the two-dimensional Kepler
discrete motion (1) describes points in the elliptic orbit of the two-dimensional
Kepler motion (4). As time goes, the distance between the points (P,gj ), Q,(cj )) and
(p,(gj ),q,ij )) becomes larger. In the case h3q < 0, the same is true in the three-
dimensional Kepler discrete motion (5). Any transformation of the time variables
for the discrete Kepler motions has not been known which adjusts the points in
the same orbits.

The purpose of this article is to solve the following open problem: Find the
time adjust formulas with the discrete Kepler motions (1) and (5) so that there
is no difference in time from the actual time evolution of the continuous Kepler
motions (3) and (6). By using these formulas with the discrete Kepler motions,
not only orbit but also the time variable of the continuous Kepler motions are then
simulated accurately.

In Section 2, we present time adjustment formulas for the two-dimensional and
three-dimensional Kepler motions. To this end the actual time is described when
the continuous Kepler motions reach the points located by the discrete Kepler mo-
tions. By integrating differential equations the time adjustment formulas are then
derived. We show that the discrete Kepler motions round the ellipses just one
time as the discrete step-sizes go to infinity. Then accurate numerical integration
algorithms for the Kepler motions are presented. Some numerical examples illus-
trate that the points located by the discrete and continuous Kepler motions exactly
coincide in the same orbits.

2. Time adjustment-formulas for discrete Kepler motions

In this section we present the time adjustment formulas and algorithms of the
two-dimensional and three-dimensional discrete Kepler motion. First, we describe
how to derive the time adjustment formula for the two-dimensional Kepler motion.
We start with the explicit form of two-dimensional discrete Kepler motion (1),

(2(RD)* 4 hog(r(311))2) P + dhogrGi+D(RG)2QY)

P(j+1) —
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2 (RO = hyg (70:3+D)?
(R<J’>)2 = (ng))2 + (Q§j>)2, k=1,2,j=01, . (8)



138 Y. MINESAKI

Here, the value of energy hog is expressed as that of the Hamiltonian

LG I U :
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The two-dimensional discrete Kepler motion (1) is the discrete system which is
derived by using the energy preserving method [2, 3]. The two-dimensional dis-
crete Kepler motion (1) does not only conserve the Hamiltonian (9), but all of
the constants of motion, namely the Hamiltonian, an angular momentum and the
Runge-Lenz vector [5]. By using the inverse of the Levi-Civita transformation (4),
a point

(XG0, y G+, pgty, pPth) (10)

is determined which describes a motion in the XY -plane.

To present the time adjustment formula, we consider the actual time when the
two-dimensional continuous Kepler motion arrives at the point described by the
discrete Kepler motion. Let us set

(P, = (mtt). aut)) (11)

for some t(9). Here the suffix “2” indicates that the suffix k runs from 1 to 2.
The point (PLS]H)7 ,(CJH))Q is determined by (8) and lies in the orbit of the two-

dimensional Kepler motion (3) for the initial values (11). Let ¢;41 be the time
when the point (pg, gx)2 of (3) arrives at the point (P,Ejﬂ), gﬂ)) . Namely,
2

prltisn) = PV po(tinn) = PV aa(tin) = QYT ga(tjn) = Q9. (12)

It is clear from (8) that P,SjH), ,(jﬂ), k = 1,2 are the functions of 7J+1),

Differentiating ngﬂ) with respect to 771 we have
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drG+1) (2(R(j))4 _ th(T(j’j+1))2)2 .

Note that
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Substituting (3) into (13), we derive

Aty qu(tyn)? + galtyen)? dQYTY (14)
dr@i+1) p1(tjt1) drG.i+1) "

It follows from the assumption (12) that (14) leads to the differential equation
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It is not hard to integrate (15). The resulting solution is expressed as
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Here the discrete time tU) appears in the right hand side as an integral constant.
For any given tU) and the time interval 70741 = U+ — () ¢, (704D in
(16) describes the time when the continuous Kepler motion (pg(t), gx(t))2 reaches
the point (P,Ejﬂ), ,(Cjﬂ))

Furthermore, we considQGr a property of the elliptic orbit of the two-dimensional
discrete Kepler motion (8) where hoy < 0. Let us take a limit 707+ — oo in (8)
so that U1 — oo, Then,

Q(]"rl) N Q(]) (J+1) N P( ) (17)
By using the inverse of the Levi-Civita transformation (4) we see
, . , , o , o .
XU+ 5 x@ yU+) o y6) p)((ﬁ' ) P)(g), P}(/‘7+ ) P)(/J) (18)

as tUt1) — oo in the XY-plane. When hyg < 0; moreover, the two-dimensional



140 Y. MINESAKI

discrete and continuous Kepler motions satisfy the same initial condition as
(11), the point (10) lies in the elliptic orbit of the continuous motion for any
tU+D) and 77+ [5]. The behavior (18) implies that (10) goes to the point
(X(JXY(J‘)7 P)((j), Pi(,j)) in the elliptic orbits as tUT1 — oo.

Taking the limit 701 — oo in (16), we have

i N V2
lim  t;4, (r07D) = t<1>+ﬁ

731D 00 8

(~2h2) ™2 (~2h2a(R)? + (PR)?) (19)

Let us note that hog (9) is a constant of motion of (8) as well as of (3). Substituting
(9) to (19) and using K? = G(m1 + ms), we have

lim tj+1(7'(j’j+1)) = t(j) + 27TK2(—2h2d)_3/2
G o0
=t 420G (my + ma)(—2haq)"3/2. (20)
On the other hand, Kepler * s Third Law says
G(my +ma) T}, = 47°Li o, (21)

where Ly, is the semimajor axis of the ellipse and T}.p; the period of the Kepler
motion. There is a relationship (cf. [1]) between Ly, and the energy hog such
that

G(mi+m

Liept = _W. (22)

Inserting (22) into (21) we see that the period Ty satisfies

472G?(my + mo)?
T = 23
kepl (_2h2d)3 ( )
Let us set t¢) = 0. We derive from (20) and (23)

lim ¢, (799 = 272G (my + ma)(—2h24) "3/% = Thept. (24)

7(hi+1) 500

Eq. (24) shows that the limit is equal to the period of the continuous Kepler motion.
We conclude that the point (10) rounds the ellipse just one time as 73+ moves
from 0 to oco.

We now present a new accurate numerical integration algorithm for simulating
the two-dimensional Kepler motion for any initial value with a high speed. The new
algorithm achieves a time adjustment of the algorithm in [5]. One step j — j + 1,
j=0,1,--- of the algorithm is defined as follows:

i) the point (P,Ej), 2”)2 and the time ¢(9) are known.
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ii) Set the next discrete time tU+1),

iii) Compute (P,Ejﬂ), ,(jH))Q by the discrete Kepler motion (8).

iv) Replace tU+Y) by t;.4 (701 in (16).

v) Then (P,ng), ,(jﬂ))z coincides with the point (pk(t(j+1))7qk(t(j+1)))2 of

the continuous Kepler motion (3).

We can choose any tU*1 in ii) such that t&) < tU+1) < co. The corresponding
discrete step-size 70711 can take any positive value. Eq. (16) is quite useful to
adjust the time evolution of the discrete Kepler motion (8). We call (16) a time
adjustment formula for the two-dimensional discrete Kepler motion.

Next, we simply show the time adjustment formula for the three-dimensional
Kepler motion. As well as the two-dimensional discrete Kepler motion (1), the
three-dimensional discrete Kepler motion (5) is rewritten as the following explicit
form.

(8CRD) + hya(rU7+D)2) P + 16haar 7+ (RD)*Q;)
8(RIN)E = hgq(rU+1))2 ’
Ge1) (S(R(j))4 + h3d(7-(j,j+1))2) Q}(Cj) + ZTUJH)(RU))?PIEj)
BT 8(RW)1 — haq(r(7+D)2 ’
(R(j))2 = (ng))g + (Qéj))Q + (ng))Q + (Qz(;j))27 k=1,---,4, j=0,1,--- (25)

pu+

The three-dimensional discrete Kepler motion (25) keeps the value of energy
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SEVP+@YP+QY?+EP)? )2 +@)+@Y)12+ Q)

Through a similar procedure in the case of the two-dimensional discrete Kepler

motion, we give the following time adjustment formula for the three-dimensional
Kepler motion.

h3q

tj+1(7(j7j+1))
(G2 _ ()2 N
o VGRRSOF) s
8(—hsq)3/? 4(RM)2
(R(j))QT(J}j+1)A(j)

, — 5 (27)
2hsq (8(R(J))4 — hgd(T(]»J+1))2)

AY) = 64hsq(RYY + 8k, (RU))? (£ +1)2 4 8(13}(%]'))2(3(1))4
+hag(PYY2(703H10)2 4 32(RUN)2§0) g g7 (Gr3+1)
(P = (P + () + (BY))? + (P7))?,
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SU) = pOQY 4 pAOY 4 PDQW 1 pOQW.

t;+1(7U7+D) in (27) means the time when the three-dimensional continuous Kepler
motion (pk(t), gr(t))s reaches the point (P,E‘Hl), Q,(cj+1))4. The suffix “4” indicates
that the suffix & runs from 1 to 4. Moreover, along a similar line of thought in
the case of the two-dimensional discrete Kepler motion, we conclude that the point
(P,gj +1), ;Cj +1))4 given by the three-dimensional discrete Kepler motion rounds the
ellipse just one time as 771 moves from 0 to co.

We describe an accurate numerical integration algorithm for the three-
dimensional Kepler motion which achieves a time adjustment of the algorithm
in [6]. One step j — j+ 1,7 =0,1,--- of the algorithm is defined as follows:

i) The point (P,ij), ,(Cj))4 and the time t() are known.

ii) Set the next discrete time ¢7+1),

iii) Compute (P,gj ), ,(j +1))4 by the three-dimensional discrete Kepler motion

(25).

iv) Replace tU+Y) by t;,4 (7@ in (27).
v) Then (P,Ej+1),Q§€j+1))4 coincides with the point (pg(tU+1), g (tUFD)),

given by the continuous Kepler motion (6).

Finally, we give numerical examples of the time adjustments of two-dimensional
and three-dimensional discrete Kepler motions. In Figure 1 we compare the time
change of = coordinate of the two-dimensional Kepler motion with that of the two-
dimensional discrete Kepler motion and with that of its time adjustment. For these
calculations we set (X(O),Y(O),P)(f),P)(,O)) = (1,1,0,0.6435942529) and K = 1
so that hoy = —0.5. We also draw a comparison among the time change of x
coordinate of the three-dimensional Kepler motion, that of the three-dimensional
discrete Kepler motion and that of its time adjustment in Figure 2. For initial
values we set

(X© y© 7O pO pl0) ply_ (05 -0.2,0.4,-0.2,0.5,1.513745015)

and K = 1 in order that hzy = —0.2. In both figures we plot points (£ =1,2,---) of
one steps j = 0 — j = 1 with mutually different step-size 701 = ¢ for £ =1,2,---.
The open circles denote (t1 —to, XM — X (0)) given by adjusted discrete Kepler
motions. The dotted curves with asterisks indicate (¢t —#(©, X1 — X(0) of the
non-adjusted two-dimensional discrete Kepler motions [5, 6]. The adjusted discrete
Kepler motions exactly trace the original orbits in the whole space-time.
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Figure 1. Time adjustment of two-dimensional discrete Kepler motion
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Figure 2. Time adjustment of three-dimensional discrete Kepler motion
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3. Concluding remarks

In this article, we present a time adjustment formula for the discrete Kepler
motion [5, 6]. Let us note that the discrete time variable of the discrete Kepler
motion can be arbitrary chosen. Namely the discrete Kepler motion is a numer-
ical integration scheme with a variable step-size. It is obvious that the adjusted
discrete Kepler motion presented here also conserves all constants of motion of the
continuous Kepler motions including the Runge-Lenz vector.

On the whole space-time the adjusted discrete Kepler motion accurately repro-
duces the continuous Kepler motion. The time adjustment formula found here says
how to choose the correct step-size. Indeed we can compute the correct discrete
time U1 by solving the formulas with respect to t+1) for any given continuous
time ¢;41. The new integration algorithm then enables us to know the correct
orbits of the Kepler motion with a high speed. This comes from the good property
that both the discrete Kepler motion and its time adjustment formula are explicit

schemes.
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