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Invariant n-gon relative equilibria of discrete-time
(14 n)-body problem with small arbitrary masses

Yukitaka MINESAKI

Abstract.  The (1 + n)-body problem with n infinitesimal masses [3,
4, 11, 13] is generalized to the general (1 + n)-body problem (G(1 + n)-
BP) in which n arbitrary non-infinitesimal masses influence a massive central
primary. We clarify that the G(1+n)-BP has the central configurations similar
to those of the (14-n)-body problem. We also propose the discrete-time general
(1 + n)-body problem (d-G(1 + n)-BP), which approximates the orbits of the
G(1+4n)-BP. Moreover, we proved that the d-G(1+n)-BP has the same central
configurations as the G(1+n)-BP. Until the proof in this work, there has been
no discrete analog of the G(1+n)-BP preserving these central configurations.

1. Introduction

The problem of finding the central configurations of the (1 + n)-body problem
((14n)-BP) in the plane has been the subject of many papers. One of the reasons
why central configurations are interesting is that they allow us to construct exact
solutions of the (1+n)-BP. It was already pointed out by Laplace and, historically,
the problem of central configurations was first formulated in this context. Many
researchers considered a restricted version of the (14-n)-BP where a central primary
is massive and the other n masses are infinitesimal (e.g., see [3, 4, 11, 13]). We
call this restricted problem the restricted (1 + n)-body problem (R(1 + n)-BP).
In the R(1 + n)-BP, n small masses do not influence a massive primary. However,
nobody derived the central configurations of the (14n)-BP where a central primary
is massive, and the other n masses are arbitrary non-infinitesimal. We call this
problem the general (1 4 n)-body problem (G(1 + n)-BP).

Minesaki gave the discrete-time general three-body problem (d-G3BP) [7, 8]
which follows the orbits of Lagrangian triangle solutions for the original general
three-body problem (G3BP). Minesaki also proved that the discrete-time restricted
four-body problem (d-R4BP) yields the correct orbits corresponding to the elliptic
relative equilibrium solutions of the original restricted four-body problem (R4BP)
[9]. These orbits include the orbits of some relative equilibrium solutions already
discovered by Baltagiannis and Papadakis [1]. Until the proof in [8, 9], there has
been no discrete analog that preserves the orbits of elliptic relative equilibrium
solutions in the G3BP and R4BP. In contrast, high-order symplectic integrators
and energy-conserving methods can trace none of such orbits.
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The discrete-time general (14 n)-body problem (d-G(14 n)-BP), as well as the
d-G3BP and d-R4BP is a special case of the discrete-time general N-body problem
(d-GNBP). Therefore, the d-G(1 + n)BP can expect to have the same equilibrium
solutions as the original G(1 4+ n)-body problem (G(1 + n)-BP). In this paper, we
include the following.

1. We present the d-G(1 + n)-BP as a special case of the discrete-time general
N-body problem [10]. As non-infinitesimal n masses tend to zero, the d-
G(14n)-BP reduces to the discrete-time model corresponding to the R(1+mn)-
BP studied in [3, 4, 11, 13].

2. We prove that the d-G(1+n)-BP yields the correct trajectories corresponding
to equilibrium solutions of the G(1 4+ n)-BP. We also numerically check that
the d-G(1 + n)-BP can precisely reproduce these trajectories.

This paper is organized as follows. In Section 2, in the barycentric inertial
frame, we obtain the d-G(1 + n)-BP as a special case of the discrete-time general
N-body problem [10]. In addition, we rewrite this discrete-time problem as a
discrete-time problem in a uniformly rotating reference frame. Next, in Section
3, for any set of non-infinitesimal n 4+ 1 masses, we analytically clarify that the
rewritten d-G(1 + n)-BP has some configurations of equilibria, each of which is
consistent with one of the original G(1 + n)-BP. In each configuration, n masses
except a central massive particle form a rotating tetragon whose size and shape are
invariant. Finally, in Section 4, we numerically check that the d-G(1 + n)-BP can
accurately reproduce some equilibrium solutions in the original G(1 + n)-BP.

2. Discrete-time (1 + n)-body problem

We consider the G(1 + n)-BP with a massive mass mg and the other n non-
infinitesimal masses m;, 1 < ¢ < n under the action of mutual gravity. In this case
we obtain the following model:

i—1 I o n I
d / V/- iv/ — Z mg (qk qz) _ Z m (qz qk) 0<i S n, (1)

@t @, — a? P

k=0 k=i+1

where q; = (q;,m,q;.m) is the position of m;, 0 < j < n and v = (U;’[I]’U;@]) is
the velocity conjugate to qj, 0 < j < n in the inertial barycentric frame. Also,
n+1 position vectors ¢, 0 < j < n satisfy the constraint Z;‘L:O m;qj; = 0. Let the
G(14n)-BP be rewritten through some variable transformations, and be discretized
as a special case of the discrete-time general N-body problem [10].
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2.1. Discrete-time (1 + n)-body problem related to inertial frame
We take q;; = (Qij[1]7Qij[2])a 0 <i < j <n as the relative position vector from
mass m; to mass m;. vi; = (vijm, Uij[g]) is proportional to the relative momentum

vector conjugate to q;j, 0 < ¢ < j < n. The vectors q,;; and v;; in the relative
inertial frame are defined as

1
qij:q;_qg'vvij:M(V—V) 0<i<j<n, (2)

where M = Y7 my. Also, we define the vectors Q;; and V;;, 0 <i < j<n as

ij[2) 1 /—
5 2qz 1 + 2|q for qz 7
< V _2%][1] + 2|qz] 2 /0] Y i

Qi =  wm (3a)
\/2% 1] + 2]agl ] for g;;11 > 0,
J[1] J \/m J[1]
2(%’;‘[1]%‘;‘[2]—Uz‘j[z}%jm'i‘vijp]|qz‘j|)
V2451 + 2]ai;]
for g;i111 < 0,
2 (Vi (1) 9ig(0) +Vi5(2) 93 (2) —Vig[1) |5 ) it
V2450 + 2]
Vij = Wl ! (3b)

2 (Vg1 9ig10) +Vij121 9302 T Vi | i)
2qij1) + 2]ai;]
2 (Vsjn) i) — Vigl2) Gisn) — Vil2) i)

\/ 251 + 2|qy;]

where the components of the vectors Q;; and V;; are the Levi-Civita variables
[6] related to the relative inertial frame. Substitution of (2) and (3) and their time
differentiations into (1) yields the following system:

for q;jp > 0,

d M Vy o
0. = 0< <
dtQ” 4 |Q”|27 1< jJ=<n, (4&)
j—1
i=0 i=j+1
QOU(Q) = 07 1 S 1 < .7 S n, (4C)
where
m;m; d 1 M
Gij = 55 (Vi' — =7 ( Vij 2—2> i‘)L i)
T 212 \dt Y |Qyt\ 4 Vi Qi; ) L(Qy;)
-
By
®(,;(Q) = 0i5(1)(Q) = QuiL(Qo:) " +Qi;L(Qi;) " — Qo L(Qo;) T,
Poii121(Q)

1<i<j<mn,
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and

L(Q,) = [Qijm —Qijpy

Qijiz1 Qisy

is the Levi-Civita matrix [6]. This system is the G(1 + n)-BP described in the
Levi-Civita variables related to the relative inertial frame.

Meanwhile, we have already designed an accurate orbital integration method
(see the system composed of (13a), (15), and (17) in [10]) for the following G(1+n)-
BP! :

},0§i<j§n7

d M Py
*Qijzi 2
dt 4mimj |Q”‘
J—1 n

> Gij— > G;=0,1<j<n,
=0

i=j+1
q’Oij(Q)ZOa 1§Z<J§n7

0<i<j<n,

where P;; is the momentum conjugate to Q;;, and

1 /(d M Q,;
G, = —P;i— Pi-2—2mim-> Y >LT Qij), 0<i<j<n.
J 2‘Qij|2 <dt J <4mimj| J‘ J |Qij|4 ( J)
The G(1 4 n)-BP keeps the value of the following Hamiltonian:
n—1 n
M |P;? m-m-)
hye = il T ) 5
- ;j;m <8mim]‘ Q1% Qi )

However, if at least one of m; and m; is an infinitesimal mass, then we cannot
compute P;; and Q;; using the above system. Therefore, the above system cannot
give the central configurations of the R(1 + n)-body problem.

In the case of P;; = m;m;V;;, 0 < i < j < n, this system is rewritten as
the system (4). Even if the system (4) includes some infinitesimal masses, we can
integrate it to give V;; and Q;;. Applying the accurate orbital integration method
(see the system (31) in [10]' ) for the above system, and subsequently setting

1 In this work, we set N = n + 1 and reduce by one each of subscripts in the system composed
of (13a), (15), and (17) in [10]. Further, we do not use the Kustaanheimo-Stiefel matrix [10] but
the Levi-Civita matrix because we consider only the two-dimensional G(1 + n)-BP.
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P;; = mym;V;;, we give the following discrete-time model:

I+1 l (141

Q§j+)_Q£j):M|Q+)|2—|—|Q 2 VD g icp (6a)
A G

j—1
1+1) (141 .

Soairy - Z Gt =0, 1<j<n, (6b)

i=0 i=j+1

QOij(Q(lJrl)) = 0, 1 < 7 <j < n, (6(3)

where At is a time step, Q(l (Qgé) sz;)z]) Vg) = (V.(.l) 7AY)

i1 ”[2]) at the discrete
time t() = =IAt, 1=0,1,---

)

H) 0
GiHn_ _mimy ViV 1
J 2|Ql+1/2)|2 At |Q(l+1 |2|QS)|2

( (VR v P)- )Qgﬂ/?))L(Q(jj“/?))T,0§z’<j§n,

(1+1) 1)
and we define the midpoint value (o)(*+1/2) = @O+ ()7 of the function

(e)(t). The discrete-time system (6) is based on a d’Alembert-type scheme [2], so
it is second-order accurate. According to the d’Alembert scheme [2], the discrete-
time system (6) conserves

n—1 n
M | V|2 1 )
hy, :g E m;m; | — I 7
¢ ! ( 8 |Qij|2 |Qij|2 ( )

i=0 j=i+1

to which (5) leads through P;; = m;m;V;;, 0 < i < j < n. In the following, we
call the discrete-time system (6) as the discrete-time general (1 + n)-body problem
(d-G(1+n)BP). Even if at least one of m; and m; is an infinitesimal mass, we can
compute V%H) and Q%H) using the problem (6). Thus, the problem can not only
give the configurations of the d-G(1 + n)-BP but also those of the discrete-time
restricted (14 n)-body problem (d-R(1+n)-BP). For each (¢,5), 0 <i < j <n, we

give qgé) = (qg)[ 1 qul)m) as the relative position vector from mass m; to mass m;

at the discrete time t(l) and v(l) = (vz(jl)[l],vz(jl)[

vector conjugate to q . We define the vectors

2]) is proportional to the momentum

(j) and v() as

1 1 l l 1 l 1 .
a =L@’ V’(j):2|Q(l,>|2v§i)L(Q5j))T» 0<i<j<n, 1=0,1,2,---.(8)
ij

Eq. (8) is the inverse transformation of (3). Also, in the inertial barycentric frame,

we assume that the mass m; is located at the position ql(l) = ( :Eﬁ, 7% %) 0<i<n
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(1)

and v,/ = (v] 0 yh

i)’ Yif2)
0 < i < n at the discrete time t), 1 =0,1,2,---. We set vectors ql(l) and v, AR

) is proportional to the momentum vector conjugate to q;(l),

/(l ijql ijq] ) /' Zmﬂ Vig ij Vii s

j—=1+1 j=i+1
0§z§n, 1=0,1,---.(9)

To reduce the redundancy, we can rewrite the d-G(1 + n)BP (6) using only
Qii+1 and V; 541, 0 <4 < n. Here, only these 2n vectors are related to the chained
position vectors q; ;41 and the vectors v; ;41 are proportional to the momentum
vectors conjugate to q; 41, respectively [10]. However, we do not consider such
discrete-time system without redundancy because it describes the same motion as
the d-G(1 + n)BP (6).

2.2. Discrete-time (1 + n)-body problem related to rotating frame
Further, introduce a rotating barycentric frame with the origin at the center of
masses. Set the angular velocity of this frame as a constant 2. We can convert
from the vectors q/-(l) ‘W in the inertial barycentric frame to the vectors
(1) = ( UORWI0)

;(l) (a:]([ll)], a:;([g]) and w; wj[1]7wj[2]) in this frame as follows:

and v,

X =gV RruAr), w =vIVRQIAY), 0<i<n, 1=01,---, (10)
where
__|cosf —sind
r©9) = [siné) cos 0 ]
Moreover, in a way similar to (2), we set Xz(';') = (xg-)[lyxg‘)[g]) and W(;) =

ij[1]7 ij[2]
the discrete-time t() = [At, 1 =0,1,2,---. They are defined as

(wq.) w ), 0 < i < j < n as the relative vectors in the rotating frame at

1
xl(.? = x;(l) — x;-(l), wg) i (w;(l) — w;(l)) ,0<i<j<n,1=0,1,---.(11)
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In a way similar to (3), we also put the vectors X and W 0 <i<j<nas

ij
xl 1
"[21 0 )
2 2 ’5\/_ wigny + 25| | for wljyy <0,
XZ(-;-) = \/_ i + | | . (12a)
( 1 Lijl2 !
23:z )[1] + 2|x§j)\, i12 for ”354)[1] >0,
- 4T
CIRU OGO
2 (il — iy + wu[zl‘x )
\/_296(1 +2|X‘ | for m(l) <0
ORRU SRR RO SN0 im <0
2(%[11 i) T Wi Cgle) ~ Wi X D
0
vl I Felew -
VI 2(w<1) O 4@ e Ol D'T
ij[11V45[1] 121%45(2) U[l]
2+ 2/x)|
for;v > 0.
o @ o i
2wy el ek )
2x(l) —|— 2|X(l)|

Using (3), (8), (10), (11) and (12), we give the relation among Q x V(l)

ij ZJ )
and Wg) as follows:
O) _ W Q v _ w® Q
Q) =xr (—21&) , Vi) =W{IR (—2ZAt> :
0<i<j<n, =01, -.(13)

Using (13), we rewrite the d-G(1 4+ n)-BP (6) as the following discrete-time
system:

(I4+1))2 12
1—s2 (oar) o), MIXy 17+ |X | 1+1) )
At (Xij — Xy ) Ty |X(_l_Jr1 2 \X |2 (W” Wy ) J

(1+1) 0
X(l+1/2)J+( )% X5 PG (1+1/2)
t

, 0< i< j<n,(14a)

A 8 |X(-l-+1)‘ |Xg)|2 ij
j—1 n j—1 n
ZH%HD . Z H(l +1) ZI%[-H) . Z Igli,l+1), 1<j<n, (14b)
i=0 i=j+1 i=0 i=j+1

®o;;(XHV)=0, 1<i<j<n, (14c)
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QAL 0 -1
wh = =
ere s = tan ( 3 ) J= [1 0 ],

14+1/2 1 141/2 I+1 l
QY = —— (=X -5 (X -x) 7).

] 1+ 2 1
2
i+ . mim;  (1—s (H1) 0)
Hij :2@5;“/2)2( ¢ (Wij _Wij)
2s (M w2 (1) (D) A (H1/2)
— o (5 (WP W) —2) (x§ -x ) 3L (@E?)
NEGRENIRE Lo :
I(_l_’l+1) = m;m; ﬁ (l_+1/2) + 1-— 82
e A X5 RIX

~ T
(BFawg e wim-2)xg = @g?)

0<i<j<n.

Through the inverse transformation of (11) and (12), namely,

LD 5 () (DT (1) 1 (1+1) (+1)\T
Xij Xij L(Xij ) Wi +1) 2Wij L(Xij )
2[X
0<i<j<n,1=0,1,---, (15)
a1y 1 S , l+1) (1+1) ‘ —
X, = Z ij ,0<i<n, 1=0,1, ,
j=i+1 (16)
l+1 Z m;w l+1) ij (l+1 OSZSTL, l:0717"'a
j=t+1

we can obtain the position x;(Hl) and velocity w;(Hl) of the mass m;, i =0,--- ,n

in the rotating barycentric frame at the discrete time t+1) = (I + 1)At from the
solution of the rewritten d-G(1 + n)-BP (14), X(H_l) and WSH), 0<i<j<n,
1=0,1,2,--.

On the other hand, utilizing the transformation similar to (13),

Qi;(t) = X ()R (—%t) L Vi(t) = Wi(H)R (—%t) L0<i<j<n, (17)
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we can express the G(1 + n)-BP (4) as the following system:

d w M 1
—Xij = 5Xijd + 3 Wis»
@ Tt X E

= om d w 1 (M
L (=W — =W — —— (W2 — 2) X | LX) "
ZQ|Xij|2(dt T2 |Xz'j|4(4| i ) j>( 2

w 1 M
*Z 2|x E (dt A QWﬁJM<4|Wjil22)xji>L<Xﬁ>To,
Ji 7t

1=75+1
1<j<mn, (18b)

0<i<j<n, (18a)

In the limit w = lima;—o 8tan (QAL/8) /At, the rewritten d-G(1 + n)-BP (14)
reduces to the rewritten G(1 4 n)-BP (18).

3. Invariant n-gon equilibria

In this section, we obtain the condition which some invariant n-gon equilibria
of the rewritten d-G(1 4+ n)-BP (14) satisfy. Also, we give the angular velocity
Q of the rewritten d-G(1 + n)-BP (14) for the initial condition corresponding to
the angular velocity w of the rewritten G(1 + n)-BP (18), and clarify that these
equilibria of the rewritten d-G(1 4 n)-BP (14) with the © accord with those of the
G(1+ n)-BP (18) with the w.

First, in preparation for obtaining the above conditions, we give the condition
for the equilibrium solutions of the rewritten d-G(1+n)-BP (14) because the invari-
ant n-gon equilibria are special cases of the equilibrium solutions. This condition
is shown in the following lemma.

LEMMA 3.1.  (Equilibria of d-G(1 + )—BP)
Let XZ(»;+1) X(l) X, = const., VV(H_1 =W, i) =W, =const., 0 <i<j<n,
l=0,1,--- be an equilibrium solutwn of the rewritten d-G(1 4 n)- BP (14). Then,
the positions X5, 0 <1 < j < n fulfill the following relation:

j—1 n
0= T;- > I 1<j<n, (19a)
1=0 3

, (19b)
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where
T — 1—s? mym; (1285 1 |X44|272(17f52) XL ()T 0<i<j<
1372(14-52) |Xij‘2 1— g2 M(At)2 ij |Xij‘4 ij ij) » 0<i<g<n.

Moreover, the relation between X;; and W;; is expressed by

16s 1

Wi === M

X423, 0<i<j<n. (20)

Proof. An equilibrium solution x}, wj, 0 < i < n of the rewritten d-G(1 + n)-
BP (14) must satisfy the condition xi(Hl) = xi(l), wi(lﬂ) = wi(l), 0 <7<,

1=0,1,2,---. Through (11) and (12), this condition leads to

X =X = x;; =const., 0<i<j<n, (=012, (2la)
WD =W =w,; = const., 0<i<j<n, 1=0,12- . (21b)

Substituting (21) into (14) yields the following conditional equations for the equi-
librium solution:

4s 1-s*)M 1

0=—X;J i, 0<i<j<n, 22
e A
j-1 n
0= Iij—ZIji, 1<j<n, (22b)
i=0 i=j+1
Poij(X) =0, 1<i<j<n, (22¢)
where
1—s%2 mym,; (4s 1—52 (M
Tijj=——— W I+ ——— (W2 —2) X LX) T, 0<i<j<n.
’ 2(1+52)|xij2(mwf +|/\gij4(4|""a| > J>( j) , 0<i<j<n

Eq. (22a) is equivalent to (20). Substituting (20) into (22b), we give (19a).
Then, (22c) is congruent with (19b). Accordingly, the positions X;;,0<i < j<n
satisfy the relation (19).

It is clear that a non-degenerate relative equilibrium solution of the G(1+n)-BP
with mg = 1 and m; = eu;, 1 <4 < n converges to one of the R-(14+n)-BP ase — 0
(e.g., [3], [4], [11], [13]). Also, (19a) in LEMMA 3.1 gives the relation satisfied by
the equilibrium solutions of the d-G(1 + n)-BP involving in such non-degenerate
ones. We show that in the small positive €, the rewritten d-G(1 4+ n)-BP (14), as
well as the rewritten G(1 4 n)-BP (18), has a non-degenerate equilibrium solution
in the following theorem.
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THEOREM 3.2.  (Coorbital Configurations of d-G(1 + n)-BP)
We assume that € is a small positive value, and 0 < 0y; < 0p; < 27 for all 1 <i <
7 <mn. Let

mo=1, m;=e€u;, 1<i<n, (23)
and
() _x (D) bo;  Boj ,
XOj =Xy =Xog;=kK —sm? COST , 1<5<n,
(I+1) _ 5 (D) _ Oij .Y 24
Xij :Xij ]_/1,/1"1]( sm— cos2>7 1<i<j<n,
16 3 0o; 6o,
W =W =Wy = — E (—cos ™ —sin24)  1<j<n,
(1-s2)At 2 2
1+€Zﬂk
k=1
165 F\T 0 o (25)
W =w =W, = 2 — —cos”,—sin”), 1<i<j<mn,
(1—s2)At 2 2
1+€Zﬂ'k
k=1

be a non-degenerate equilibrium solution of the rewritten d-G(1 + n)-BP (14) with
the angular velocity Q). Here, s = tan(QAt/8),

1/6
(1—82)1/3(At)1/3 n
K= e 1—1—6;/% (26)
and
w:zm@, 1<i<j<n. (27)

Further, the angles 0;;, 1 <i < j <n are given by

in(6y; — 0
sin(fo; —0or) ) j<n. (28)
90] 901

2

sin (91']' — 90]‘) =

28in ———
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Then, the angles 0y;, 1 < j < n satisfy the following identities:

j—1
1
0=>» pi|l— ——F5—— |sin(6p; — Oo;
;g; g sin? 20 —0oi s =)
= 1 . .
i=j+1 8 sin® —

Proof. Substitution of (24) into (19b) yields

cos0;; =r;;

(cosbl; — cosby;), sinb;; = T (sinfg; —sinfy;), 1 <i<j<n.

Using these relations and some trigonometric function formula, we obtain (27) and
(28). Then, using (24), (27) and (28), we rewrite (19a) in LEMMA 3.1 as

j—1 n
0=Jo;+) Tis— D, Ty, 1<i<n, (30)
i=1 i=j+1
where
j()j:282(*C0S00j,78i1’190j), 1 <5 <n,

90]' — 901' 1-— 82 1

Tij = €l 452 sin 5 - B0, —0o; (—cosb;j,—sinb;;),
sm- —
2
1<i<j<n,
~ D Bp—0p; 1—s2 1 .
T ji=€p; 452 sin ~2 5 o _ 5 00— O (—cosbj;, —sinby;),
s ——
2
1<j<i<n.

Taking inner product of (30) with (—siny;,cosfy;), we obtain

0=2¢(1—5?)
j—1 1
Z,uz 1-— 0 7] sin(@oj — 001)
i=1 8 sin® 0i
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n
1
- Z i 1—ﬁ sin(fo; — 0oj) [, 1 <j<n.
i=j+1 8sin® ~L 9

Accordingly, we can prove that the angles 6;;, 0 <1 < j < n satisfy the identities
(29 o

In Section 2.1, we pointed out that d-G(1+n)-BP (6) preserves the Hamiltonian
of the G(1 + n)-BP (4), huc (7). Utilizing this preservation, when the rewritten
G(14n)-BP (18) has the same n-gon equilibria (24) as the rewritten d-G(1+n)-BP
(14), the relation between w in (18) and Q in (14) is given by the following lemma.

LEMMA 3.3.  (Angular Velocities of G(1+n)-BP and d-G(1+n)-BP for Equi-
libria)
Suppose that

(i) mo =1, m; = eu;, 1 <1 < n, where € is small positive.

(i) Both of the rewritten d-G(1+n)-BP (14) and the rewritten G(1+n)-BP (18)
have the common set of fixed points

' On
Xoj =K fsinﬂ,cosﬂ , 1 <5 <n,
2 2
X, — . az‘j ‘gij 3 .
ij = Ky/Tij | —sin =7, cos == , 1<i<j<n,

where k and 1,5, 1 < i < j < n are defined by (26) and (27), respectively,
and the angles 6;;, 1 <1i < j < n satisfy (28).

Then, the angular velocity w in the rewritten G(1 4+ n)-BP (18) is the following
function of the angular velocity Q0 in the rewritten d-G(1 4+ n)-BP (14):

8s
(1-s2)At’

w =

(31)

(QAt)
where s = tan [ — |.
8

Proof.  Consider the positions and velocities of both the G(1 + n)-BP (4) and
the d-G(1 + n)-BP (6) in the Levi-Civita frame at the discrete time t) = [At,
1=0,1,---. According to [2], the G(1 + n)-BP (4) and the d-G(1 + n)-BP (6)
conserve the value of the common h; (7). Therefore, the Hamiltonian of the
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G(1+n)-BP (4), H..c and that of the d-G(1 + n)-BP (6), Hy.c are given in the
following forms.

1. The Hamiltonian of the d-G(1 + n)-BP (6)
Substitution of (24) and (25) into (13) yields

QOJ =K (—sm(g;] COSGOJ) R (—2lAt> , 1 <5 <n,

2
0; 0; Q .
QZ('?:R Tij (81112] cos;) R (QZAt) 1<i<j<n,
@__ 16s K sl g P & <j<
VOj*(l_sz)At ( cos o s R —glAL) I sj<mn,

1+€iﬂk

ij 0;; 0 Q
v = 24 _sin ZL)R(—ZIAL), 1<i<j<n.
1—52) Atl Zn: ( cos 5 sin 2) ( B) >, Si<ysn

+te€ ) Mk

(32)
Using (32), we rewrite the Hamiltonian (7) as
9 005 —00i 1
e S 2 3 S B
i=1j=i+1 8sin? 2%

2. The Hamiltonian of the G(1 4+ n)-BP (4)

Substituting X;;(t) = X;;, 0 < i < j <n in LEMMA 3.3 (ii) into (17), we
give

o o, w .
Qo;(t)= ( s1n73 cos—~| R (——t) ,1<j<n,

2
0; 0;
Q;;(t)=k rij< sm% 0057]
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Further, substituting (34) into (4a), we obtain

3 O
Vo, (t) = 2w Kn —cos —L, —si gJ)R(—L;t),1<j§n,
1+€Zuk
k=1
N
Vii(t) =2w———"—— [ —c s?j,fs' ;)R( 2t),1<z<]§n
1+€Zﬂk
k=1

Through the above relations, the Hamiltonian (7) leads to

€ < 5 KO
HLLC*—ﬁZ 2-w 0 14
=t 1+€Zﬂk
=1

Because both values of H, 1 (33) and H. . (35) are equivalent to the value of h; ¢
(7) (see Theorem 1 in [10]),

3252 1 w?

1—s22 (A2 27

Accordingly, we have the relation between w and € given by (31). 0

With the help of THEOREM 3.2 and LEMMA 3.3, we find a non-degenerate
equilibrium solution for the rewritten G(1 + n)-BP (18) by using the following
theorem.

THEOREM 3.4.  (Coorbital Configurations of G(1+ n)-BP)
We assume that 0 < p; < bp; <27 for all1 <i<j<n. Let
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and
Oo; 6o;
Xoj(t) = Xo; =k (—Singj,cosgj) , 1<j<mn,

2

I*ig 90‘ 90‘
t: :2771— ‘7‘7’—‘. 7‘771<< N
Wo;(t) =W, w1+ezk:1uk ( cos = sin = <j<n
3

pe 0. 0.
Wi (1) =Wy= 20— [ (—cos 24, —sin ), 1<i<j<n,
(1) y w1+€ZZ:1Nk T ( cos 5 sin 5 <i<j<n

be a non-degenerate equilibrium solution of the rewritten G(1 + n)-BP (18) with
the angular velocity w. € is a small positive value, and K is defined by

n 1/6
k= w!/? (1+€Zﬂk> . (37)
k=1

Then, the angles 0y;, 1 < j < n satisfy the following identities:

0, 05 L
Xij(t) = Xy = kT35 (Sinj,cos]), 1<i<j<n,
’ (36)

j—1
1 .
0= Z j27 1-— W Sln(@oj — 901)
i=1 8sin” ———
2
- 1 . .
- Z i | 1 — ————7— | sin(6o; — 90j), 1<j<n. (38)

R . 3 60 — Oo;

i=j+1 8 sin —a

Proof. Eq. (31) in LEMMA 3.3 describes the relation between the angular velocity
Q in the rewritten d-G(1 + n)-BP (14) and the angular velocity w in the rewritten
G(14n)-BP (18). Therefore, substitution of (31) into (24) and (25), which describes
a coorbital configuration of the d-G(1+n)-BP, leads to (36). According to LEMMA
3.3 (i), the rewritten G(14-n)-BP (18) has the same angles 6;;, 0 < ¢ < j < n as the
rewritten d-G(1+n)-BP (14), so these angles satisfy (38). 0

THEOREM 3.5.  (Identity for Equilibria of G(1+n)-BP and that of d-G(1+n)-
BP)
Suppose that

(i) mo=1, m; =eu;, 1<i<n, wheree is small positive.
(i) The initial conditions are

Oo; 0o
Qu;(0) = Q) = (—singj,cosgj) ,1<j<n,
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0. 0,
Qu(0) = Q) =y (=sinoos B ) 1 i< <,
3 0o 0o
Vo;(0) =V =2 <cos0j,sin0j>, 1<j<n,
0]() 0j 1+62k=1uk 2 ) >7 >
K37 0. ..
V0=V =9y VY (—cos”,—sin”), 1<i<j<n,
J() 1] 1+GZZ:1,UI€ 9 2 —= J >

where the angular velocity w is arbitrary, k is defined by (37), the angles
0 < 0o <bp; <2m, 1 <1i<j<n satisfy the identities (38), and r;j and 0;;,
1<i<j<n fulfill (27) and (28), respectively.

Then, for both of the G(1+n)-BP (4) and the d-G(1+ n)-BP (6),

(a) The mass mq is nearby the origin and the other masses my, +-+, m, move
near the unit circle whose center is near the origin at any time t = lAt,
l=0,1,---.

(b) n masses my, ---, m, form a n-gon whose shape and size are invariant
independent of time.

Further, both of the G(1 + n)-BP (4) and the d-G(1 + n)-BP (6) keep the same

shape and size of a n-gon for the common initial condition (ii).

Proof. Using the position vectors in the inertial barycentric frame, we rewrite
the coorbital configurations of the rewritten d-G(1+n)-BP in THEOREM 3.2 and
those of the G(1 4+ n)-BP in THEOREM 3.4. It follows that the n-gon given by
the d-G(1 4+ n)-BP (6) is congruent to that given by the G(1 4+ n)-BP (4) for the
common special initial condition.

1. The n-gon configuration given by the d-G(1 + n)-BP (6) in the in-

ertial barycentric frame
In the proof of LEMMA 3.3, we have already given the discrete-time variables

Q ” ,0<i<j<m,1=0,1,--- as (32). Using (8) and (9), we rewrite
(32) as follows:

, 2
aV = 67 Z pj [— cos(fo; + QUAL), —sin(fo; + QIAL)],
1+e Z py 7=
"Wy 8er?s

Z wj [sin(0o; + QIAL), —cos(fo; + QUAL)],

Vo = n
(1-s%) <1 +62uk> At =t

k=1
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- 4T
n 1—1
cos (Bo; +QUAL)—¢ (/ Z ;735 cos(0;; +QlAt)> +e€ (/Z 1755 cos(05; +QlAt)>
j=i+1 =1
1+e Z Mk
qi(l) 2 - 7
sin (6o +QUAL) — (Z T 51n(91]+QZAt)+e (/Z T sm(0]l+QlAt)>
=i+1
1+e Z Hi
L k=1 J
i n i—1 ]
8s [sin(fo; +QUAL) — Z ;7 sin(0; +QUAL) +e Z ;755 sin(0; +QUAL)
j=1+1
(1 - s?)At <1 + € Z uk>
vi(l): 2 k=1 -
8s <cos(90,+QlAt Z wjriz cos(8i; +QlAt> +e (/Z Wi Cos(6]l+QlAt))>
j—=i+1
(1—sH)At <1 +€ Z Mk)

k=1
1<i<n.

The relations (39) describe that the d-G(1+ n)-BP (6) satisfies the property
(a) if the condition (i) and (ii) are fulfilled. Since 0 < 6y; < 6y; < 27,
1 < i < j <n, the property (b) is also met. At I =0, (39) leads to

(0 .
qo( ) = Zuj —cos Oy, —sin By;]
I+ 62/% =1
r i—1
cosby; — € Z 735 €08 055 + € Z,u]rﬂ cos 0;
Jj=i1+1 j=1
n
1+e€ Z Lk
‘0) _ .2
q; =k 1—1
sinfy; — € Z ;75 sin 05 + ez 15755 sin 05
j=i+1 j=1
n
I+ 62%
"(0) 8se K>
vy = 1= 2)Ar — Z,u] [sin O, — cos Bo;]

1+GZM/€] !
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- 1T
i—1
8s | sinfy; —e€ Z T Sin GUJreZ 45755 Sin 0
Jj=i+1 j=1
n
(1—s*)At (1 + ez,uk)
k=1 ,1<i<n
1—1
8s [cosbp; —e€ Z [4;T¢5 COS 9”—1—62 1573 cos 0
j=i+1 j=1
n
(1—s%)At <1 + GZ/J,k>
k=1 J

which corresponds to the initial values in the inertial barycentric frame.
Through (2) and (3), these values reduce to

0 bo
Qé?-n( sin —2Z cos) 1<j<n,

27 2
0;;

0i;
QE?)ZK Tij <—sm cos), 1<i<j<n,

0
vy =

0) _
V..''—= 12 — CoS

27 2

16 3 0o, 0
. s;At v <_COb; —sin ;) 1<j<n,

1+€Z,Uk

3 3
16 RVARY] 0, 0,
> ’ ;7—sin2j), 1<i<j<n. (40)

(1—s2)At "
1+€Zuk
k=1

2. The n-gon configuration given by the G(1+n)-BP (4) in the inertial
barycentric frame

The following Q;;(t),
Qoj(t)=r
Qij(t)=r

3 0o; +wt Bo; +wt
2wl€7n (—cos <0];—w) , —sin ((U;_L‘J)), 1 <5 <n,

Vo;(t)=

Vi;i(t), 0 <i < j < n satisfy the G(1 4+ n)-BP (4):

0o ; +wt Oo; +wt
—sin 0j , COS 0j , 1 <5 <n,
2 2
0;: +wt 0;; +wt .
Tij <sin< ];_w),cos<f2’_w>), 1<i<j<n,

1+eZ/ik
k=1
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3 3

K Tij 0; t 0, t
Vi;(t) :2“’771” (— cos (J;w) ,—sin (J;_w)) , 1<i<ji<n.(41)
1+€Zuk
k=1

Through (8) (9) and (23), (41) leads to
2 n
Q) (t) = ———— D> _ nj [~ cos(6o; + wt), —sin(6o; + wt)],

1+e Z i =T
I i—1 17
cos (Bp; +wt)— ((Z 735 cos(0 +wt) )Jre (/ ;755 cos( 'i+wt))
j=it1 i=1
n
1+e Z M

q; (t) i—1 ’
sin (6o; +wt) — (/Z 7 sin(05 +wt )-i—e (/Z 5T i 51n(6]z+wt)>

=i+1
1+e Z Mk

, ex’w
vo(t) = —— Z iy [sin(fo; + wt), — cos(bo; + wt)],

I+e Z e =1
M i—1 17
w (sm(@m +wt)— (/Z 173 sin(0; +wt) >+e (/Z 5T 55 sm(6ﬂ+wt)>>

=it+1 j
1+e€ Z K
z(t): i—1 i
w (005(6’01 +wt)— (Z 75 cos(05 +wt >+e ((Z HiTji cos(6ﬂ+wt)>>
=i+1
I+e Z Mg
k=1

1<i<n (42
Eq. (42) means that the G(1 + n)-BP (4) fulfills the property (a) under the
conditions (i) and (ii). Also, the G(1 + n)-BP (4) satisfies the property (b)
because of 0 < fp; < Op; < 2m, 1 <i<j<n.

At the time ¢ = 0, the solution of the d-G(1 4+ n)-BP, (41) reduces to

0 0o
Qo;(0)= ( sm% cos 2) 1<j<n,
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0. 0.
Qi;j(0)=+ Tz‘j<—sin;,cosg>, 1<i<j<m,

K® o o
Vo;(0)=2w — cos;,sn;), 1<j<n,
ey
k=1
K37 0.
Vi;(0)=2w - 08”,—5111;]), 1<i<ji<n
1+€Z“k
k=1

Each r.h.s is congruent with that of (41) in the case that the relation between w
and ) is given by (31) in LEMMA 3.3. This fact corresponds to the condition (ii).

Accordingly, we can clarify that if the G(1 4+ n)-BP (4) and the d-G(1 + n)-BP
(6) satisfy the common conditions (i) and (ii), the n + 1 masses of the G(1+n)-BP
and those of the d-G(1 + n)-BP form the same invariant n-gon. 0

THEOREM 3.5 describes that the d-G(1 + n)-BP has the same central con-
figurations as the G(1 4+ n)-BP for the common initial conditions. Further, these
configurations of both the G(1 + n)-BP and d-G(1 + n)-BP with my = 1 and
m; = ey, 1 < i < n converge to those of both the R(1 + n)-BP and its discrete
version as € — 0, respectively. Thus, in the case of € — 0, the d-G(1 + n)-BP can
reproduce the central configurations of the R(1 + n)-BP in [3, 4, 11, 13].

4. Numerical results

Many researchers have devoted to only a special case that n infinitesimal masses
do not influence a massive primary. In terms of numerical results, for n < 9, Salo
and Yoder [13] first gave only central configurations of the G(1+n)-BP with equal
infinitesimal masses. Further, Cors, Llibre and Olle [4] have checked the numerical
results of [13] and after they have explored bigger values of n up to 15. Casasayas,
Llibre and Nunes clarified that there exists only one solution for n large enough if
all n infinitesimal masses are equal [3]. Cors, Llibre and Olle [4] conjectured that
there are some central configurations except the regular n-gon only for n < 8 (see
Conjecture 6 in [4]).

On the other hand, Renner and Sicardy [11] generalized the work by Salo and
Yode [13] to the case of masses with infinitesimal but arbitrary (not necessarily
equal) masses. They verified that there always exists a set of masses which defines
a central configuration. If n is odd, then for any arbitrary angular separation
between the small masses. If n is even, then for given angular separations of
the small masses, there is, in general, no set of masses which defines a central
configuration.
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All of their works are related to the condition that n arbitrary infinitesimal
masses do not influence a massive primary. In the preceding section, we first
considered the G(1 4+ n)-BP under the condition that n arbitrary small masses
influence a massive primary. Moreover, we proved that the d-G(1 + n)-BP has
the same central configuration as the G(1 4+ n)-BP under the condition. In this
section, we compare the results obtained by (i) the discrete-time general (1 + n)-
body problem (d-G(1+n)-BP) and (ii) the second-order symplectic method (SI2),
both of which are accurate to second order.

In Section 4.1, using (29) for n = 2,3, 4, we numerically give some sets of angles
of non-trivial central configurations of the d-G(1 + n)-BP in which n equal small
masses influence a massive primary. We also clarify that the d-G(1 + n)-BP can
correctly compute the equilibrium configurations. In Section 4.2, for n = 2,3,4,
we obtain from (29) some angles of non-trivial central configurations of the d-
G(1 + n)-BP in which n — 1 equal small masses and a small mass influence a
massive primary. We also numerically ascertain that the d-G(1 + n)-BP exactly
compute the equilibrium configurations for a long time interval.

4.1. Central configurations with equal n masses

Let us show that the d-G(1 4+ n)-BP accurately reproduces the equilibrium
solutions of all masses in the rotating reference frame with a uniform angular
velocity, where mg = 1 and my = -+ = m,, = 107%. Eq. (29) is the same relation
as (2) in [4] which the R(1 4+ n)-BP satisfies. Therefore, THEOREM 3.5 ensures
that the d-G(14n)-BP has the same equilibrium solutions as those of the R(1+n)-
BP in [4]. The computed values (in degrees) of the angles 0y;, i = 1, -- , n, for the
central configurations of the d-G(1 +2)-BP, d-G(1 + 3)-BP and d-G(1 +4)-BP (we
do not write the trivial solution of equally spaced angles) are given in the following
tables.

Table 1. Non-trivial central configuration of d-G(1 + 2)-BP with equal
two masses. The central configuration is identified by the strings in the
top row.

# || 2B—-1
001 60
002 360
Table 2. Non-trivial central configurations of d-G(1+ 3)-BP with equal

three masses. The central configurations are identified by the strings in
the top row.

# | 3E -1 3E—2

o1 || 47.3608595705276757 | 82.4690381114333712
B0z || 94.7217191410553653 | 221.2345190557166856
6os 360 360




Table 3. Non-trivial central configurations of d-G(1+4)-BP with equal
four masses. The central configurations are identified by the strings in

the top row.

# |

N-gon Equilibria of d-(1 + n)BP

4F — 1

4F -2

o1

99.9999999999999883

239.6486503921392379

B2

119.9999999999999906

281.1463711332769163

o3

239.9999999999999953

318.5022792588623216

Ooa

360

360

169

Tables 1, 2 and 3 in this article correspond to Tables 1, 2 and 3 in [4], respectively.

The initial conditions for two equilibrium solutions 3E—1 and 4F —2 are as follows.

1. Initial conditions of the d-G(1 + 3)-BP for the equilibrium solution 3E — 1

m():l m1:m2:m3:1078,

qp(0) =
q; (0

Q0

Vv

<

<

A%

/
2
l
3
/
0
/
1
/
2
/
3

(
(
(
(
(
(
(

0
0
0
0
0
0

(=
)=
)= (=
)=
)=
)= (=
)= (=
)= (=

0.0000000159506233, —0.0000000173224074),
0.6773786585173932, 0.7356344968700003),
0.0823162937159855, 0.9966062274514275),
0.9999999659506244, 0.0000000173224072),
0.0000000173224074, —0.0000000159506233),
0.7356344968700003, 0.6773786585173932),
0.9966062274514275, —0.0823162937159855),
0.0000000173224072, 0.9999999659506244).

2. Initial conditions of the d-G(1 4 4)-BP for the equilibrium solution 4F — 2

m0:1 m1:m2:m3:m4:1078,

0.8629430054946241, —0.5053012042164427),

0.0000000143699692, 0.0000000250666975),

0.5053012042164427, —0.8629430054946241),
0.1933160962931250, —0.9811364974200589),
0.7489820802375094, —0.6625902243207682),
0.9999999477033045, —0.0000000250666978),

0.9811364974200589, 0.1933160962931250),
0.6625902243207682, 0.7489820802375094),
0.0000000250666978, 0.9999999477033045).

= (=
)= (=
)=
)=
)=
) = (—0.0000000250666975, —0.0000000143699692),
)=
)= (
)=
)=
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SI2 d-(1+n)-BP

Pt m2 o m2

m1 Coml

x[2)
2]

0 'm0 a-m3; o S mo - m3

1] 1]

Position of m1

07375

0737

x12l

07365

0.736

ﬁiﬁ:+n)—BP

06775 0678 06785 0679
X[

07355

Figure 1. Trajectories of mo, mi1, ma, and ms in uniformly rotating
reference frame O—xh]m'p]. Trajectories around equilibria correspond to
3F — 1. Used numerical methods are given at the tops of the upper left
and upper right figures. Top of the lower figure means the trajectory of
my around its equilibrium computed by SI2 and d-G(14n)-BP methods.

For the d-G(1 + n)-BP, we introduce a uniformly rotating frame O — x(;z(y in
which the origin stays at the center of mass, and the x7,, axis passes through the
origin and the small mass m,,. Theoretically, all the positions of these masses are
fixed in the frame O — :ch]mb]. Applying the d-G(1+ n)-BP and SI2 methods yield
all the trajectories of the masses for the configuration 3£ — 1 shown in Figure 1 and
those for the configuration 4F — 2 shown in Figure 2. We used a fixed time step
At = 0.1 for all these methods and integrated over the time interval 0 < ¢ < 10%.
The two figures show that the d-G(1 4+ n)-BP and SI2 methods seem to reproduce
the configurations 3E — 1 and 4F — 2 accurately. In detail, these results indicate
that each mass vibrates both in the radius and tangential directions around its own
equilibrium for the SI2 method, whereas all masses oscillate only in the tangential
direction around their own equilibrium for the d-G(1 + n)-BP method. For the
configurations 2F —1, 3E —2 and 4F — 1, we also obtain similar results. Especially,
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the configuration 2E — 1 corresponds to a Lagrange solution of the G3BP. Minesaki
[8] had already proved that the d-G3BP [7] had the same orbits for the Lagrange
equilibrium solutions (e.g., [5, 12]) as the original G3BP. Actually, each mass in
the d-G3BP can be fixed at its own equilibrium in the original G3BP. Therefore,
the d-G(1 4+ n)-BP method can compute all of the equilibrium solutions of the
Tables 1-3 more correctly than the SI2 method.

SI2 d-(1+n)-BP

02 02

04 04

12
X121

o . m3 o m3

m1 m1
08 08

m2 ] ‘ . m2

x[1] x[1]

Position of m3

&-(1+n)BP

-0.6625

0,663

06635

12

0.664

-0.6645
0.7485 0.749 07495 075 0.7505 0.751

x[1]

Figure 2. Trajectories of mo, mi, ma, ms and m4 in uniformly rotating
reference frame O—mh]x'p]. Trajectories around equilibria correspond to
4F — 2. Used numerical methods are given at the tops of the upper left
and upper right figures. Top of the lower figure means the trajectory of
mg around its equilibrium computed by SI2 and d-G(14n)-BP methods.

4.2. Central configurations with arbitrary n masses
In this section, we numerically check that the d-G(1 + n)-BP can precisely
compute some equilibrium solutions, each of which corresponds to an equilibrium
point of the original G(1+n)-BP in a uniformly rotating reference frame Ofxfl]x’m.
In the case of mg =1, my = --- = my_1 = 1078 and m,, = 1071°, n = 3,4, we
numerically compute the angles 6p; in (29) for the central configurations of the
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d-G(1+3)-BP and d-G(1+4)-BP in Tables 4 and 5. Tables 4 and 5 give the more

Table 4. Non-trivial central configurations of d-G(1+ 3)-BP with mo =
1, mi = mg = 1078 and ms = 1071°. The central configurations are
identified by the strings in the top row.

# | 3A-1 3A4-2

for || 54.8390577888207782 | 59.8222243848607571
fo2 || 66.7497713048119662 | 300.1777756151392288
fos 360 360

Table 5. Non-trivial central configurations of d-G(1+4)-BP with mo =
1, m1 = mo = ma = 1073 and m4 = 107!°. The central configurations
are identified by the strings in the top row.

# | 4A -1 4A —2

o1 || 51.4629379775934644 | 54.6747821275699012
oo || 61.2876368829233543 | 66.5585870433995897
603 || 71.9068305993430059 | 300.3496112735630209
Bo4 360 360

accurate angles in Figures 5 and 6 in [11], respectively. The initial conditions for
two equilibrium solutions 3A-1 and 4A-2 are as follows.

1. Initial conditions of the d-G(1 + 3)-BP for the equilibrium solution 34 — 1

mo =1, my =mg =107 mg =108,

) (0) = (—0.0000000100970622, —0.0000000001736327),
) (0) = (0.5758751455577946, 0.8175376411215560),
a5(0) = (0.3947475270716797, 0.9187896191022460),

a4 (0) = (0.9999999930970623, 0.0000000001736325),
vh(0) = (0.0000000001736327, —0.0000000100970622),
v} (0) = (—0.8175376411215560, 0.5758751455577946),
v4(0) = (—0.9187896191022460, 0.3947475270716797),
v4(0) = (—0.0000000001736325, 0.9999999930970623).

2. Initial conditions of the d-G(1 4 4)-BP for the equilibrium solution 44 — 1

mo = 1, mi1 = Mo = M3 = 10_1(), my = 10_8,
q,(0) = (—0.0000000101413996, —0.0000000002609801),
q7(0) = (0.6230207393690067, 0.7822053036503321),
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a5(0) = (0.4804127562163634, 0.8770425072628336),
q5(0) = (0.3105631150271591, 0.9505527466051420),
q;(0) = (0.9999999929747331, 0.0000000002609798),
v;,(0) = (0.0000000002609801, —0.0000000101413996),
v (0) = (—0.7822053036503321, 0.6230207393690067),
v5(0) = (—0.8770425072628336, 0.4804127562163634),
v5(0) = (—0.9505527466051420, 0.3105631150271591),
v} (0) = (—=0.0000000002609798, 0.9999999929747331).
SI2 d-(1+n)-BP
o: ‘ m2, m1 o: [ m1
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m3
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Figure 3. Trajectories of mo, m1, ma, and ms in uniformly rotating
reference frame O — z;;x(y. Trajectories around equilibria correspond
to 3A—1. Used numerical methods are given at the tops of the upper left
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and upper right figures. Top of the lower figure means the trajectory of
mg around its equilibrium computed by SI2 and d-G(14n)-BP methods.

Theoretically, each mass stays at a fixed point in the frame O — 1:{1]:1:{2]. Applying
the d-G(1+4n)-BP and SI2 methods, we obtain all the trajectories of the masses for
the configuration 34 — 1 (see Figure 3) and those for the configuration 44 — 1 (see
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Figure 4) in the rotating frame O —x’mxfz]. Using the fixed At = 0.1, we integrated
over the time interval 0 < ¢ < 10%. In Figures 3 and 4, the d-G(1 + n)-BP and
SI2 methods seem to reproduce precisely the configurations 34 — 1 and 44 — 1.
However, as in the case of equal n masses, each mass vibrates slightly both in the
radius and tangential directions around its own equilibrium for the SI2 method,
whereas all masses oscillate inconsiderably only in the tangential direction around
their own equilibrium for the d-G(1 + n)-BP method. Further, similar results are
produced for the configurations 34 — 2 and 44 — 2. Thus, the d-G(1 + n)-BP
method can numerically give all of the equilibrium solutions of the Tables 4 and
5 more accurately than the SI2 method. The results given in Sections 4.1 and 4.2
mean that the d-G(1+n)-BP method can precisely compute some equilibria in the
original G(1 + n)-BP.

SI2 d-(1+n)-BP
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x12l
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02 02
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0 02 04 0.6 08 1 0 02 04 06 08 1
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-0.0000000002614

-0.0000000002615

-0.0000000002616

0.000000000261
09995 1 10005 1001 1.0015 1.002 1.0025 1.003

x[1]

Figure 4. Trajectories of mg, m1, ma, ms and my in uniformly rotating
reference frame O — x{;)(y. Trajectories around equilibria correspond
to 4A—1. Used numerical methods are given at the tops of the upper left
and upper right figures. Top of the lower figure means the trajectory of
my around its equilibrium computed by SI2 and d-G(14n)-BP methods.
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5. Conclusion

As a special case of the discrete-time general N-body problem [10], we designed
an integrator for the general (1 + n)-BP, which we call the d-G(1 + n)-BP. We
analytically clarified for the first time that the d-G(14n)-BP has the same equilibria
as the G(1 + n)-BP in a uniformly rotating frame. These equilibria involve those
of the R(1 +n)-BP in [3, 4, 11, 13]. Until the proof in this work, no equilibrium
solution of the G(1+n)-BP has been known and there has been no discrete analog
preserving the equilibrium solutions. Although the d-G(1+n)-BP is merely second-
order accurate, in the case of n = 2, 3,4, the d-G(1 +n)-BP can precisely compute
these equilibria for a long time interval.
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