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Pairs of polynomials which satisfy the local functional

equations

Takeyoshi KOGISO

Abstract. In this note, we survey the fundamental theorem of pre-
homogeneous vector spaces which is related to the local functional equations

of polynomials and announce a recent result of this field. Especially we in-
troduce that we could recently make series of local functional equations of
non-prehomogeneous types.

1. Introduction

Let P and P ∗ be homogeneous polynomials in n variables of degree d with real

coefficients. For a decomposition to connected components { x ∈ Rn| P (x) ̸= 0}R

=
ν∪

i=1

Ωi, put

|P (x)|i :=
{
|P (x)| x ∈ Ωi

0 otherwise
, |P ∗(y)|i :=

{
|P ∗(y)| y ∈ Ω∗

i

0 otherwise

It is an interesting problem both in analysis and in number theory to find a condi-

tion on P and P ∗ under which they satisfy a functional equation of the form

̂|P (x)|si := (Fourier transform of |P (x)|si ) =
ν∑

j=1

γij(s)|P ∗(y)|−
n
d −s

j (1)

where d = deg P = deg P ∗ and the gamma-factors γij(s) are meromorphic func-

tions of s. We use the notation f̂ as the Fourier transform of a function f.

Indeed, the following classical examples are well known.

Example 1.1. For a positive definite quadratic form x2
1 + · · ·+ x2

n,

̂(x2
1 + · · ·+ x2

n)
s−n

2 = π−2s+n−2
2 Γ(s)Γ(s− n− 2

2
) sinπ(

n

2
− s)(y21 + · · ·+ y2n)

−s.

This local functional equation is related to Epstein zeta function ζ(Q, s) :=
∑

x∈Zn\{0}

1

Q(x)s
=

∞∑
m=1

♯{ x ∈ Zn | Q(x) = m }
ms

of a positive definite quadratic form

Q. The function ζ(Q, s) satisfies functional equation

3
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ζ(Q,
n

2
− s) = π

n
2 −2s Γ(s)

Γ(n2 − s)
ζ(Q, s)

= π−2s+n−2
2 Γ(s)Γ(s− n− 2

2
) sinπ(

n

2
− s)ζ(Q, s).

This gamma factor of the functional equation comes from the Fourier transform
̂(x2

1 + · · ·+ x2
n)

s−n
2 .

Example 1.2.

̂| detX|s−n = (2π)−ns(2π)
n(n−1)

2 2n cos(π s
2 ) · · · cos(π

s−n+1
2 )

×Γ(s)Γ(s− 1) · · ·Γ(s− n+ 1)| detY |−s

This example is related to a product of shifted Riemann zeta functions Zn(s) :=

ζ(s)ζ(s − 1) · · · ζ(s − n + 1), where ζ(s) =
∞∑

n=1

1

ns
. Then Zn(s) has the following

functional equation:

ζ(1− s)ζ(2− s) · · · ζ(n− s) =

(2π)−ns(2π)
n(n−1)

2 2n cos(π s
2 ) · · · cos(π

s−n+1
2 )Γ(s)Γ(s− 1) · · ·Γ(s− n+ 1)

×ζ(s)ζ(s− 1) · · · ζ(s− n+ 1).

This gamma factor of the functional equation comes from the Fourier transform

above.

Example 1.3. This example is not Fourier transform, but is similar to Fourier

transform. This example is essentially related to the problem to find systematically

a pair of polynomials P, P ∗ which satisfy the equation (1).

Let S+
n denotes the set of positive definite symmetric matrices of size n. It is known

that

(a)

∫

S+
n

e−trXY (detX)α−
n+1
2 dX

= (detY )−α

n∏
i=1

π
i−1
2 Γ(α− i− 1

2
) =

{
π

n(n−1)
4

n∏
i=1

Γ(α− i− 1

2
)

}
(detY )−α

for α > n−1
2 and y ∈ S+

n .

We remark that this example is related to multivariate statistics and hyperbolic

partial differential equations. This integral is first studied by Whishart [42] in

multivariate statistics, and Siegel [40] applied it in number theory. On the other

hand, M.Riesz [26] found a similar integral formula on the Lorentz cone

LCn :=
{
x ∈ Rn; x1 >

√
x2
2 + · · ·+ x2

n

}
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in study of the wave equation. Namely, he showed

(b)

∫

LCn

e−2⟨x,y⟩(x2
1 − x2

2 − · · · − x2
n)

α−n
2 dx

= π
n−2
2 Γ(α)Γ(α− (n−2)

2 )(y21 − y22 − · · · − y2n)
−α

for α > n−2
2 and y ∈ Λn. Indeed, G̊arding [10] considered the formula (a) as an

analogue of (b) in his work on certain hyperbolic partial differential equations.

A beautiful answer of the problem to find a pair of polynomials which satisfies

the condition (1) is given by the theory of prehomogeneous vector spaces due

to Mikio Sato. We explain in next section the idea of fundamental theorem of

prehomogeneous vector spaces related to this problem.

The notion of prehomogeneous vector spaces was defined by M.Sato in 1960’s.

His original motivation was the construction of fundamental solutions of partial

differential equations. The theory of prehomogeneous vector spaces has several

aspects.

Number theoretic aspect · · · Theory of zeta functions.

Analytic aspect · · · Explicit construction of fundamental solutions of linear partial

differential equations with constant coefficients.

Representation theoretic aspect · · · Invariant theory, infinite dimensional repre-

sentations of real and p-adic algebraic groups, automorphic representations, plane

arrangements.

For classification and the constructions of basic relative invariants of prehomoge-

neous vector spaces, see [37], [18], [27], [1], [21], [22], [23].

2. Fundamental Theorem of Prehomogeneous vector spaces

In this section, we introduce the fundamental theorem of prehomoge-

neous vector spaces along [19]. As we already discussed in section 1, Rie-

mann zeta function ζ(s) =

∞∑
n=1

1

ns
satisfies the following functional equation:

ζ(1− s) = (2π)−sΓ(s)2 cos
πs

2
ζ(s). As the reason why ζ(s) satisfies this functional

equation, we can point out the following two facts:

(I) The Fourier transform of a complex power of x is again a complex power of y.

That is,

∫ ∞

0

xs−1e2π
√
−1xydx = (2π)−sΓ(s)e

π
√

−1s
2 (sgny)|y|−s (0 < Re(s) < 1). (2)
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(II) Poisson’s summation formula; that is, for the Fourier transform

f̂(y) =

∫ ∞

−∞
f(x)e2π

√
−1xydx,

we have

∞∑
n=−∞

f(n) =
∞∑

n=−∞
f̂(n). (3)

Indeed, let

f(x) =

{
xs−1 (x > 0)

0 (x ≤ 0)
.

Taking no account for the convergence and calculating just formally, we have

∞∑
n=−∞

f(n) =
∞∑

n=1

ns−1 = ζ(1− s). (4)

On the other hand, (I) implies that

∞∑
n=−∞

f̂(n) = (2π)−sΓ(s)

( −1∑
n=−∞

(−n)−se
−π

√
−1s

2 +
∞∑

n=1

n−se
π
√

−1s
2

)

= (2π)−sΓ(s)2 cos
πs

2
ζ(s).

(5)

Hence, by (II), we can see how to obtain the functional equation

ζ(1− s) = (2π)−sΓ(s)2 cos
πs

2
ζ(s). (6)

To give a rigorous proof based on this principle, we have to consider the zeta

integral

I(s, φ̂) :=

∫ ∞

0

ts−1
∑

x∈Z \ {0}

φ̂(tx)dt, (7)

where φ̂ is the Fourier transform of a rapidly decreasing function φ on R and the

integral converges absolutely for Re(s) > 1. A sketch of the proof can be given as

follows: we have

I(s, φ̂) :=

∞∑
n=1

∫ ∞

0

ts−1φ̂(nt)dt+

∞∑
n=1

∫ ∞

0

ts−1φ̂(−nt)dt

= ζ(s)

∫ ∞

−∞
|x|s−1φ̂(x)dx.

(8)
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Poisson’s summation formula (II) implies that

I(s, φ̂) = J(s, φ)− φ̂(0)

s
+

φ(0)

s− 1
, (9)

where

J(s, φ) :=

∫ ∞

1

ts−1
∑

x∈Z \ {0}

φ̂(tx)dt+

∫ ∞

1

t−s
∑

x∈Z \ {0}

φ(tx)dt. (10)

Since J(s, φ) is an entire function of s, we see that I(s, φ̂) extends analytically to

a meromorphic function on the whole s-plane with poles of order at most one at

s = 0, 1. Moreover, from this form, we see that it satisfies I(s, φ̂) = I(1 − s, φ).

Since for each s ∈ C there exists φ satisfying

∫ ∞

−∞
|x|s−1φ̂(x)dx ̸= 0,∞, the zeta

function

ζ(s) = (

∫ ∞

−∞
|x|s−1φ̂(x)dx)−1 · I(s, φ̂) (11)

extends analytically to a meromorphic function on the whole s-plane. On the other

hand

∫ ∞

−∞
|x|s−1φ̂(x)dx also extends analytically to a meromorphic function on the

whole s-plane. Hence it follows from (I) that

∫ ∞

−∞
|x|s−1φ̂(x)dx = (2π)−sΓ(s)2 cos

πs

2

∫ ∞

−∞
|x|−sφ(x)dx. (12)

By this equation and I(s, φ̂) = I(1− s, φ), we obtain

ζ(1− s) = (2π)−sΓ(s)2 cos
πs

2
ζ(s). (13)

This is related to Example 1.2 in section 1. Its higher degree version of (I) is easily

obtained.

Thus, if we can generalize (I); that is, if we can get a systematic method of

finding a polynomial f(x) on a vector space V such that

(I)’ the Fourier transform of a complex power f(x)s is essentially given by a complex

power of some polynomial f∗(x) on the dual space V ∗ of V .

Then it is expected that, as an example, a function of the form

ζ(s, f) =
∑

x∈Zn \ {f−1(0)}

1

|f(x)|s
(14)

satisfies a functional equation. That is to say, it is expected that Dirichlet series

(zeta functions) with functional equations will be obtained systematically. For
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example, let P (x) = txAx (x ∈ Rn) be a positive definite quadratic form, and

Q(y) = tyA−1y its dual. Then we have

∫

Rn \ {0}
|Q(y)|s−n

2 Φ̂(y)dy = π
n
2 −2s ·

√
detP · Γ(s)

Γ(n2 − s)
·
∫

Rn \ {0}
|P (x)|−sΦ(x)dx,

(15)

where Φ is rapidly decreasing function on Rn, and we see that Epstein’s zeta

function

ζ(s, P ) =
∑

x∈Zn \ {0}

1

|P (x)|s
(16)

satisfies a functional equation. This is related to Example 1.1 in section 1.

Now we discuss the reason why the Fourier transform of xs or P (x)s is again

essentially a complex power of some polynomial. In 1961, Mikio Sato found out that

the reason is the existence of a big action of a group, and the fact that x or P (x)

are relative invariants with respect to that action. Thus he reached the action of

prehomogeneous vector spaces. We call a triplet (G, ρ, V ) a prehomogeneous vector

space if ρ : G −→ GL(V ) is a rational representation of a connected algebraic group

G on a finite-dimensional vector space V such that V has a dense G-orbit ρ(G)v0 =

{ρ(g)v0|g ∈ G} with respect to the Zariski toplology, all defined over C. In general,

a G-orbit ρ(G)v0 is called a homogeneous space under the action of the group G.

The condition V = ρ(G)v0 implies that V is an almost homogeneous space under

the action of G. Therefore we call it a prehomogeneous vector space. A relative

invariant of (G, ρ, V ) is a nonzero rational function f(x) on V satisfying f(ρ(g)x) =

χ(g)f(x) with some constant χ(g) for each g ∈ G. Then χ : G −→ GL1 becomes a

rational character ofG, and we say that f is a relative invariant corresponding to the

character χ. For example, we consider the action of G = GL1(C) = C× on V = C
by ρ(g)x = gx (g ∈ C×, x ∈ C). Then, since V \ {0} = ρ(G) · 1 is a dense orbit, it

follows that (G, ρ, V ) is a prehomogeneous vector space, and f(x) = x is a relative

invariant corresponding to χ(g) = g. Next, let SOn(P ) = {B ∈ SLn(C); tBAB =

A} be the special orthogonal group which stabilizes the quadratic form P (x) =
txAx (tA = A ∈ GLn(C)) on V = Cn. Then G = GL1 × SOn(P ) acts on V by

ρ(α,B)x = αBx (α ∈ GL1, B ∈ SOn(P ), x ∈ Cn), and {x ∈ V ;P (x) ̸= 0} is a

dense G-orbit in V . Hence (G, ρ, V ) is a prehomogeneous vector space, and P (x)

is a relative invariant corresponding to the character χ(α,B) = α2.

Then, what is the principle under which the Fourier transform of a complex

power f(x)s of a relative invariant f(x) on a prehomogeneous vector space is again

a complex power of a polynomial f∗(y) ?

To see this, let us consider the basic properties of relative invariants on preho-

mogeneous vector spaces.

First, if f(x) is an absolute invariant, i.e., a relative invariant corresponding to
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χ = 1 , then it is a constant on each orbit ρ(G)v0 : f(x) = c(= f(v0)). That is

to say, {x ∈ V ; f(x) = c} ⊃ ρ(G)v0. The closure of the left-hand side is given by

ρ(G)v0 = V , so that f(x) becomes a constant function on V.

Next, if f1 and f2 are relative invariants corresponding to the same character

χ, then f2/f1 is an absolute invariant. Hence it is a constant, and we have f2(x) =

cf1(x) (c is a constant). Thus we see that

(III) Relative invariants of a prehomogeneous vector space corresponding to the

same character are identical up to a constant.

Conversely, it is known that if relative invariants of a triplet (G, ρ, V ) satisfy con-

dition (III), then (G, ρ, V ) is a prehomogeneous vector space. In other words, a

prehomogeneous vector space is characterized by condition (III).

For simplicity, we consider the case where G is a reductive algebraic group, and

where the complement S = V \ ρ(G)v0 of a dense G-orbit ρ(G)v0 is the zeros

S = {x ∈ V ; f(x) = 0} of an irreducible polynomial f(x). Let d = degf and

n = dimV . Then, it is known that m = 2n/d is a natural number, and that

f(ρ(g)x) = χ(g)f(x) (g ∈ G) for a character χ satisfying det ρ(g)2 = χ(g)m (g ∈
G). Further, the dual (G, ρ∗, V ∗) of (G, ρ, V ) is also a prehomogeneous vector

space satisfying similar properties, and it has an irreducible relative invariant f∗(y)

satisfying f∗(ρ∗(g)y) = χ(g)−1f∗(y).

Now, not worrying about convergence, we consider just formally the Fourier

transform

φ(y) =

∫

V

f(x)s−
n
d · e2π

√
−1⟨x,y⟩dx (y ∈ V ∗) (17)

of f(x)s−
n
d , which we also consider just formally. Since

φ(ρ∗(g)y) = χ(g)s−
n
d · det ρ(g) · φ(y)

= χ(g)sφ(y) (g ∈ G),
(18)

the Fourier transform φ(y) of f(x)s−
n
d becomes a relative invariant on V ∗ cor-

responding to χ(g)s. On the other hand, f∗(y)−s is also a relative invariant on

V ∗ corresponding to the same character χ(g)s. Since (G, ρ∗, V ∗) is a prehomoge-

neous vector space, we expect that principle (III) will imply the coincidence of φ(y)

and f∗(y)−s up to a constant, although we cannot apply (III) because they are not

rational functions. That is to say, we expect the existence of a constant c satisfying

∫

V

f(x)s−
n
d · e2π

√
−1⟨x,y⟩dx = cf∗(y)−s. (19)

This is the principle which says that the Fourier transform of a complex power

f(x)s of a relative invariant coincides with a complex power of a polynomial f∗(y).

Of course, in order to make their convergence (and so on ) meaningful, we need
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to discuss the details rigorously; for example, we have to regard f(x)s−
n
d and

f∗(y)−s as distributions. Following this principle, Mikio Sato obtained, in 1961,

the fundamental theorem of prehomogeneous vector spaces concerning the Fourier

transform of a complex power of a relative invariant. That is to say, suppose that

(G, ρ, V ) satisfies the conditions above, and that it is defined over R. Then VR−SR
and V ∗

R − S∗
R are decomposed into the same number of connected components:

VR−SR = V1∪· · ·∪Vℓ and V ∗
R −S∗

R = V ∗
1 ∪· · ·V ∗

ℓ , where Vi, V
∗
j are G+

R -orbits. Here

G+
R is the connected component containing the unit element of the subgroup GR

which consists of R-rational points of G. Further, for rapidly decreasing functions

Φ,Φ∗ on VR, V
∗
R respectively, the integrals

∫

Vi

|f(x)|sΦ(x)dx (20)

and
∫

V ∗
j

|f∗(y)|sΦ∗(y)dy (21)

converge for Re(s) > 0, and can be extended analytically to meromorphic functions

on the whole s-plane, which satisfy

∫

Vj

|f(x)|s−n
d �Φ∗(x)dx =

ℓ∑
i=1

aij(s)

∫

V ∗
i

|f∗(y)|−sΦ∗(y)dy. (22)

We also write this equation for simplicity as follows:

̂|f(x)|s−
n
d

j =

ℓ∑
i=1

aij(s)|f∗(y)|−s
i (23)

where

|f(x)|i :=
{
|f(x)| on x ∈ Vi

0 otherwise
and |f∗(x)|i :=

{
|f∗(x)| on x ∈ V ∗

i

0 otherwise
.

We call this equation the fundamental theorem of prehomogeneous vector spaces ,

or local functional equation.

In section 1, Example 1.1(resp. Example 1.2) comes from a prehomogeneous

vector space (GL(1) × SO(n),Cn) (resp. (GL(n),M(n,C))). Example 1.1 is the

case where the real form is positive definite. Here we can know the local functional

equation of general case of its real forms from the theory of prehomogeneous vector

spaces as follows:

For a real prehomogeneous vector space (GL(1,R) × SO(p, q),Rp+q) with basic
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relative invariant P ∗ = P =

p∑
i=1

x2
i −

p+q∑
j=p+1

x2
j ,

[
|̂P |s+
|̂P |s−

]

= π−2s−1Γ(s+ 1)Γ(s+ p+q
2 )

[
− sinπ(s+ q

2 ) sin(πp2 )

sin(πq2 ) − sinπ(s+ p
2 )

] [
|P |−s− p+q

2
+

|P |−s− p+q
2

−

]
.

(24)

For the case of Example 1.3 in section 1, from information of prehomogeneous

vector space (GL(n), 2Λ1, Sym(n)) where Sym(n) is a set of symmetric matrices of

size n, Shintani [39] got the following local functional equation:

̂
| detX|s−

n+1
2

(n,0) = (2π)−nsΓS+
n
(s)

n∑
p=0

e(2p−n)π
√

−1s
2 | detY |−s

(p,n−p) (25)

where ΓS+
n
(s) =

n∏
i=1

π
i−2
2 Γ(s− i− 1

2
) and | detX|(p,n−p) is defined as follows:

| detX|(p,n−p) =

{
| detX| on the orbit of signature (p, n− p)

0 otherwise
.

3. Variations of the fundamental theorem of prehomogeneous

spaces

F.Sato [29] generalizes the fundamental theorem to the partial Fourier trans-

forms with respect to regular subspaces without assuming the reductivity of the

group G. Here the partial Fourier transform is defined as follows: Let (G, ρ, V ) be a

prehomogeneous vector space of the form (G, ρ, V ) = (G, ρ1⊕ρ2, E⊕F ). We call F

a regular subspace if there exists a relative invariant P (x, y) for x ∈ E, y ∈ F such

that det
(

∂2P
∂yi∂yj

(x, y)
)
is not identically zero with respect to y ∈ F . We assume

that the singular set S is a hypersurface. For V = E ⊕ F , we put V ∗ = E ⊕ F ∗.

For φ ∈ S(VR), we define the partial Fourier transform φ̂ of φ with respect to the

regular subspace F by

φ̂∗(x, y∗) =

∫

FR

φ(x, y)e2π
√
−1⟨y,y∗⟩dy.

F.Sato [29] proves the fundamental theorem for such partial Fourier transforms.

When G is reductive, E = {0}, and F = V , it is nothing but a result from M.Sato

[36].

A.Gyoja [11] proves the fundamental theorem for reductive prehomogeneous

vector spaces without assuming the regularity.
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In general, it is difficult to determine the explicit forms of functional equations

of zeta functions. In other words, the calculation of c-function cij(s) (see [18],

p.124, Theorem 4.17) would be difficult. Using M.Sato’s idea, M.Kashiwara ap-

plied the theory of simple holonomic systems to prehomogeneous vector spaces,

and developed an algorithm to calculate cij(s), which is called microlocal calcu-

lus. Although the whole theory of Kashiwara’s algorithm is not published yet,

M.Kashiwara [17] (noted by T.Miwa in Japanese) gives an outline of this method.

By using this algorithm, M.Muro and T.Suzuki calculated the explicit forms of

cij(s) for some irreducible regular prehomogeneous vector spaces. For example, see

M.Muro [41].

The fundamental theorem over p-adic fields is proved by J.Igusa [12] in the case

that the group G is reductive and the singular set S is an irreducible hypersurface

with finite orbits condition. F.Sato [30] generalized this result without assuming

the reductivity of G nor the irreducibility of S. However, he also assumed some

finiteness condition for singular orbits. Examples of the functional equations over

p-adic field can be found in J.Igusa [13], [14] and F.Sato [30]. T.Kimura , T.Kogiso

and M.Fujinaga [20] proved the fundamental theorem over local fields of positive

characteristic under certain conditions.

F.Sato and H.Ochiai [35] showed that Castling transforms of basic relative

invariants for regular prehomogeneous vector spaces also satisfy local functional

equations and one can get infinitely sequences of polynomials which satisfy local

functional equations.

4. Recent development of the research for local functional equa-

tions.

4.1. Non-reductive prehomogeneous vector spaces

In [15], H.Ishi and T.Kogiso show that the space associated with sub-Hankel

determinant is a non-reductive, regular prehomogeneous vector space, and give

the multiplicative Legendre transforms of sub-Hankel determinants. Moreover we

observe certain relations between b-functions of polarization of PV-polynomials and

b-functions of sub-Hankel determinants, and give some formulae about sub-Hankel

determinants whose components are orthogonal polynomials.

Studies for Wishart distributions of homogeneous cones are related to non-reductive

regular prehomogeneous vector spaces. Laplace transforms and multiplicative Leg-

endre transforms of basic relative invariants on the associated spaces to homoge-

neous cones are applied to Wishart distribution in statistics. See [2], [25], [8],

[16].
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4.2. Local functional equations of non-prehomogeneous type

F.Sato and T.Kogiso [33] , [24] construct polynomials of degree 4 that can not be

obtained from prehomogeneous vector spaces, but, for which one can associate local

zeta functions satisfying functional equations. Let Cn be the Clifford algebra of

the positive definite real quadratic form v21+ · · ·+v2n. For a Cp⊗Cq-module W , we

define a homogeneous polynomial P̃ (called a Clifford quartic form) of degree 4 on

W such that the associated local zeta functions satisfy a functional equation. The

Clifford quartic forms P̃ can not be a relative invariants of any prehomogeneous

vector space unless p + q and dimW are small. We also classify the exceptional

cases of small dimension, namely, we determine all the prehomogeneous vector

spaces with Clifford quartic forms as relative invariant.

4.3. Glueing of Local functional equations

In F.Sato [31], the following is studied. Let G be a graph with n vertexes

{v1, . . . , vn} (without multiple edges) and consider the vector space SymG(R) =
{X ∈ Symn(R) | Xij = 0 ( vi ≁ vj )}. Denote by Sym∗

G(R) its dual vector space.

With a statistical motivation, Letac and Massam [25] calculated explicitly the

Gamma integral attached to the cones of positive definite“matrices”in Sym∗
G(R)

and the dual cone in SymG(R) under the condition that G is decomposable. From

their result we can derive rather easily the functional equation for the local zeta

functions attached to the cones. In this note, we report that the local zeta functions

attached to not necessarily definite connected components also satisfy functional

equations. The cones for decomposable G are in general not homogeneous and

our functional equations can not be obtained from the theory of prehomogeneous

vector spaces.

4.4. Local functional equations of polarizations

For a homogeneous rational function f ∈ C(x1, . . . , xn), if f(x) satisfies that

ϕf : Cn → Cn, ϕf (x) = ∇xlogf(x) =
1

f(x)
∇xf(x) (26)

is birational mapping, then f(x) is called a homaloidal rational function. If a ratio-

nal function f∗(x∗) ∈ C(x∗
1, . . . , x

∗
n) satisfies f∗(ϕf (x)) =

1

f(x)
, then f∗ is called

the multiplicative Legendre transform of f . Following [5], we call a polynomial f

a homaloidal EKP-polynomial if f is homaloidal and its multiplicative Legendre

transform f∗ is also a polynomial. By definition, a regular prehomogeneous vector

space has homaloidal relatively invariant polynomials. It is rather difficult to con-

struct homaloidal polynomials that are not relative invariants of prehomogeneous

vector spaces and the classification of homaloidal polynomials has been done only

for some special cases:

• Cubic homaloidal EKP-polynomials are classified by Etingof- Kazhdan-
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Polishchuk ([6]).

• Homaloidal polynomials in 3 variables without multiple factors are classified by

Dolgachev ([5]).

• In [3], Bruno determined when a product of linear forms is homaloidal.

All the homaloidal polynomials classified in these works are relative invariants of

prehomogeneous vector spaces, and Etingof, Kazhdan and Polishchuk ([6], §3.4,
Question 1) asked whether homaloidal EKP-polynomials are relative invariants of

regular prehomogeneous vector spaces. In [24], we show that the Clifford quar-

tic forms are counter examples of degree 4 to the question raised by Etingof,

Kazhdan and Polishchuk, since most of Clifford quartic forms([33] , [24])are non-

prehomogeneous as will be shown in [24],Theorem 3.2.

In [34], we assume n ≥ 2, let f(x) = f(x1, . . . , xn) be a homaloidal polynomial

with R-coefficients and degree of f = d ≥ 2. For x, y ∈ Rn, F (x, y) := ⟨∇xf(x), y⟩
means a polarization of f(x).

In [34], we show that the polarization of prehomogeneous polynomial are also

prehomogeneous polynomial. It is difficult that the polarizations of homaloidal

polynomials of non-prehomogeneous type are also hamaloidal polynomials of non-

prehomogeneous type. However, we show that the ploraizations of Clifford quartic

forms are also homaloidal pynomials of non-prehomogeneous type.

Thus the following theorem shows that infinitely many local functional equations

of non-prehomogeneous type from polarizations of Clifford quartic forms.

For i, j = 0, 1, we put

Ωi := {x ∈ Rn|sgn(f(x)) = (−1)i}, (27)

Ω̃i,j := {(x, y) ∈ Rn ⊕ Rn|x ∈ Ωi, sgnF (x, y) = (−1)j}. (28)

Then

Ω := {x ∈ Rn|f(x) ̸= 0} = Ω0 ∪ Ω1, (29)

Ω̃ := {(x, y) ∈ Rn ⊕ Rn|f(x)F (x, y) ̸= 0} = Ω̃0,0 ∪ Ω̃0,1 ∪ Ω̃1,0 ∪ Ω̃1,1. (30)

We define local zeta function Zi,j(Φ; s, t) as follows:

Zi,j(Φ; s, t) :=

∫

Ω̃i,j

|f(x)|s|F (x, y)|t|Hf (x)|Φ(x, y)dxdy (31)

for a Schwartz Bruhat function Φ ∈ S(Rn ⊕ Rn), where Hf (x) is hessian of

f(x). Since f(x), F (x, y), Hf (x) are all polynomials, these integrals Zi,j(Φ; s, t)

are absolutely convergent for Re(s) > 0,Re(t) > 0 and can be continued to

meromorphic functions of (s, t) ∈ C2. Let f∗(x∗) be the multiplicative Legen-
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dre transform, F ∗(x∗, y∗) := ⟨∇x∗f∗(y∗), x∗⟩ be the polarization of f∗(x∗). For

ϕf (x) =
1

f(x)
∇xf(x), put Ω

∗ := ϕf (Ω), Ω
∗
i := ϕf (Ωi) (i = 0, 1), and

Ω̃∗
i,j := {(x∗, y∗) ∈ Rn ⊕ Rn|x∗ ∈ Ω∗

i , sgnF
∗(x∗, y∗) = (−1)j}, (32)

Ω̃∗ := {(x∗, y∗) ∈ Rn ⊕ Rn|x∗ ∈ Ω∗, F ∗(x∗, y∗) ̸= 0} = ∪i,j=0,1Ω̃
∗
i,j . (33)

Then the dual local zeta distribution Z∗
i,j(Φ; s, t) is defined by

Z∗
i,j(Φ; s, t) =

∫

Ω̃∗
i,j

|f∗(y∗)|s|F ∗(x∗, y∗)|tΦ(x∗, y∗)dx∗dy∗ (34)

for Φ ∈ S(Rn ⊕ Rn).

For generally, f∗(x∗), F ∗(x∗, y∗) are rational functions and the convergent area of

Z∗
i,j(Φ; s, t) is nontrivial, we assume the following.

Assumption of Convergence (A)

There exists a certain open setD in C2 such that (s, t) ∈ D , Z∗
i,j(Φ; s, t) (i, j = 0, 1)

is absolutely convergent for any Φ ∈ S(Rn ⊕ Rn).

Theorem 4.1. (F.Sato and T.Kogiso) Under the assumption (A), for any Φ ∈
S(Rn ⊕ Rn), Zi,j(Φ; s, t) and Z∗

i,j(Φ̂; s, t) satisfiy the following functional equation

Zi,j(Φ̂, ; s, t) = (d− 1)
∑

k,ℓ=0,1

γi+j,k(t)γk,i+dk+ℓ(ds+ (d− 1)(t+ n)− 1)

×Z∗
i+dk,ℓ(Φ; (d− 1)s+ (d− 2)(n+ t),−ds− (d− 1)(t+ n))

(35)

where Φ̂ means the Fourier transform

Φ̂(x, y) =

∫

Rn⊕Rn

Φ(x∗, y∗)e[⟨x, x∗⟩+ ⟨y, y∗⟩]dxdy (36)

e[u] = exp(2πu
√
−1). Indices i+ dk + ℓ, i+ dk are considered as mod 2, and

γi,j(s) = (2π)−(s+1)Γ(s+ 1)exp((−1)i+jπ
√
−1(s+ 1)/2). (37)

The proof of this theorem is in [34].
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[10] L.G̊arding, Probléme de Cauchy’s problem for two totally hyperbolic linear differential
equations by means of Riesz i ntegrals, . Ann. of Math., 48(1947),785–826.

[11] A.Gyoja, Theory of prehomogeneous vector spaces without regularity condition, Publ. Res.
Inst. Math. Sci., 27(1991), No.6, 861–922

[12] J.Igusa, Some results on p-adic complex powers, Amer. J. Math., 106(1984), No.5, 1013–
1032

[13] J.Igusa, On functional equations of complex powers, Invent. Math., 85(1986), No.1, 1–29

[14] J.Igusa, Zeta distributions associated with some invariants, Amer. J. Math., 109(1987),
No.1, 1–33

[15] H.Ishi and T.Kogiso, Some properties of associated spaces with sub-Hankel determinants.
arXiv:1609.01039.

[16] H. Ishi, “Homogeneous cones and their applications to statistics”, in Modern methods of
multivariate statistics, Travaux en Cours 82, pp. 135–154, Hermann, 2014.

[17] M.Kashiwara, Microlocal calculus and Fourier transforms of relative invariants of prehomo-
geneous vector spaces, Surikaisekikenkyusho Kokyuroku 238(1975), No.238, 60–147, noted

by Tetsuji Miwa in Japanese
[18] T.Kimura, A classification theory of prehomogeneous vector spaces, Representations of Lie

groups, Kyoto, Hiroshima, Academic Press, Boston, MA (1988), 223–256
[19] T.Kimura, A , Introduction to prehomogeneous vector spaces. Translated from the 1998

Japanese original by Makoto Nagura and Tsuyoshi Niitani and revised by the author. Trans-
lations of Mathematical Monographs, 215. American Mathematical Society, Providence, RI,
2003.

[20] T.Kimura, T.Kogiso and M.Fujinaga, Fundamental theorem of prehomogeneous vector
spaces of characteristic p, Bull. Austral. Math. Soc.,, 56(1997), No.2, 331–341

[21] T.Kimura, T.Kogiso and K.Sugiyama, Relative invariants of 2-simple prehomogeneous vec-
tor spaces of Type I, J. Alg. 308 (2007), no. 2, 445–483.

[22] T.Kogiso, G.Miyabe, M.Kobayashi and T.Kimura, Nonregular 2-simple prehomogeneous
vector space of Type I and their relative invariants, J. Alg., 251(2002), 27–69

[23] T.Kogiso, G.Miyabe, M.Kobayashi and T.Kimura, Relative invariants for some prehomoge-
neous vector spaces, Math. of Comp., 72(2002), No.242, 865–889

[24] T.Kogiso and F.Sato, Clifford quartic forms and local functional equations of no prehomo-
geneous type. J.of Math. Sci., Univ. of Tokyo. 23(2016), 791–866.

[25] G. Letac and H. Massam, Wishart distributions for decomposable graphs, The Annals of
Statistics 35 (2007), 1278–1323.
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