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Intertwining operators between

holomorphic discrete series representations

Ryosuke NAKAHAMA

Abstract. In this article the author presents the results on the explicit

construction of the intertwining operator between a holomorphic discrete series
representation of some Lie group G and that of some subgroup G1 ⊂ G.
More precisely, we construct a G1-intertwining projection operator from a
representation H of G onto a representation H1 of G1 as a differential operator,

in the case (G,G1) = (G0 ×G0,∆G0) and both H, H1 are of scalar type, and
also construct a G1-intertwining embedding operator from H1 of G1 into H of
G as an infinite-order differential operator, in the case H is of scalar type and

H1 is multiplicity-free under a maximal compact subgroup K1 ⊂ G1. In this
paper we mainly deal with the case (G,G1) = (Sp(1,R)×Sp(1,R),∆Sp(1,R))
and the cases (G,G1) = (SU(s, s), Sp(s,R)), (SU(s, s), SO∗(2s)).

1. Introduction

First we review the known results on the branching lows when we restrict a

representation of a Lie group to some Lie subgroup. Let G be a Lie group, G1 ⊂
G be a closed subgroup, and let H be a representation of G. We consider the

restriction H|G1 of the representation H to the subgroup G1. Then in general,

it may behave wildly, for example, it may contain continuous spectrums, or its

multiplicity becomes infinite. However, Kobayashi and his collaborators found

the conditions for (G,G1,H) such that H|G1 behaves nicely, for example, it is

discretely decomposable ([4, 5, 6, 8, 15, 16]), its multiplicity becomes finite or

uniformly bounded ([10, 12, 14]), or it decomposes multiplicity-freely ([7, 9]).

Then under such nice conditions, it is expected that we can study the branching

low of H|G1 more in detail and in explicit form. Namely, for a representation H1 of

G1 which appears abstractly in the decomposition of H|G1 , we want to construct

the G1-intertwining operator between H|G1 and H1. Such program was suggested

recently by Kobayashi (see [11]), and was studied by several people, e.g., Clerc-

Kobayashi-Ørsted-Pevzner [1], Kobayashi-Pevzner [17, 18], Kobayashi-Speh [19],

Möllers-Oshima [20], and Peng-Zhang [22].
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In this paper we assume that G and G1 are of Hermitian type, namely, the cor-

responding Riemannian symmetric spaces G/K, G1/K1 have the natural complex

structure and become the Hermitian symmetric spaces, and also assume that the

embedding map G1/K1 ↪→ G/K is holomorphic. Moreover let H be a holomorphic

discrete series representation of G. Then it is proved by Kobayashi [7] that the

restriction H|G1 is discretely decomposable, its multiplicity is finite, and moreover

the multiplicity becomes uniformly bounded if (G,G1) is a symmetric pair. Thus

for a representation H1 of G1 which appears in the decomposition of H|G1 , the

author has aimed to construct the G1-intertwining operators between H|G1 and

H1.

Now we summarize the author’s recent results. The author constructed the

G1-intertwining operators H|G1 ⇄ H1 in the case (G,G1) is one of

(U(q, s), U(q, s′)× U(s′′)), (SO∗(2s), SO∗(2(s− 1))× SO(2)),

(SO∗(2s), U(1, s− 1)), (SO(2, 2s), U(1, s)),

(E6(−14), SO(2)× SO(2, 8))

which are given by normal derivatives, constructed the operators H|G1 → H1 in

the case (G,G1) is of the form

(G0 ×G0,∆G0)

when H, H1 are of scalar type, which gives essentially the same results with Peng-

Zhang [22], and constructed the operators H1 → H|G1 in the case (G,G1) is one

of

(Sp(s,R), Sp(s′,R)× Sp(s′′,R)), (U(q, s), U(q′, s′)× U(q′′, s′′)),

(SO∗(2s), SO∗(2s′)× SO∗(2s′′)), (Sp(s,R), U(s′, s′′)),

(SO∗(2s), U(s′, s′′)), (SU(s, s), Sp(s,R)),
(SU(s, s), SO∗(2s)), (SO(2, n), SO(2, n′)× SO(n′′)),

(E6(−14), SU(1, 5)× SL(2,R)), (E6(−14), SO(2)× SO∗(10)),

(E6(−14), SU(2, 4)× SU(2)), (E7(−25), SL(2,R)× SO(2, 10)),

(E7(−25), SO(2)× E6(−14)), (E7(−25), SO
∗(12)× SU(2)),

(E7(−25), SU(6, 2))

when H are of scalar type and H1 are multiplicity-free under a maximal compact

subgroup K1 ⊂ G1, but except for one series of (SU(2r+1, 2r+1), SO∗(2(2r+1))),

and the result on (E7(−25), SO(2)× E6(−14)) holds under the assumption that the

conjecture in the author’s previous paper [21] is true. In this paper we only deal

with the case (G,G1) = (Sp(1,R)×Sp(1,R),∆Sp(1,R)), (SU(s, s), Sp(s,R)), and
(SU(s, s), SO∗(2s)), and assume both H, H1 are of scalar type. The results for
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other cases will appear in a forthcoming paper.

This paper is organized as follows. In Section 2 we review known facts on

holomorphic discrete series representations. In Section 3 the author gives main

results for simplest cases, namely for (G,G1) = (Sp(1,R) × Sp(1,R),∆Sp(1,R))
(Theorem 3.1) and for (G,G1) = (SU(2, 2), Sp(2,R)) (Theorem 3.2), and in Section

4 the proofs of these results are given. In Section 5 the author gives the results for

(G,G1) = (SU(s, s), Sp(s,R)), (SU(s, s), SO∗(2s)) for general s (Theorem 5.1).

2. Holomorphic discrete series representations

First we review the holomorphic discrete series representations. Let G be a

simple Lie group, and K ⊂ G be a maximal compact subgroup of G. We assume

that K has a non-discrete center, and G has a complexification GC. We denote

the Lie algebras of G, K and GC by the corresponding lower case fraktur, g, k and

gC. Let ϑ : G → G be the Cartan involution which fixes K, and we extend it to

ϑ : GC → GC anti-holomorphically. Then we can take an element z ∈ z(k) in the

center of k such that the eigenvalues of ad(z) are +
√
−1, 0, −

√
−1. We write the

corresponding eigenspace decomposition as gC = p+ ⊕ kC ⊕ p−. Then it is known

that there exists a domain D ⊂ p+ such that it is diffeomorphic to the Hermitian

symmetric space G/K through the following diagram.

G/K ��

∼

���
�
�

GC/KCP−

D � � �� p+

exp

��

Now let (τ, V ) be a holomorphic representation ofKC, and χ be a suitable character

of K̃C, the universal covering group of KC. We consider the space of holomorphic

sections ΓO(G/K, G̃ ×K̃ (V ⊗ χ−λ)) of the holomorphic line bundle G̃ ×K̃ (V ⊗
χ−λ) → G̃/K̃ = G/K. Then since G/K ≃ D is a contractible complex domain, it

is isomorphic to the space of vector-valued holomorphic functions on D.

ΓO(G/K, G̃×K̃ (V ⊗ χ−λ)) ≃ O(D,V ).

Then under this identification, G̃ acts on O(D,V ) by the form

τλ(g)f(w) = χ(µ(g−1, w))λτ(µ(g−1, w))−1f(g−1w) (g ∈ G, w ∈ D),

using some smooth map µ : G̃×D → K̃C. Then if there exists a Hilbert subspace

Hλ(D,V ) ⊂ O(D,V ) such that G̃ acts unitarily on it, then the representation

(τλ,Hλ(D,V )) is called the unitary highest weight representation of G̃. Especially,

if the parameter λ is sufficiently large, then this action preserves the explicit inner
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product

⟨f, g⟩λ,τ :=

∫

D

(
τ(B(w)−1)f(w), g(w)

)
τ
χ(B(w))λ−pdw (f, g ∈ O(D,V )),

where p is an integer which is determined from g, and B : p+ ⊃ D → K̃C is some

smooth map. Let Hλ(D,V ) be the space of all elements such that the norm given

as above is finite. Then the corresponding unitary representation (τλ,Hλ(D,V ))

is called the holomorphic discrete series representation of G̃.

Example 2.1. We define the Lie group G as

G :=

{
g ∈ GL(2r,C) : g

(
0 Ir

−Ir 0

)
tg =

(
0 Ir

−Ir 0

)
, g

(
0 Ir
Ir 0

)
=

(
0 Ir
Ir 0

)
ḡ

}
.

Then G is isomorphic to Sp(r,R) via the Cayley transform. The corresponding

Hermitian symmetric space G/K is diffeomorphic to

DSp(r,R) = {w ∈ Sym(r,C) : I − ww∗ is positive definite.}.

Let (τ, V ) be a representation of KC = GL(r,C). Then the universal covering group

G̃ acts on O(DSp(r,R), V ) by

τλ

((
A B

C D

)−1
)
f(w) := det(Cw +D)−λτ

(
t(Cw +D)

)
f
(
(Aw +B)(Cw +D)−1

)
.

Then if the parameter λ is sufficiently large, this preserves the inner product

⟨f, g⟩λ,τ :=

∫

D

(
τ((I − ww∗)−1)f(w), g(w)

)
τ
det(I − ww∗)λ−(r+1)dw.

Example 2.2. We define the Lie group G as

G := SU(p, q) =

{
g ∈ SL(p+ q,C) : g

(
Ip 0

0 −Iq

)
g∗ =

(
Ip 0

0 −Iq

)}
.

Then the corresponding Hermitian symmetric space G/K is diffeomorphic to

DSU(p,q) = {w ∈ M(p, q;C) : I − ww∗ is positive definite.}.

Then the universal covering group G̃ acts on O(DSU(p,q)) by

τλ

((
A B

C D

)−1
)
f(w) := det(Cw +D)−λf

(
(Aw +B)(Cw +D)−1

)
.
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Then if the parameter λ is sufficiently large, this preserves the inner product

⟨f, g⟩λ :=

∫

D

f(w)g(w) det(I − ww∗)λ−(p+q)dw.

Now we consider a reductive subgroup G1 ⊂ G. Without loss of generality we

may assume that G1 is stable under the Cartan involution ϑ of G. We denote

the Cartan decompostion of g1 = Lie(G1) under ϑ as g1 = k1 ⊕ p1. We assume

that pC1 = (pC1 ∩ p+) ⊕ (pC1 ∩ p−) holds, and write p+1 := pC1 ∩ p+, p+2 := (p+1 )
⊥.

Here the orthogonal complement is taken with respect to the restriction of the

Killing form of gC on p+ × p−, under the identification p+ ≃ p− via ϑ. Then

G1/K1 is diffeomorphic to a bounded domain D1 ⊂ p+1 , and the embedding map

G1/K1 ↪→ G/K is holomorphic. Now, since the K̃-finite partO(D,V )K̃ of O(D,V )

is equal to the space P(p+, V ) of V -valued polynomials on p+, and since p+ acts

on O(D,V )K̃ = P(p+, V ) by first order differential operators with constant coeffi-

cients, the space of p+-null vectors is equal to the space of polynomials on p+2 .

(O(D,V )K̃)p
+
1 ≃ P(p+2 , V ).

Then since every (g1, K̃1)-submodule in O(D,V )K̃ contains some p+1 -null vectors,

if (Hλ(D,V )K̃)p
+
1 ≃ Hλ(D,V )K̃ ∩ P(p+2 , V ) is decomposed under K̃1 as

Hλ(D,V )K̃ ∩ P(p+2 , V ) =
⊕

W∈K̂1

m(W )W ⊗ χ−λ,

then Hλ(D,V ) is decomposed under G̃1 as the direct sum of Hilbert subspaces

Hλ(D,V )|G̃1
≃

∑⊕

W∈K̂1

m(W )Hλ(D1,W ).

We note that if λ is sufficiently large, Hλ(D,V )K̃ = P(p+, V ) holds, and hence

(Hλ(D,V )K̃)p
+
1 ≃ P(p+2 , V ) holds. In this case the computation of the decomposi-

tion is easier. In such cases we want to construct the G̃1-intertwining operators

Hλ(D,V )|G̃1
⇄ Hλ(D1,W ).

3. Main results for the simplest cases

In this section, we consider

(G,G1) = (Sp(1,R)× Sp(1,R),∆Sp(1,R)), G̃ ↷ Hλ(DSp(1,R)) ⊠̂Hµ(DSp(1,R)),
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or

(G,G1) = (SU(2, 2), Sp(2,R)), G̃ ↷ Hλ(DSU(2,2)),

where Hλ(DSp(s,R)), Hλ(DSU(p,q)) are the holomorphic discrete series representa-

tions of Sp(s,R), SU(p, q) of scalar type respectively. We recall that �Sp(s,R) (resp.
�SU(p, q)) acts on O(DSp(s,R)) (resp. O(DSU(p,q))) by

τλ

((
A B

C D

)−1
)
f(w) = det(Cw +D)−λf

(
(Aw +B)(Cw +D)−1

)
.

Then there exists a unitary subrepresentation Hλ(D) ⊂ O(D) if and only if

λ ∈
{
0,

1

2
, 1, . . . ,

s− 1

2

}
∪
(
s− 1

2
,∞

)
(G = Sp(s,R)),

λ ∈ {0, 1, 2, . . . ,min{p, q} − 1} ∪ (min{p, q} − 1,∞) (G = SU(p, q)).

The K-finite part Hλ(D)K̃ is equal to the whole polynomial space P(Sym(s,C))
(resp. P(M(p, q;C))) if λ > s−1

2 (resp. λ > min{p, q} − 1), and Hλ(D) is a

holomorphic discrete series if λ > s (resp. λ > p+ q − 1).

When (G,G1) = (Sp(1,R) × Sp(1,R),∆Sp(1,R)), the spaces p+, p+1 and p+2
are given as

p+ = Sym(1,C)⊕ Sym(1,C), p+1 = {(x, x)} ≃ Sym(1,C),
p+2 = {(x,−x)} ≃ Sym(1,C).

Then the polynomial space P(p+2 ) is decomposed under K1 = ∆U(1) as

P(p+2 ) =
∞⊕
k=0

Pk(Sym(1,C)) ≃
∞⊕
k=0

C−2k.

Accordingly, when λ, µ > 0, Hλ(DSp(1,R)) ⊠̂Hµ(DSp(1,R)) is decomposed under G̃1

as

Hλ(DSp(1,R)) ⊠̂Hµ(DSp(1,R))|G̃1
≃

∞∑⊕

k=0

Hλ+µ(DSp(1,R),C−2k)

≃
∞∑⊕

k=0

Hλ+µ+2k(DSp(1,R)).

Similarly, when (G,G1) = (SU(2, 2), Sp(2,R)), the spaces p+, p+1 and p+2 are given
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as

p+ = M(2,C), p+1 = Sym(2,C), p+2 = Skew(2,C).

Then the polynomial space P(p+2 ) is decomposed under K1 = U(2) as

P(p+2 ) =
∞⊕
k=0

Pk(Skew(2,C)) ≃
∞⊕
k=0

C−k.

Accordingly, when λ > 1, Hλ(DSU(2,2)) is decomposed under G̃1 as

Hλ(DSU(2,2))|G̃1
≃

∞∑⊕

k=0

Hλ(DSp(2,R),C−k) ≃
∞∑⊕

k=0

Hλ+k(DSp(2,R)).

Now we give the main theorems for these cases.

Theorem 3.1 (Cohen [2], Peng-Zhang [22], Kobayashi-Pevzner [18]).

When (G,G1) = (Sp(1,R)× Sp(1,R),∆Sp(1,R)),

F∗
λ,µ,k : Hλ(DSp(1,R)) ⊠̂Hµ(DSp(1,R)) → Hλ+µ+2k(DSp(1,R)) (λ, µ > 0, k ∈ Z≥0),

F∗
λ,µ,kf(y) :=

∞∑
m=0

(−k)m
(λ)k−m(µ)m

1

m!

∂k

∂xk−m
L ∂xm

R

�����
xL=xR=y

f(xL, xR)

intertwines the G̃1-action.

Here (λ)m := λ(λ+ 1) · · · (λ+m− 1).

Theorem 3.2. When (G,G1) = (SU(2, 2), Sp(2,R)),

Fλ,k : Hλ+k(DSp(2,R)) → Hλ(DSU(2,2)) (λ > 1, k ∈ Z≥0),

Fλ,kf

(
x11 x12 + x2

x12 − x2 x22

)
= xk

2

∞∑
m=0

1(
λ+ k − 1

2

)
m

(−1)m

m!

× x2m
2

(
∂2

∂x11∂x22
− 1

4

∂2

∂x2
12

)m

f

(
x11 x12

x12 x22

)

intertwines the G̃1-action.

Remark 3.3. The operator Fλ,k : Hλ+k(DSp(2,R)) → Hλ(DSU(2,2)) gives the

adjoint of the G̃1-intertwining operator Hλ(DSU(2,2)) → Hλ+k(DSp(2,R)) given by

Kobayashi’s F-method [13, 17, 18].
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4. Proof of main results

We prove Theorems 3.1 and 3.2 in the following steps.

1. Find the G̃1-invariant kernel function.

2. Write the intertwining operator in the integral expression.

3. Rewrite this in the differential expression.

4. Compute explicitly this by using the series expansion etc.

We work in more general setting until Step 3, namely,

(G,G1) = (Sp(s,R)× Sp(s,R),∆Sp(s,R)),

Hλ(DSp(s,R)) ⊠̂Hµ(DSp(s,R)) ⊃ Hλ+µ(DSp(s,R),W ),

where W ⊂ P(Sym(s,C)) is a K1 = U(s)-submodule, or

(G,G1) = (SU(s, s), Sp(s,R)),
Hλ(DSU(s,s)) ⊃ Hλ(DSp(s,R),W ),

where W ⊂ P(Skew(s,C)) is a K1 = U(s)-submodule.

Step 1: Find the G̃1-invariant kernel function.

We fix aK1 = U(s)-submoduleW ⊂ P(Sym(s,C)) (resp. W ⊂ P(Skew(s;C))).
Then there exists uniquely (up to constant multiple) a polynomial KW (x, y) ∈
W ⊗W ⊂ P(Sym(s,C)× Sym(s,C)) (resp. P(Skew(s,C)×Skew(s,C))) such that

KW (kxtk, k∗−1yk̄−1) = KW (x, y)

(x, y ∈ p+2 = Sym(s,C) (resp. Skew(s,C)), k ∈ KC
1 = GL(s,C))

We define K̂W (xL, xR; y1, y2) ∈ O(p+ × p+1 × p+2 ) = O(Sym(s,C) × Sym(s,C) ×
Sym(s,C)× Sym(s,C)) by

K̂W (xL, xR; y1, y2)

:= det(I − y∗1xL)
−λ det(I − y∗1xR)

−µKW

(
xL(I − y∗1xL)

−1 − xR(I − y∗1xR)
−1, y2

)
,

or define K̂ ′
W (x; y1, y2) ∈ O(p+×p+1 × p+2 ) = O(M(s,C)×Sym(s,C)× Skew(s,C))

by

K̂ ′
W (x; y1, y2) := det(I − y∗1x)

−λKW

(
1

2

(
x(I − y∗1x)

−1 − t
(
x(I − y∗1x)

−1
))

, y2

)
.
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Then K̂W and K̂ ′
W satisfy the G̃1-invariance in the following sense. For g =(

A B

C D

)
∈ Sp(s,R) ⊂ U(s, s) and x ∈ M(s,C), we write gx := (Ax+B)(Cx+D)−1.

Proposition 4.1. (1) For xL, xR, y1, y2 ∈ Sym(s,C), g =

(
A B

C D

)
∈

Sp(s,R),

K̂W

(
gxL, gxR; gy1,

t(Cy1 +D)−1y2(Cy1 +D)−1
)

= det(CxL +D)λ det(CxR +D)µK̂W (xL, xR; y1, y2)det(Cy1 +D)
λ+µ

.

(2) For x ∈ M(s,C), y1 ∈ Sym(s,C), y2 ∈ Skew(s,C), g ∈ Sp(s,R),

K̂ ′
W

(
gx; gy1,

t(Cy1 +D)−1y2(Cy1 +D)−1
)

= det(Cx+D)λK̂ ′
W (x; y1, y2)det(Cy1 +D)

λ
.

Step 2: Write the intertwining operator in the integral expression.

From the above proposition, we easily get the following corollary.

Corollary 4.2. (1) When (G,G1) = (Sp(s,R)×Sp(s,R),∆Sp(s,R)), the
linear maps

F∗
W : Hλ(DSp(s,R)) ⊠̂Hµ(DSp(s,R)) → Hλ+µ(DSp(s,R),W ),

F∗
W f(y1, y2) := ⟨f, K̂W (·, ·; y1, y2)⟩Hλ(DSp(s,R))⊠̂Hµ(DSp(s,R))

,

FW : Hλ+µ(DSp(s,R),W ) → Hλ(DSp(s,R)) ⊠̂Hµ(DSp(s,R)),

FW f(xL, xR) := ⟨f, K̂W (xL, xR; ·, ·)⟩Hλ+µ(DSp(s,R),W )

intertwine the G̃1-action.

(2) When (G,G1) = (SU(s, s), Sp(s,R)), the linear maps

F∗
W : Hλ(DSU(s,s)) → Hλ(DSp(s,R),W ),

F∗
W f(y1, y2) := ⟨f, K̂ ′

W (·; y1, y2)⟩Hλ(DSU(s,s)),

FW : Hλ(DSp(s,R),W ) → Hλ(DSU(s,s)),

FW f(x) := ⟨f, K̂ ′
W (x; ·, ·)⟩Hλ(DSp(s,R),W )

intertwine the G̃1-action.

Especially, when (G,G1) = (Sp(s,R) × Sp(s,R),∆Sp(s,R)), if λ, µ > s, then
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since the inner product is given by the explicit integral, the intertwining operator

F∗
W : Hλ(DSp(s,R)) ⊠̂Hµ(DSp(s,R)) → Hλ+µ(DSp(s,R),W )

is given by the integral operator

F∗
W f(y1, y2) = ⟨f, K̂W (·, ·; y1, y2)⟩Hλ(DSp(s,R))⊠̂Hµ(DSp(s,R))

=

∫∫

DSp(s,R)×DSp(s,R)

K̂W (xL, xR; y1, y2)f(xL, xR)

× det(I − xLx
∗
L)

λ−(s+1) det(I − xRx
∗
R)

µ−(s+1)dxLdxR,

and

FW : Hλ+µ(DSp(s,R),W ) → Hλ(DSp(s,R)) ⊠̂Hµ(DSp(s,R))

is written as

FW f(xL, xR) = ⟨f, K̂W (xL, xR; ·, ·)⟩Hλ+µ(DSp(s,R),W )

=

∫∫

DSp(s,R)×Sym(s,R)
K̂W (xL, xR; y1, (I − y1y

∗
1)y2(I − y∗1y1))f(y1, y2)

× e− tr(y2y
∗
2 ) det(I − y1y

∗
1)

λ+µ−(s+1)dy1dy2.

Similarly, when (G,G1) = (SU(s, s), Sp(s,R)) and λ > 2s − 1, the intertwining

operators are given by the integral operators.

Step 3: Rewrite the operator in the differential expression.

In the previous steps, we got the intertwining operators in the integral expes-

sion. However, the kernel function K̂W is a bit complicated. Moreover, in general,

the intertwining operator H|G1 → H1 from the holomorphic discrete series repre-

sentation of the larger group to that of the smaller group is given by a differential

operator (Kobayashi-Pevzner [17]), but we cannot see this fact directly from the

integral expression. Therefore we want to rewrite the intertwining operator in dif-

ferent form. In order to do this, we make use of the following fact. Let p+ be a

complex vector space with the inner product (·|·), and let dim p+ = n. Then for

any f ∈ P(p+), we have

f(x) =
1

πn

∫

p+

f(z)e(x|z)e−(z|z)dz.

That is, O ∩ L2
(
p+, 1

πn e
−(z|z)dz

)
has the reproducing kernel e(x|z).

First we consider F∗
W : Hλ(DSp(s,R))⊠̂Hµ(DSp(s,R)) → Hλ+µ(DSp(s,R),W ). By
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substituting f with the previous equality, we get

F∗
W f(y1, y2) = ⟨f, K̂W (·, ·; y1, y2)⟩Hλ(DSp(s,R))⊠̂Hµ(DSp(s,R))

=
1

πs(s+1)

∫∫

Sym(s,C)⊕2

f(zL, zR)⟨etr(xLz∗
L)+tr(xRz∗

R), K̂W (xL, xR; y1, y2)⟩Hλ⊠̂Hµ,(xL,xR)

× e− tr(zLz∗
L)−tr(zRz∗

R)dzLdzR

=
1

πs(s+1)

∫∫

Sym(s,C)⊕2

f(zL, zR)F∗
W (etr(xLz∗

L)+tr(xRz∗
R))xL,xR(y1, y2)

× e− tr(zLz∗
L)−tr(zRz∗

R)dzLdzR.

Since F∗
W intertwines the G̃1-action and exp(p+1 ) acts by translation,

F∗
W (etr(xLz∗

L)+tr(xRz∗
R))xL,xR

(y1, y2) = F∗
W (etr((xL+y1)z

∗
L)+tr((xR+y1)z

∗
R))xL,xR

(0, y2)

= ⟨etr(xLz∗
L)+tr(xRz∗

R), K̂W (xL, xR; 0, y2)⟩Hλ⊠̂Hµ,(xL,xR)
etr(y1z

∗
L)+tr(y1z

∗
R)

= ⟨etr(xLz∗
L)+tr(xRz∗

R),KW (xL − xR, y2)⟩Hλ⊠̂Hµ,(xL,xR)
etr(y1z

∗
L)+tr(y1z

∗
R).

Now we define

F ∗
W (zL, zR; y2) := ⟨etr(xLz∗

L)+tr(xRz∗
R),KW (xL − xR, y2)⟩Hλ(DSp(s,R))⊠̂Hµ(DSp(s,R)),

(xL,xR)

.

Then this is a polynomial, and the intertwining operator F∗
W : Hλ(DSp(s,R)) ⊠̂

Hµ(DSp(s,R)) → Hλ+µ(DSp(s,R),W ) is given by

F∗
W f(y1, y2)

=
1

πs(s+1)

∫∫

Sym(s,C)⊕2

f(zL, zR)F
∗
W (zL, zR; y2)e

tr(y1z
∗
L)+tr(y1z

∗
R)

× e− tr(zLz∗
L)−tr(zRz∗

R)dzLdzR

=
1

πs(s+1)

∫∫

Sym(s,C)⊕2

f(zL, zR) F
∗
W

(
∂

∂xL
,

∂

∂xR
; y2

)
etr(xLz∗

L)+tr(xRz∗
R)

����
xL=xR=y1

× e− tr(zLz∗
L)−tr(zRz∗

R)dzLdzR

= F ∗
W

(
∂

∂xL
,

∂

∂xR
; y2

)����
xL=xR=y1

f(xL, xR).

Similarly we define

FW (x2;w1, w2) := ⟨etr(y1w
∗
1 )+tr(y2w

∗
2 ), K̂W (x2,−x2; y1, y2)⟩Hλ+µ(DSp(s,R),W ),(y1,y2)

= ⟨etr(y1w
∗
1 )+tr(y2w

∗
2 ), det(I − y1x2)−λ det(I + y1x2)−µ

×KW (x2(I − y∗1x2)−1 + x2(I + y∗1x2)−1, y2)⟩Hλ+µ(DSp(s,R),W ),(y1,y2)
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= ⟨etr(y1w
∗
1 )+tr(y2w

∗
2 ), det(I − y∗1x2)−λ det(I + y∗1x2)−µ

×KW (2(I − x2y∗1)
−1x2(I + y∗1x2)−1, y2)⟩Hλ+µ(DSp(s,R),W ),(y1,y2).

Then FW : Hλ+µ(DSp(s,R),W ) → Hλ(DSp(s,R)) ⊠̂Hµ(DSp(s,R)) is given by

FW f(xL, xR) = FW

(
xL − xR;

∂

∂y1
,

∂

∂y2

)����y1=xL+xR,
y2=0

f(y1, y2).

This is an infinite-order differential operator, but we can show this is well-defined

on O(DSp(s,R),W ).

Similarly, when (G,G1) = (SU(s, s), Sp(s,R)), we define

F ′∗
W (z; y2) :=

⟨
etr(xz

∗), K̂ ′
W (x; 0, y2)

⟩
Hλ(DSU(s,s)),x

=
⟨
etr(xz

∗),K ′
W (x2, y2)

⟩
Hλ(DSU(s,s)),x

,

F ′
W (x2;w1, w2) :=

⟨
etr(yw

∗), K̂ ′
W (x2; y1, y2)

⟩
Hλ(DSp(s,R),W ),y

=
⟨
etr(yw

∗), det(I − y∗1x2y∗1x2)−λ/2K ′
W

(
x2(I − y∗1x2y∗1x2)−1, y2

)⟩
Hλ(DSp(s,R),W ),y

(where we write M(s,C) ∋ x = x1 + x2 ∈ Sym(s,C)⊕ Skew(s,C) etc.). Then the

intertwining operators Hλ(DSU(s,s))
F∗

W

⇄
FW

Hλ(DSp(s,R),W ) are given by

F∗
W f(y1, y2) := F ′∗

W

(
∂

∂x
; y2

)����
x1=y1,x2=0

f(x),

FW f(x) := F ′
W

(
x2;

∂

∂y1
,

∂

∂y2

)����
y1=x1,y2=0

f(y1, y2).

Thus we want to compute explicitly

F ∗
W (zL, zR; y2), FW (x2;w1, w2), F

′∗
W (z; y2), F

′
W (x2;w1, w2).

In fact, F ∗
W (zL, zR; y2) and F ′

W (x2;w1, w2) are explicitly computable for some W ⊂
P(Sym(s,C)) and W ⊂ P(Skew(s,C)), respectively.

Step 4: Compute the differential expression explicitly.

Now we compute the differential expression of the intertwining operators in the

simplest cases. First we let s = 1 and consider (G,G1) = (Sp(1,R) × Sp(1,R),
∆Sp(1,R)). If λ, µ > 1, F ∗

W (zL, zR; y2) is given by

F ∗
W (zL, zR; y2) = ⟨exLzL+xRzR ,KW (xL − xR, y2)⟩Hλ(DSp(1,R))⊠̂Hµ(DSp(1,R)),(xL,xR)
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=

∫∫
{|xL|<1}
×{|xR|<1}

exLzL+xRzRKW (xL − xR, y2)(1− |xL|2)λ−2(1− |xR|2)µ−2dxLdxR.

Let W = Pk(Sym(1,C)). Then we have KW (x, y) = xkȳk, and

F ∗
W (zL, zR; y2)

= yk2

∫∫
{|xL|<1}
×{|xR|<1}

exLzL+xRzR(xL − xR)k(1− |xL|2)λ−2(1− |xR|2)µ−2dxLdxR

= yk2

k∑
m=0

(−k)m
m!

∫

|xL|<1

exLzLxk−m
L (1− |xL|2)λ−2dxL

×
∫

|xR|<1

exRzRxm
R (1− |xR|2)µ−2dxR.

Since we have
∫

|x|<1

exz̄xm(1− |x|2)µ−2dx

=

∞∑
j=0

zj

j!

∫ 1

0

∫ 2π

0

(re
√
−1θ)j(re−

√
−1θ)m(1− r2)µ−2rdθdr

= 2π
zm

m!

∫ 1

0

r2m(1− r2)µ−2rdr = π
zm

m!

∫ 1

0

sm(1− s)µ−2ds

= π
zm

m!
B(m+ 1, µ− 1) = π

zm

m!

Γ(m+ 1)Γ(µ− 1)

Γ(µ+m)
=

π

µ− 1

zm

(µ)m
,

it follows that

F ∗
W (zL, zR; y2) =

π2

(λ− 1)(µ− 1)
yk2

k∑
m=0

(−k)m
(λ)k−m(µ)m

1

m!
zk−m
L zmR .

Hence F∗
W : Hλ(DSp(1,R)) ⊠̂ Hµ(DSp(1,R)) → Hλ+µ(DSp(1,R),Pk(Sym(1,C))) is

given by

F∗
W f(y1, y2) = yk2

k∑
m=0

(−k)m
(λ)k−m(µ)m

1

m!

∂k

∂xk−m
L ∂xm

R

�����
xL=xR=y1

f(xL, xR).

Finally, since Hλ+µ(DSp(1,R),Pk(Sym(1,C))) ≃ Hλ+µ+2k(DSp(1,R)) via yk2f(y1) �→
f(y), F∗

λ,µ,k : Hλ(DSp(1,R)) ⊠̂Hµ(DSp(1,R)) → Hλ+µ+2k(DSp(1,R)) is given by

F∗
λ,µ,kf(y) =

k∑
m=0

(−k)m
(λ)k−m(µ)m

1

m!

∂k

∂xk−m
L ∂xm

R

�����
xL=xR=y

f(xL, xR).
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Next we consider (G,G1) = (SU(2, 2), Sp(2,R)). If we write y1 =

(
y11 y12
y12 y22

)
∈

Sym(2,C), y2 =

(
0 y2

−y2 0

)
∈ Skew(2,C), then F ′

W is given as

F ′
W (x2;w1, w2)

=
⟨
etr(y1w

∗
1 )+2y2w2 , det(I − y∗1x2y∗1x2)−λ/2

×K ′
W

(
x2(I − y∗1x2y∗1x2)−1, y2

)⟩
Hλ(DSp(2,R),W ),y

=

⟨
etr(y1w

∗
1 )+2y2w2 , det

(
I −

(
y11 y12
y12 y22

)∗ (
0 x2

−x2 0

)(
y11 y12
y12 y22

)∗ (
0 x2

−x2 0

))−λ/2

×K ′
W

((
0 x2

−x2 0

)(
I −

(
y11 y12
y12 y22

)∗ (
0 x2

−x2 0

)(
y11 y12
y12 y22

)∗ (
0 x2

−x2 0

))−1

,

(
0 y2

−y2 0

))⟩

Hλ(DSp(2,R),W ),y

=

⟨
etr(y1w

∗
1 )+2y2w2 , (1 + x2

2(y11y22 − y212))
−λ

×K ′
W

(
x2(1 + x2

2(y11y22 − y212))
−1

(
0 1

−1 0

)
,

(
0 y2

−y2 0

))⟩

Hλ(DSp(2,R),W ),y

.

Let W = Pk(Skew(2,C)) ≃ C−k. Then we have KW

((
0 x2

−x2 0

)
,

(
0 y2

−y2 0

))
=

(x2y2)
k, and

F ′
W (x2;w1, w2) =

⟨
etr(y1w

∗
1 )+2y2w2 , (1 + x2

2det(y1))
−λ−k(x2y2)k

⟩
Hλ(DSp(2,R),Pk),y

.

Since Hλ(DSp(2,R),Pk) ≃ Hλ+k(DSp(2,R)) via yk2f(y1) �→ f(y1), we have

F ′
W (x2;w1, w2) = (x2w2)

k
⟨
etr(y1w

∗
1 ), (1 + x2

2det(y1))
−λ−k

⟩
Hλ+k(DSp(2,R)),y

= (x2w2)
k

∫

DSp(2,R)

etr(y1w
∗
1 )(1 + x2

2det(y1))
−λ−k det(I − y1y

∗
1)

λ−k−3dy1

= (x2w2)
k

∞∑
m=0

(−1)m(λ+ k)m
m!

x2m
2

∫

DSp(2,R)

etr(y1w
∗
1 )det(y1)m det(I − y1y

∗
1)

λ−k−3dy1.
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Then by Faraut-Korányi’s result [3], it holds that

∫

DSp(2,R)

etr(y1w
∗
1 )det(y1)m det(I − y1y

∗
1)

λ−k−3dy1 =
C

(λ+ k)m
(
λ+ k − 1

2

)
m

det(w1)m,

where C is a constant which does not depend on m. Therefore we have

F ′
W (x2;w1, w2)

= (x2w2)
k

∞∑
m=0

(−1)m(λ+ k)m
m!

x2m
2

C

(λ+ k)m
(
λ+ k − 1

2

)
m

det(w1)m

= C(x2w2)
k

∞∑
m=0

1(
λ+ k − 1

2

)
m

(−1)m

m!
x2m
2 (w11w22 − w2

12)
m.

Therefore the intertwining operator FW : Hλ(DSp(2,R),Pk) → Hλ(DSU(2,2)) is

given by

FW f

(
x11 x12 + x2

x12 − x2 x22

)
=

(
x2

∂

∂y2

)k ∞∑
m=0

1(
λ+ k − 1

2

)
m

(−1)m

m!

× x2m
2

(
∂2

∂y11∂y22
− 1

4

∂2

∂y222

)m ����
y1=x1,y2=0

f

((
y11 y12
y12 y22

)
,

(
0 y2

−y2 0

))
,

and Fλ,k : Hλ+k(DSp(2,R)) → Hλ(DSU(2,2)) is given by

Fλ,kf

(
x11 x12 + x2

x12 − x2 x22

)
= xk

2

∞∑
m=0

1(
λ+ k − 1

2

)
m

(−1)m

m!

× x2m
2

(
∂2

∂x11∂x22
− 1

4

∂2

∂x2
22

)m

f

(
x11 x12

x12 x22

)
.

5. Results for groups of higher rank

In this section we give the results on G̃1-intertwining operators for (G,G1) =

(SU(s, s), Sp(s,R)) or (SU(s, s), SO∗(2s)) for general s. For simplicity, we only

consider the case both representations are of scalar type. Then for λ > s − 1, we

have

Hλ(DSU(s,s)) ⊃ Hµ(DSp(s,R)) if and only if µ = λ+ k,

{
k ∈ Z≥0 (s : even),

k = 0 (s : odd),

Hλ(DSU(s,s)) ⊃ Hµ(DSO∗(2s)) if and only if µ = 2λ+ 4k, k ∈ Z≥0.
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In order to state the main result, we prepare some notations. We set r :=
⌊
s
2

⌋
, and

let

Zr
++ := {(m1, . . . ,mr) ∈ Zr : m1 ≥ m2 ≥ · · · ≥ mr ≥ 0}.

For m ∈ Zr
++, d ∈ N and λ ∈ C, let

(λ)m,d :=
r∏

j=1

(
λ− d

2
(j − 1)

)

mj

.

Also, for m ∈ Zr
++, let Φ̃m(t1, . . . , tr) be the Schur polynomial

Φ̃m(t1, . . . , tr) =

∏
i<j(mi −mj − i+ j)∏r

i=1(mi + r − i)!

det
(
(t

mj+r−j
i )i,j

)

det
(
(tr−j

i )i,j

) ,

normalized such that

∑
m∈Zr

++

Φ̃m(t1, . . . , tr) = et1+···+tr ,

∑
m∈Zr

++

(λ)m,2Φ̃m(t1, . . . , tr) =

r∏
j=1

(1− tj)
−λ.

For z ∈ Sym(s,C), w ∈ Skew(s,C), if the eigenvalues of zw are t1,−t1, t2,−t2, . . . ,

tr,−tr(, 0), then we write

Φ̃′
m(zwzw) = Φ̃′

m(wzwz) := Φ̃m(t21, . . . , t
2
r).

This becomes a polynomial on Sym(s,C) ⊕ Skew(s,C). Then the intertwining

operators are given as follows.

Theorem 5.1. (1) When (G,G1) = (SU(s, s), Sp(s,R)),

Fλ,k : Hλ+k(DSp(s,R)) → Hλ(DSU(s,s))

(
λ > s− 1,

{
k ∈ Z≥0 s : even,

k = 0 s : odd

)
,

Fλ,kf(x1 + x2) = Pf(x2)
k

∑
m∈Zr

++

1(
λ+ k − 1

2

)
m,2

Φ̃′
m

(
x2

∂

∂x1
x2

∂

∂x1

)
f(x1)

(x1 ∈ Sym(s,C), x2 ∈ Skew(s,C)) intertwines the G̃1-action.

(2) When (G,G1) = (SU(s, s), SO∗(2s)),

Fλ,k : H2λ+4k(DSO∗(2s)) → Hλ(DSU(s,s)) (λ > s− 1, k ∈ Z≥0),
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Fλ,kf(x1 + x2) = det(x2)
k

∑
m∈Zr

++

1(
λ+ 2k + 1

2

)
m,2

Φ̃′
m

(
x2

∂

∂x1
x2

∂

∂x1

)
f(x1)

(x1 ∈ Skew(s,C), x2 ∈ Sym(s,C)) intertwines the G̃1-action.

For the proof, we use the expansion

det(I − zwzw)−µ/2 =
∑

m∈Zr
++

(µ)m,2Φ̃
′
m(zwzw),

and

⟨
etr(y1w

∗
1 ), Φ̃′

m(x2y∗1x2y∗1)
⟩
Hµ(DSp(s,R)),y1

=
C

(µ)m2,1
Φ̃′

m(x2w
∗
1x2w

∗
1)

where m2 = (m1,m1,m2,m2, . . . ,mr,mr) ∈ Z2r
++,

⟨
etr(y1w

∗
1 ), Φ̃′

m(x2y∗1x2y∗1)
⟩
H2µ(DSO∗(2s)),y1

=
22|m|C

(2µ)2m,4
Φ̃′

m(x2w
∗
1x2w

∗
1)

where 2m = (2m1, 2m2, . . . , 2mr) ∈ Zr
++, which follow from Faraut-Korányi’s

results plus some observation. Then by

(µ)m,2

(µ)m2,1
=

1(
µ− 1

2

)
m,2

,
22|m|(µ)m,2

(2µ)2m,4
=

1(
µ+ 1

2

)
m,2

,

the theorem holds.
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[3] J. Faraut and A. Korányi, Analysis on symmetric cones. Oxford Mathematical Monographs.
Oxford Science Publications. The Clarendon Press, Oxford University Press, New York,

1994.
[4] T. Kobayashi, Discrete decomposability of the restriction of Aq(λ) with respect to reductive

subgroups and its applications. Invent. Math. 117 (1994), no. 2, 181–205.



36 R. Nakahama

[5] T. Kobayashi, Discrete decomposability of the restriction of Aq(λ) with respect to reductive
subgroups. II. Micro-local analysis and asymptotic K-support. Ann. of Math. (2) 147 (1998),
no. 3, 709–729.

[6] T. Kobayashi, Discrete decomposability of the restriction of Aq(λ) with respect to reduc-

tive subgroups. III. Restriction of Harish-Chandra modules and associated varieties. Invent.
Math. 131 (1998), no. 2, 229–256.

[7] T. Kobayashi, Multiplicity-free theorems of the restrictions of unitary highest weight mod-
ules with respect to reductive symmetric pairs. Representation theory and automorphic

forms, 45–109, Progr. Math., 255, Birkhäuser Boston, Boston, MA, 2008.
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