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Reaction-diffusion models with a conservation law and

pattern formations
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Abstract.

A two-component reaction-diffusion system with a mass

conservation property is given as a model of the cell polarity. We first review
mathematical aspects of the model system. Then based on it, we provide an
extended system of three components with the mass conservation, which is
regarded as a perturbed system of the two component one when the coupling
parameter is small. We show that the system possesses a unique positive con-
stant steady state under a certain condition on the total mass. Then numerical
simulations subject to the periodic boundary condition exhibit coexistence of
two stable solutions that are the constant steady state and a single spike solu-
tion. Moreover, in the transient dynamics Turing-like patterns emerge, though

no diffusion driven inst

1. Introduction

In a various fields of

ability for the constant steady state takes place.

sciences, including chemistry, biology and ecology,

Reaction-diffusion systems play important roles in theoretical studies for pattern

formations and dynamics. Those model equations have been extensively studied in
mathematical literatures ([20], [18], [17], [10], [24] and references therein). One
of the most characteristic aspects of the reaction-diffusion models is emergence of
spatial patterns by Turing mechanism, that is, a uniform steady state of the model
equations becomes unstable in the presence of diffusions, which is called diffusion

driven instability, and the in
[14] and [17]).

stability induces spatially structured patterns (see [23],

As a model exhibiting the Turing-type instability, Otsuji et al. [19] and Ishihara
et al [6] proposed a mass-conserved reaction-diffusion system:

du
ot

a
ot

0%y
dl@ - f(uvv)a
z € (0,L), (1)
0%v
- d2@ + f(uvv)a

with periodic boundary conditions. Here u stands for the concentration of active

protein in the membrane while v for inactive protein in the cytosol in a cell. Unlike
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the standard activator-inhibitor model, This system has a conservation law such
that the total mass is conserved, i.e.,

L
/ (u(z,t) + v(z, t))dx = constant.
0

By this conservation the linearized eigenvalue problem around a uniform steady
state always allows zero eigenvalue. Nevertheless, for an appropriately chosen f
there is a steady state that is stable in the diffusion free system and it becomes
unstable by the diffusions. Here the stability is meant by the Lyapunov’s sense,
which is stated precisely in the end of this section. In [19] the authors numerically
show that Turing-like wave patterns certainly emerge and a sinusoidal pattern grows
to be a spiky pattern in a certain time interval. More interesting simulations in [19]
exhibit that after a long time those spikes break down until a single spike remains.
Namely, the multi-spike pattern can be transiently observed but eventually the
spikes disappears except for one spike.

Motivated by this transient dynamics, for a class of functions f including the
specific examples in [19] and [6], mathematical studies have been developed in
[7, 15, 16]. Those mathematical results show that every solution converges to a
set of equilibria and that every stable equilibrium must be constant or unimodal
in the case of the periodic boundary conditions (see also [12] and [11]).

The simple models in [19] exhibit an accumulation of biochemical subtract
(protein), therefore they call them conceptual models describing the polarization
in cells (see also [13]). In a realistic situation in cells such a conservation law can be
observed in a certain time scale. For instance, proteins would be removed gradually
by degradation. In such a case no longer mass conservation holds in a longer time
scale. This leads to a problem on how the dynamics is affected by a perturbation
to the mass conserved system. A recent study in [8] shows that a perturbed system
with no conservation property still exhibit the emergence of the Turing-like pattern
in transient dynamics, though the final state is a trivial uniform state. In fact, by
a small perturbation to the system one can break both the conservation property
and the diffusion driven instability so that the perturbed system has a globally
asymptotically stable constant steady state. Nevertheless, in transient dynamics
the Turing-like wave patterns can be observed.

In this article we propose an extended reaction-diffusion system with three com-
ponents. This can be regarded as a perturbed system to the above mass conserved
system when the coupling constant is small. Unlike the perturbed model men-
tioned above, our new model still has a conservation property. Our first study for
the extended system is to show by a simple computation that a unique constant
solution never looses stability in the presence of the diffusion for the total mass
in a suitable range. Then we numerically show the emergence of the Turing-like
patterns for suitable initial data and that those solutions converge to a stable single
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spike pattern after a long time. This implies the coexistence of the stable constant
steady state and the stable single spike pattern.

We may point out the following implication of our numerics. In a standard the-
ory of the Turing instability a constant steady state, which is stable for spatially
uniform perturbation, looses the stability by diffusion and the resulting instabil-
ity induces wave patterns. The above numerics, however, suggests that for the
emergence of Turing-like wave patterns it is not necessary to destabilize a constant
steady state by diffusion. This phenomenon is reported in [8] for a perturbed sys-
tem as mentioned before, but in our numerics the emergence of Turing-like wave
patterns is observed for not only small values of the coupling constant but also
large values. We hope our result would provide a new view into pattern formation
phenomena and modeling for them.

In the next section we treat the specific model equations proposed by [19] and
state mathematical results proved in [15] together with new simple results (Propo-
sitions 2.2 and Corollary 2.3). In §3 we consider the extended system mentioned
above. Based on the (u,v) system in §2, we add w equation coupled with v equa-
tion so that the total mass fQ (u+v+w) dzx is preserved. When the couple strength
is small, this system is a perturbed system of the (u,v) system. We set parameter
values for which a unique constant steady state is stable even if in the presence of
diffusions. Nonetheless, in numerics, there are solutions which exhibit Turing-like
patterns and converges to a single spike after a long transient time. In the final
section we summarize the results.

Before concluding the section we state the definition of the stability ([4], [5]).
Let u(z,t;uo) = (u(z,t),v(z,t)) be a solution to (1) with w(x,0;ug) = ue(z) =
(up(x),vo()). Choosing an appropriate space X (for instance, X = H(Q)x H*(£)
for f satisfying some condition, see [16]), we can define the semiflow S(t) in a phase
space X (with norm || -||) by

[S(t)uo](z) = u(x, t;ug), wup € X.
We say an equilibrium u* is stable if for any € > 0, there is some § > 0 such that
ISH)uo —u*|| <e (VE>0), if [lup—u*|| <9, uoe€ X.

This stability is called the Lyapunov stability. This definition is also applied to the
three component case with a slight modification. Throughout the present article
we use this notion for the stability.

We remark that as for the conserved system we cannot expect the asymptotic
stability for an equilibrium but the above Lyapunov stability works.
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2. A mass conserved reaction-diffusion system

We consider the following model equations:

— dAu —
up = dAu = g(u) +v, req, 2)
Tvr = Av + g(u) — v,
with the Neumann boundary condition
ou Ov
_— = — = Q
5~ B 0, x € 01, (3)

where €2 is a bounded domain of R™ with smooth boundary 992 and d is positive
parameter. We assume ¢ is a smooth function and for a constant M; > 0,

0<g(u) <M (0<u<o0), g(0) =0. (4)

Under this condition there is a unique nonnegative classical solution satisfying

(u(x,0),v(x,0)) = (up(z),vo(x)), ug,v0 € CO(Q), wup(z) >0,v9(x) >0 (z € Q).

Put
1
s= ) TG, (0= / o(z)dz (5)

which is conserved for ¢, where || stands for the Lebesgue measure of ).
For an appropriate g it is known that the system exhibit a Turing-type insta-
bility. For instance,

ay
u2 4+ b

g(u) = (6)

is a specific example, where a and b are positive constant ([6], [19]). More precisely,
for this specific g(u) with @ = 1,b < 1/8,7 =1 and s > 2, a simple computation
tells that there exists a unique positive constant equilibrium and it loses stability
for sufficiently small d.

Henceforth we assume

7d < 1.

Put

a:=+/t(1—7d), B:=a/T.
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We write the equations (2) with the new variable w = (u + 7v)/« as

x € . (7)

uy = dAu — g(u) — u/7 + Pw,
Tw; = Aw — BAu,

Then (5) turns to be

(w) = s/a. (8)

As seen in [16] and [15] the system possesses a Lyapunov function defined by

E(u,w) := /Q <g|vu|2 + G(u) + gqﬁ + %(w - Bu)2> de,  G(u):= /Ou g(u)du.

In fact it is easy to check

%E(u(.7t),w(-,t)) = —/Q |ug|?dx — %/Q |V (w — Bu)|?dz < 0.

We study the stationary problem of (7) (or (2))

{dAu_g(“)—u/T‘Lﬂw:O’ z e, (9)

Aw — fAu =0,
under the boundary condition

ou Ow
E—E—O, xG@Q,

and the constraint
s = a{w).
From the second equation of (9) we have
w— pu = (w) — Blu) = s/a— B(u),
then applying this to the first equation of (9) yields

1-7d
dAu—g(u)—du—i—f— T
u

(u) = 0. (10)

T

Let u*(x) be any solution to (10) with the Neumann boundary condition. Then

(1,0) = (@), 0" (@), 0" () 1= —du* () + £ - LT

(u”)

T

gives a solution to (2) with (3).
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On the profile of stable equilibrium solutions we first introduce the following
result ([15]):

PrOPOSITION 2.1.  Assume dT < 1 and consider the case Q) is an interval,
say Q@ = (0,L). Then any stable equilibrium solution (u*(x),v*(x)) of (2) with the
Neumann boundary condition must be monotone, namely both components of the
solution are constant or strictly monotone.

We next consider the cylindrical domain €2 in R™ (n > 2) defined by
Q={z=(21,9):0<z1 <L, yeuw} (11)

where w is a bounded domain in R"~! with smooth boundary dw. Let o; and
®;(y) be the j-th eigenvalue and the corresponding normalized eigenfunction of
the minus Laplacian —A, in w with the Neumann boundary condition, namely,

—Ay®; =0;9;, yew, 0%; =0, y€ ow, / Pidy = 1.
ov w
PROPOSITION 2.2.  Assume dr < 1 and consider the equations in the cylindri-
cal domain of (11). Then any stable solution (u*(x1,y),v*(x1,y)) of (2) with the
Neumann boundary condition must be monotone in x1-axis. Moreover, there is a
positive number 6 such that if the domain satisfies dos > 9, the stable solution is
uniform in y variable while the solution is non-uniform in y if dog < 4.

PRrROOF. As for the former assertion see Corollary 1.2 in [15]. We show the latter
part. We let U*(z1) be a solution to (10) uniform to y-direction, namely, U = U*
satisfies the equation

1—17d
TL

L
AUy, 2, —g(U) —dU + s / U(zy)dzy =0, z€(0,L),
T 0

and Uy, =0 (x =0, L). Assume

s -7 L
(u,0) = (U*<x1),—dU*<m1> v2-=r U*(fvl)dw1>

is stable in the perturbation uniform in y-direction.
We note

AUy, )ara, — (¢'(U") + d)U;, = 0. (12)
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Consider the linearized eigenvalue problem

1—7d

L(p) = — |dAp — {g' (U (21)) + )} —

Dom(L) = {¢ € H*(Q) : 0¢/0v =0 on 9N}.

()| = me, (13)

By virtue of Theorem 1.1 in [15] it suffices to study the above linearized problem
to prove the stability of the solution. In fact, the theorem tells that the number
of positive eigenvalues of £ and the linearized operator of (2) coincides, thus the
problem can be reduced to that of L.

Applying the the Fourier expansion

0= GEINE) @) = )

to (13), we have

1—7d [
LTT /0 §1d$1]=/i§17(14)

Lj(&) = = d(&j)are, —{g' (U (21)) + d + doy) }§5] = g5, 5= 2. (15)

L1(&1) = — |d(&1)ar2, — {9 (U (21)) + d)}&1 —

Those operators have the domain
Dom(L;) == {¢ € H*(0,L) : &, (0) =&, (L) =0} (5 =1).

By the stability assumption for U*(z1) in (0, L) the least eigenvalue of £; is non-
negative.
By (12) we have

Lo(U;,) =0, Lo(&) := = [d(&)w1a, — {9 (U (z1)) + d}¢].

In view of Uy (0) = Uy (L) = 0, U, is an eigenfunction to zero eigenvalue of
Ly with the Dirichlet boundary condition. By comparison of eigenvalues for the
Neumann and Dirichlet conditions ([2]) the least eigenvalue of £y with the Neu-
mann condition is negative, say —6 < 0. Comparing Lo and £L; (j > 2), we obtain
—0 4 do; the least eigenvalue of £; with the Neumann boundary condition. Since
0 < o2 <0oj (j >3), we have the desired assertion of the Proposition. O

The next result immediately follows from Proposition 2.2

COROLLARY 2.3.  Under the condition 7d < 1 consider (2) with (3) in a
rectangle domain Q = {& = (z1,22) : 0 < 1 < L1, 0 < 3 < Lo}. Let
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(u*(z1,x2),v*(x1,22)) be a stable equilibrium solution which is non-uniform in
both x1 and xo-axises. Then the mazximum of u*(x1,xs2) attains at a corner of the
domain, where v* takes the minimum.

We show a numerical result on time evolution of a solution to (2) with (6)
under the boundary condition (3) in a square domain = (0,3) x (0,3). We set
the parameter values

=1, a=10, b=0.1, d;=0.02, do=1. (16)
Take initial data as
u(z,0) = 1+ cos(4nz) cos(4my), wv(z,0) =1+ cos(2mx) cos(27y). (17)

In Figure 1 one can see how the spatial pattern changes and converges to a localized
steady state having its peak at a corner.

(c) t =100 (d) t = 1000

Figure 1. Bird’s eye views of u-component of the solution to (2) with
(6). The domain is = (0, 3) x (0, 3) and (3) is assumed. The parameter
values are given by (16) and initial data are by (17). The subfigures are
for t = 0,10, 100 and 1000. The solution converges to a localized pattern
whose peak exists at a corner.
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3. A extended model of mass conserved system

In [8] the following perturbed system is considered:

=d Tr )
{“t 1z = g(u) + 0 , 0<z<2r (18)

vy = doUgy + g(u) — v — €02,

with the periodic boundary conditions and g(u) = au/(u? +b) (a,b > 0). In this
system

i LU.’E v xr = — L’UZL' 2(E
& | ety + o ae == [otpar <o

Hence for nonnegative solutions

L
Ealu,v) ::/O (u+v)dx

works as a Lyapunov function and every nonnegative solution converges to a trivial
solution (u,v) = (0, 0).
However, transient dynamics is not so simple. With

a=1, b=0.1, dy=0001, dp=0.05 e=0.0l,

a numerical computation shows that the system exhibits a similar dynamics as in
the unperturbed system except that the single spike eventually collapses.

This behavior of the solutions seems natural, because the perturbed dynam-
ics could be approximated by the unperturbed one. In this case, however, the
unperturbed system allows the global attractor for each fixed s = (u) + (v) and
it has a rich structure for s in some interval and small d;, while the perturbed
system as seen above has a trivial attractor which is globally asymptotically sta-
ble. Namely, the structure of the attractors is drastically changed even though ¢ is
taken arbitirarily small.

Another interesting aspect is related to the mechanism of the Turing-like pat-
tern. It is understood that for the onset of the diffusion-driven instability the
system needs a steady state which is stable in the diffusion-free system. The per-
turbed system, however, has no longer such a steady state. Nonetheless, it can
exhibits a Turing-like pattern in transient dynamics. This fact implies that it is
possible to produce a Turing-like pattern even though the usual diffusion-instability
condition is not met in some model equations.

To understand this property more, we propose the next system:
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up = d1Au — g(u) + v,
vy = doAv + g(u) — v —eh(v) + eh(w), (19)
wy = dsAw + eh(v) — eh(w),

where all the coefficients are positive and g is the same as in the previous section
or (18). h(-) is assumed to be a Michaelis-Menten type kinetics (see [9]) as

w

h(w) = Tro

This model combines the (u,v) system and reactions creating a flow from v to
w and feedback from w to v. We consider the equations in a bounded interval
Q = (0,L) with periodic boundary conditions. When ¢ is small, this system is
certainly regarded as a perturbation system of (2) with 7 = 1. We, however, are
also interested in the dynamical structure of not small € but large one.

Henceforth we always consider the nonnegative solution to (18). In fact the
maximum principle ensure the nonnegativity of the solution with nonnegative initial
data (see [3]).

First note that the system (19) has a conservation property such as

1 (L
m = E/ (u(z,t) +v(z,t) + w(z,t)) de (20)

0
is conserved. It is easy to see that the system has a constant solution which is

obtained by solving
u=gw), u+2v=m, w=v. (21)

We let (@, v,w) be a solution of (21). Linearize the equations around this solu-
tion and consider the linearized eigenvalue problem. Then the eigenvalues of the
linearized operator are given by the ones of the matrices

7d10’j 79’(5) 1 0
g/(ﬁ) 7d20’j71*€ﬂ 56 (]: 172a37~~')7
0 EB *dgdj 7€B
where
4k%m?
ﬁ = h/(ﬁ)7 o1 = O7 02k = U2k+1 = 7 (k‘ - 1,27 )

Hence for each j the eigenvalues of this matrix are solutions of

A2+ A% + ag\ + a3 = 0,
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0.5

V] 0.5 1 1.5 2
u

Aplotofv= andu +2v=23.

I
u? + 0.1

Figure 2. A plot of v = g(u) = u/(u® +0.1) and u + 2v = 2.3. There
is a unique intersection point where g'(u) > 0.

ar :=(d1 + da + ds)oj + ¢’ (u) + 1 + 228,
ay = (dydy + dads + d3dy )05

+H{d1 + ds + (d2 + d3)g' (W) +eB(2dy + da + d3) }o; + 2284’ (W) + B,
az == didadso’ + {dids + dodsg' (W) + eB(dyds + didy)}o?

+ef{(ds + d3)g' (@) + di }o;.

For j = 1(o1 = 0) we have
A=0, M+ (J@ +1+2B)N+ep(2¢' (@) +1)=0.

If ¢’(w) > —1/2, then the constant solution is stable with respect to the spatially
uniform perturbation. In other words the solution is stable in the diffusion free
equations. If ¢’(u) > 0, then for each j > 1 we can easily check ajas — a3z > 0
which leads to negativity of real part for all the eigenvalues A (by a condition of
Routh-Hurwitz, see for instance [1]). Hence, destabilization never takes place in
the presence of diffusions in this case.

For specific parameter values we show numerical simulations. Take

a=1, b=01, L=2r, d;=0001, dy=d3;=005 ec=2 (22
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We choose the initial condition as
u(z,0) =2+ 0.2sin(87z), v(z,0)=0.2, w(z,0)=0.1, (23)

so that m = 2.3 of (20) is met. Then there is a unique constant solution satisfying
g’ (@) > 0 (see Figure 2).

DA A NN ﬂ )

o 5 6

(a)t=5 (b) ¢ = 400

1 1 2 3 4 6 1 1 2 3 4 6

(c) t =850 (d) ¢t = 2500

Figure 3. The snapshots of the profile of the solution to (19) for
t = 5,400,850 and 2500 are displayed. Solid curve indicate u, dashed
curve for v and dot one for w. The curves of v and w are too close to
distinguish them in the figures. The subfigures consist of (a) :emergence
of a spiky pattern, (b) :a transient four-spike pattern, (c) :a transient
two-spike pattern, and (d) :a single pattern that is numerically stable.
The parameter values and the initial data are stated (22) and (23) re-
spectively.

In Figure 3 the snapshots of the profile of the solution for ¢t = 5,400, 850 and
2500 are shown. Solid curve indicate u, dashed curve for v and dot one for w. The
curves of v and w are too close to distinguish them in the figures. In the subfigure
(a) a wave is growing to a spiky pattern, and the number of the spikes becomes
smaller in (b). After further decrease of the spikes as seen in (¢), the pattern settles
in a stable single spike (d).

We also performed the similar simulations for not only small parameter val-
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ues (including ¢ = 0.1) also large values (for instance, ¢ = 10,20,100). All the
simulations exhibit qualitatively similar dynamics to the case ¢ = 2.

Recall that for any e the constant solution is stable in the present parameter
setting. On the other hand, the basin of the constant solution or the spike solution,
that is the set of solutions attracted by each stable solution, is affected by the change
of €. It, however, is difficult to identify the boundary of the basins.

4. Summery

In this article we proposed a new reaction-diffusion model (19) with a conserva-
tion property. This model equations consists of three variables and can be regarded
as an extended system of the previous two-component system (2). In fact, when the
coupling parameter € is small, then the system is regarded as a perturbed system
of (2). In the extended system, even though there is no constant steady state which
causes the Turing-type instability, Turing-like wave patterns emerge in transient
dynamics. Qualitatively similar dynamics can be observed for a wide range of the
parameter €. Mathematical theory for this dynamical behavior is worth developing
and will be our future work.
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