Whittaker functions on $G L(2, \mathbb{C})$ and the local zeta integrals

Tadashi MIYAZAKI

Abstract

This is an announcement of a new result which is a generalization of Popa's result in $[\mathbf{P o}]$. Popa gives explicit formulas of Whittaker functions on $G L(2, \mathbb{C})$ at the minimal K-types, and shows that the local zeta integrals for $G L(2, \mathbb{C})$ defined from some Whittaker functions are equal to the associated L-factors. In this article, we will give explicit formulas of Whittaker functions on $G L(2, \mathbb{C})$ at all K-types, and show that the local zeta integrals for $G L(2, \mathbb{C}) \times G L(2, \mathbb{C})$ defined from some Whittaker functions are equal to the associated L-factors. Proofs will appear elsewhere.

1. Notation

Let $G=G L(2, \mathbb{C})$ be the complex general linear group of degree 2 . In this article, we regard G as a real reductive Lie group. We fix an Iwasawa decomposition $G=N A K$ of G with

$$
N=\left\{\left.\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \right\rvert\, x \in \mathbb{C}\right\}, \quad A=\left\{\left.\left(\begin{array}{cc}
y_{1} y_{2} & 0 \\
0 & y_{2}
\end{array}\right) \right\rvert\, y_{1}, y_{2} \in \mathbb{R}_{>0}\right\}, \quad K=U(2)
$$

Let \mathfrak{g} be the associated Lie algebra of G. We denote by $\mathfrak{g}_{\mathbb{C}}$ the complexification $\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$ of \mathfrak{g}. It is known that $\mathfrak{g}_{\mathbb{C}}$ is isomorphic to $\mathfrak{g l}(2, \mathbb{C}) \oplus \mathfrak{g l}(2, \mathbb{C})$ via

$$
\mathfrak{g}_{\mathbb{C}} \ni X \otimes t \mapsto(t X, t \bar{X}) \in \mathfrak{g l}(2, \mathbb{C}) \oplus \mathfrak{g l}(2, \mathbb{C})
$$

Here \bar{X} means the complex conjugate of X. We denote by $U\left(\mathfrak{g}_{\mathbb{C}}\right)$ the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$, and by $Z\left(\mathfrak{g}_{\mathbb{C}}\right)$ the center of $U\left(\mathfrak{g}_{\mathbb{C}}\right)$. We note that

$$
U\left(\mathfrak{g}_{\mathbb{C}}\right) \simeq U(\mathfrak{g l}(2, \mathbb{C}) \oplus \mathfrak{g l}(2, \mathbb{C})) \simeq U(\mathfrak{g l}(2, \mathbb{C})) \otimes_{\mathbb{C}} U(\mathfrak{g l}(2, \mathbb{C}))
$$

Here the second isomorphism above is induced from

$$
\mathfrak{g l}(2, \mathbb{C}) \oplus \mathfrak{g l}(2, \mathbb{C}) \ni\left(X_{1}, X_{2}\right) \mapsto X_{1} \otimes 1+1 \otimes X_{2} \in U(\mathfrak{g l}(2, \mathbb{C})) \otimes \mathbb{C} U(\mathfrak{g l}(2, \mathbb{C}))
$$

Let $\Lambda=\left\{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{Z}^{2} \mid \lambda_{1} \geq \lambda_{2}\right\}$. For $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \Lambda$, let V_{λ} be the \mathbb{C}-vector space of degree $\lambda_{1}-\lambda_{2}$ homogeneous polynomials in two variables z_{1}, z_{2}, on which

[^0]K acts by
$$
\tau_{\lambda}(k) p\left(z_{1}, z_{2}\right)=\operatorname{det}(k)^{\lambda_{2}} p\left(\left(z_{1}, z_{2}\right) k\right) \quad\left(k \in K, p\left(z_{1}, z_{2}\right) \in V_{\lambda}\right)
$$

We define $\left\{v_{q}^{\lambda} \mid 0 \leq q \leq \lambda_{1}-\lambda_{2}\right\}$ as a basis of V_{λ} by $v_{q}^{\lambda}=z_{1}^{\lambda_{1}-\lambda_{2}-q} z_{2}^{q}$. It is known that the equivalence classes of irreducible representations of K is exhausted by $\left\{\left(\tau_{\lambda}, V_{\lambda}\right) \mid \lambda \in \Lambda\right\}$.

2. Whittaker functions on $G L(2, \mathbb{C})$

For $c \in \mathbb{C}^{\times}$, we define an additive character $\psi_{c}: \mathbb{C} \rightarrow \mathbb{C}^{\times}$by

$$
\psi_{c}(x)=\exp (2 \pi \sqrt{-1}(c x+\overline{c x})) \quad(x \in \mathbb{C})
$$

Let $C^{\infty}\left(N \backslash G ; \psi_{c}\right)$ be the space of smooth functions f on G satisfying

$$
f\left(\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) g\right)=\psi_{c}(x) f(g) \quad(x \in \mathbb{C}, g \in G)
$$

on which G acts by the right translation. For an irreducible admissible representation $\left(\pi, H_{\pi}\right)$ of G, let $\mathcal{I}_{\pi, \psi_{c}}$ be the subspace of $\operatorname{Hom}_{\mathfrak{g}_{c}, K}\left(H_{\pi, K}, C^{\infty}\left(N \backslash G ; \psi_{c}\right)_{K}\right)$ consisting of all homomorphisms Φ such that $\Phi(f)$ is of moderate growth for any $f \in H_{\pi, K}$. Here we denote by $H_{\pi, K}$ and $C^{\infty}\left(N \backslash G ; \psi_{c}\right)_{K}$ the subspaces of H_{π} and $C^{\infty}\left(N \backslash G ; \psi_{c}\right)$ consisting of all K-finite vectors, respectively.

The multiplicity one theorem (cf. [Sha], [Wa]) tells that the intertwining space $\mathcal{I}_{\pi, \psi_{c}}$ is at most one dimensional. If $\mathcal{I}_{\pi, \psi_{c}} \neq\{0\}$, we say that π is generic, and define the Whittaker model $\mathcal{W}\left(\pi, \psi_{c}\right)$ of π by

$$
\mathcal{W}\left(\pi, \psi_{c}\right)=\left\{\Phi(f) \mid f \in H_{\pi, K}, \Phi \in \mathcal{I}_{\pi, \psi_{c}}\right\}
$$

and functions in $\mathcal{W}\left(\pi, \psi_{c}\right)$ are called Whittaker functions for π.
For an irreducible admissible representation $\left(\pi, H_{\pi}\right)$ of G, it is known that π is generic if and only if π is infinitesimally equivalent to an irreducible principal series representation ([Ja2, Lemma 2.5]). We define principal series representations of G in the next section.

3. Principal series representations of $G L(2, \mathbb{C})$

Let $\nu=\left(\nu_{1}, \nu_{2}\right) \in \mathbb{C}^{2}$ and $d=\left(d_{1}, d_{2}\right) \in \mathbb{Z}^{2}$. Let $H_{(\nu, d)}^{0}$ be the space of continuous functions f on G satisfying

$$
\begin{array}{r}
f\left(\left(\begin{array}{cc}
m_{1} & x \\
0 & m_{2}
\end{array}\right) g\right)=m_{1}^{d_{1}} m_{2}^{d_{2}}\left|m_{1}\right|^{2 \nu_{1}-d_{1}+1}\left|m_{2}\right|^{2 \nu_{2}-d_{2}-1} f(g) \\
\left(m_{1}, m_{2} \in \mathbb{C}^{\times}, x \in \mathbb{C}, g \in G\right) .
\end{array}
$$

The group G acts on $H_{(\nu, d)}^{0}$ by the right translation

$$
\left(\pi_{(\nu, d)}(g) f\right)(h)=f(h g) \quad\left(g, h \in G, f \in H_{(\nu, d)}^{0}\right)
$$

Let $\left(\pi_{(\nu, d)}, H_{(\nu, d)}\right)$ be the Hilbert representation of G, which is the completion of $\left(\pi_{(\nu, d)}, H_{(\nu, d)}^{0}\right)$ relative to the inner product

$$
\left(f_{1}, f_{2}\right)=\int_{K} f_{1}(k) \overline{f_{2}(k)} d k \quad\left(f_{1}, f_{2} \in H_{(\nu, d)}^{0}\right)
$$

We call $\left(\pi_{(\nu, d)}, H_{(\nu, d)}\right)$ a principal series representation of G. It is known that a principal series representation $\pi_{(\nu, d)}$ is irreducible for generic parameter ν. In this article, we only consider irreducible principal series representations of G. We may assume $d=\left(d_{1}, d_{2}\right) \in \Lambda$ without loss of generalities, since

$$
\begin{equation*}
H_{\left(\left(\nu_{1}, \nu_{2}\right),\left(d_{1}, d_{2}\right)\right), K} \simeq H_{\left(\left(\nu_{2}, \nu_{1}\right),\left(d_{2}, d_{1}\right)\right), K} \tag{1}
\end{equation*}
$$

as $\left(\mathfrak{g}_{\mathbb{C}}, K\right)$-modules if $\pi_{\left(\left(\nu_{1}, \nu_{2}\right),\left(d_{1}, d_{2}\right)\right)}$ is irreducible (cf. [SV, Corollary 2.8]).
By the Frobenius reciprocity law, the K-types of principal series representations of G are given as follows.

Lemma 3.1. For $\nu=\left(\nu_{1}, \nu_{2}\right) \in \mathbb{C}^{2}$ and $d=\left(d_{1}, d_{2}\right) \in \Lambda$, it holds that

$$
H_{(\nu, d), K} \simeq \bigoplus_{m=0}^{\infty} V_{\left(d_{1}+m, d_{2}-m\right)}
$$

as K-modules.

4. Explicit formulas of Whittaker functions

In this section, we give explicit formulas of Whittaker functions for an irreducible principal series representation $\left(\pi_{(\nu, d)}, H_{(\nu, d)}\right)$ of G with $\nu=\left(\nu_{1}, \nu_{2}\right) \in \mathbb{C}^{2}$, $d=\left(d_{1}, d_{2}\right) \in \Lambda$. Let $c \in \mathbb{C}^{\times}$and $m \in \mathbb{Z}_{\geq 0}$. We set $\lambda=\left(\lambda_{1}, \lambda_{2}\right)=\left(d_{1}+m, d_{2}-m\right)$, and take a K-embedding $\phi: V_{\lambda} \rightarrow \mathcal{W}\left(\pi_{(\nu, d)}, \psi_{c}\right)$. Then, for $g \in G$ with the Iwasawa decomposition

$$
g=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
y_{1} y_{2} & 0 \\
0 & y_{2}
\end{array}\right) k \quad\left(x \in \mathbb{C}, y_{1}, y_{2} \in \mathbb{R}_{>0}, k \in K\right)
$$

we have

$$
\phi(v)(g)=\psi_{c}(x) y_{2}^{2 \nu_{1}+2 \nu_{2}} \phi\left(\tau_{\lambda}(k) v\right)\left(\left(\begin{array}{cc}
y_{1} & 0 \\
0 & 1
\end{array}\right)\right) .
$$

Hence, the functions $\varphi_{q}\left(0 \leq q \leq \lambda_{1}-\lambda_{2}\right)$ on $\mathbb{R}_{>0}$ defined by

$$
\varphi_{q}\left(y_{1}\right)=\phi\left(v_{q}^{\lambda}\right)\left(\left(\begin{array}{cc}
y_{1} & 0 \\
0 & 1
\end{array}\right)\right) \quad\left(y_{1} \in \mathbb{R}_{>0}\right)
$$

characterize the K-embedding ϕ.
We denote by \mathcal{C} the Casimir element of $\mathfrak{s l}(2, \mathbb{C})$. From the actions of two elements of $Z\left(\mathfrak{g}_{\mathbb{C}}\right)$ corresponding to $\mathcal{C} \otimes 1$ and $1 \otimes \mathcal{C}$, we obtain the following equalities:

$$
\begin{align*}
& \left\{\left(\vartheta-2 \nu_{1}+m-q-1\right)\left(\vartheta-2 \nu_{2}-m+\lambda_{1}-\lambda_{2}-q-1\right)-\left(4 \pi c y_{1}\right)^{2}\right\} \varphi_{q} \\
& =-\left(8 \pi c \sqrt{-1} y_{1}\right)\left(\lambda_{1}-\lambda_{2}-q\right) \varphi_{q+1}, \tag{2}\\
& \left\{\left(\vartheta-2 \nu_{1}-m+q-1\right)\left(\vartheta-2 \nu_{2}+m-\lambda_{1}+\lambda_{2}+q-1\right)-\left(4 \pi c y_{1}\right)^{2}\right\} \varphi_{q} \\
& =\left(8 \pi c \sqrt{-1} y_{1}\right) q \varphi_{q-1} \tag{3}
\end{align*}
$$

for $0 \leq q \leq \lambda_{1}-\lambda_{2}$. Here $\vartheta=y_{1} \frac{d}{d y_{1}}$, and $\varphi_{q}=0$ if $q<0$ or $q>\lambda_{1}-\lambda_{2}$.
The system of differential equations (2), (3) has a unique moderate growth solution. Solving this system, we obtain the following theorem.

Theorem 4.1. Let $\left(\pi_{(\nu, d)}, H_{(\nu, d)}\right)$ be an irreducible principal series representation of G with $\nu=\left(\nu_{1}, \nu_{2}\right) \in \mathbb{C}^{2}$ and $d=\left(d_{1}, d_{2}\right) \in \Lambda$. Let $c \in \mathbb{C}^{\times}, m \in \mathbb{Z}_{\geq 0}$, and set $\lambda=\left(\lambda_{1}, \lambda_{2}\right)=\left(d_{1}+m, d_{2}-m\right)$. Then there exists a K-embedding

$$
\phi_{[\nu, d ; m]}^{(c)}: V_{\lambda} \rightarrow \mathcal{W}\left(\pi_{(\nu, d)}, \psi_{c}\right)
$$

which is characterized by

$$
\begin{aligned}
\phi_{[\nu, d ; m]}^{(c)}\left(v_{q}^{\lambda}\right)\left(\left(\begin{array}{cc}
y_{1} & 0 \\
0 & 1
\end{array}\right)\right)= & \left(\frac{c \sqrt{-1}}{|c|}\right)^{\lambda_{1}-q} \sum_{i=0}^{q}\binom{q}{i} \frac{(-m)_{i}\left(-\nu_{1}+\nu_{2}-\frac{\lambda_{1}-\lambda_{2}}{2}\right)_{i}}{\left(-\lambda_{1}+\lambda_{2}\right)_{i}\left(2 \pi|c| y_{1}\right)^{i}} \\
& \times \frac{y_{1}}{4 \pi \sqrt{-1}} \int_{\alpha-\sqrt{-1} \infty}^{\alpha+\sqrt{-1} \infty} \Gamma_{\mathbb{C}}\left(s+\nu_{1}+\frac{q+m-i}{2}\right) \\
& \times \Gamma_{\mathbb{C}}\left(s+\nu_{2}+\frac{\lambda_{1}-\lambda_{2}-q-m+i}{2}\right)\left(|c| y_{1}\right)^{-2 s} d s
\end{aligned}
$$

for $y_{1} \in \mathbb{R}_{>0}$ and $0 \leq q \leq \lambda_{1}-\lambda_{2}$. Here $(s)_{i}=\Gamma(s+i) / \Gamma(s), \Gamma_{\mathbb{C}}(s)=2(2 \pi)^{-s} \Gamma(s)$ ($s \in \mathbb{C}, i \in \mathbb{Z}_{\geq 0}$) as usual, and α is a sufficiently large real number.

Remark 4.2. When $m=0$, we note that the formula in Theorem 4.1 is simplified as follows:

$$
\phi_{[\nu, d ; 0]}^{(c)}\left(v_{q}^{d}\right)\left(\left(\begin{array}{cc}
y_{1} & 0 \\
0 & 1
\end{array}\right)\right)=\left(\frac{c \sqrt{-1}}{|c|}\right)^{d_{1}-q} \frac{y_{1}}{4 \pi \sqrt{-1}} \int_{\alpha-\sqrt{-1} \infty}^{\alpha+\sqrt{-1} \infty} \Gamma_{\mathbb{C}}\left(s+\nu_{1}+\frac{q}{2}\right)
$$

$$
\times \Gamma_{\mathbb{C}}\left(s+\nu_{2}+\frac{d_{1}-d_{2}-q}{2}\right)\left(|c| y_{1}\right)^{-2 s} d s
$$

for $y_{1} \in \mathbb{R}_{>0}$ and $0 \leq q \leq d_{1}-d_{2}$. This formula is given by Popa in $[\mathbf{P o}]$.

5. The local zeta integrals for $G L(2, \mathbb{C}) \times G L(2, \mathbb{C})$

Let $\mathcal{S}\left(\mathbb{C}^{2}\right)$ be the space of Schwartz functions on \mathbb{C}^{2}. For $f \in \mathcal{S}\left(\mathbb{C}^{2}\right)$, we define the Fourier transform $\mathcal{F}(f)$ of f with respect to ψ_{1} by

$$
\mathcal{F}(f)\left(w_{1}, w_{2}\right)=\int_{\mathbb{C}^{2}} f\left(z_{1}, z_{2}\right) \psi_{1}\left(z_{1} w_{1}+z_{2} w_{2}\right) d z_{1} d z_{2} \quad\left(w_{1}, w_{2} \in \mathbb{C}\right)
$$

Here $d z_{i}$ is the self dual Haar measure on \mathbb{C} with respect to ψ_{1}, that is, $d z_{i}$ is the twice Lebesgue measure on $\mathbb{C} \simeq \mathbb{R}^{2}$ for $i=1,2$. Then we note that

$$
\mathcal{F}(\mathcal{F}(f))\left(z_{1}, z_{2}\right)=f\left(-z_{1},-z_{2}\right) \quad\left(f \in \mathcal{S}\left(\mathbb{C}^{2}\right), z_{1}, z_{2} \in \mathbb{C}\right)
$$

Let $\mathcal{S}\left(\mathbb{C}^{2}\right)^{\text {std }}$ be the subspace of $\mathcal{S}\left(\mathbb{C}^{2}\right)$ consisting of all functions f of the form

$$
\begin{equation*}
f\left(z_{1}, z_{2}\right)=p\left(z_{1}, z_{2}, \overline{z_{1}}, \overline{z_{2}}\right) \exp \left(-2 \pi\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\right) \quad\left(z_{1}, z_{2} \in \mathbb{C}\right) \tag{4}
\end{equation*}
$$

with polynomial functions p on \mathbb{C}^{4}. We call functions in $\mathcal{S}\left(\mathbb{C}^{2}\right)^{\text {std }}$ standard Schwartz functions on \mathbb{C}^{2}.

Let $\left(\pi_{(\nu, d)}, H_{(\nu, d)}\right)$ and $\left(\pi_{\left(\nu^{\prime}, d^{\prime}\right)}, H_{\left(\nu^{\prime}, d^{\prime}\right)}\right)$ be irreducible principal series representations of G with $\nu=\left(\nu_{1}, \nu_{2}\right) \in \mathbb{C}^{2}, d=\left(d_{1}, d_{2}\right) \in \mathbb{Z}^{2}, \nu^{\prime}=\left(\nu_{1}^{\prime}, \nu_{2}^{\prime}\right) \in \mathbb{C}^{2}$ and $d^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}\right) \in \mathbb{Z}^{2}$. From the Langlands parameters of $\pi_{(\nu, d)}$ and $\pi_{\left(\nu^{\prime}, d^{\prime}\right)}$, we define the local L-factor $L\left(s, \pi_{(\nu, d)} \times \pi_{\left(\nu^{\prime}, d^{\prime}\right)}\right)$ by

$$
L\left(s, \pi_{(\nu, d)} \times \pi_{\left(\nu^{\prime}, d^{\prime}\right)}\right)=\prod_{1 \leq i, j \leq 2} \Gamma_{\mathbb{C}}\left(s+\nu_{i}+\nu_{j}^{\prime}+\frac{\left|d_{i}+d_{j}^{\prime}\right|}{2}\right)
$$

Let $\varepsilon \in\{ \pm 1\}$. For $W \in \mathcal{W}\left(\pi_{(\nu, d)}, \psi_{\varepsilon}\right), W^{\prime} \in \mathcal{W}\left(\pi_{\left(\nu^{\prime}, d^{\prime}\right)}, \psi_{-\varepsilon}\right)$ and $f \in \mathcal{S}\left(\mathbb{C}^{2}\right)$, we define the local zeta integral $Z\left(s, W, W^{\prime}, f\right)$ by

$$
Z\left(s, W, W^{\prime}, f\right)=\int_{N \backslash G} W(g) W^{\prime}(g) f((0,1) g)|\operatorname{det} g|^{2 s} d \dot{g},
$$

where $d \dot{g}$ is the right invariant measure on $N \backslash G$. The local zeta integrals converge for $\operatorname{Re}(s) \gg 0$. Jacquet proves the following theorems ([Ja1], [Ja2]).

Theorem 5.1 (Jacquet). Retain the notation. Let $W \in \mathcal{W}\left(\pi_{(\nu, d)}, \psi_{1}\right), W^{\prime} \in$ $\mathcal{W}\left(\pi_{\left(\nu^{\prime}, d^{\prime}\right)}, \psi_{-1}\right)$ and $f \in \mathcal{S}\left(\mathbb{C}^{2}\right)$. Then the ratio $Z\left(s, W, W^{\prime}, f\right) / L\left(s, \pi_{(\nu, d)} \times \pi_{\left(\nu^{\prime}, d^{\prime}\right)}\right)$
extends to an entire function of s, and satisfies the local functional equation:

$$
\frac{Z\left(1-s, \widetilde{W}, \widetilde{W}^{\prime}, \mathcal{F}(f)\right)}{L\left(1-s, \pi_{(-\nu,-d)} \times \pi_{\left.\left(-\nu^{\prime},-d^{\prime}\right)\right)}\right.}=(\sqrt{-1})^{\sum_{i=1}^{2}\left(\left|d_{1}+d_{i}^{\prime}\right|-\left|d_{2}+d_{i}^{\prime}\right|\right)} \frac{Z\left(s, W, W^{\prime}, f\right)}{L\left(s, \pi_{(\nu, d)} \times \pi_{\left(\nu^{\prime}, d^{\prime}\right)}\right)}
$$

where $\widetilde{W}(g)=W\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right){ }^{t} g^{-1}\right)$ and $\widetilde{W}^{\prime}(g)=W^{\prime}\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right){ }^{t} g^{-1}\right) \quad(g \in G)$.
Theorem 5.2 (Jacquet). Retain the notation. There exist $m \in \mathbb{Z}_{>0}$ and $\left(W_{i}, W_{i}^{\prime}, f_{i}\right) \in \mathcal{W}\left(\pi_{(\nu, d)}, \psi_{1}\right) \times \mathcal{W}\left(\pi_{\left(\nu^{\prime}, d^{\prime}\right)}, \psi_{-1}\right) \times \mathcal{S}\left(\mathbb{C}^{2}\right)^{\text {std }}(i=1, \cdots, m)$ such that

$$
\sum_{i=1}^{m} Z\left(s, W_{i}, W_{i}^{\prime}, f_{i}\right)=L\left(s, \pi_{(\nu, d)} \times \pi_{\left(\nu^{\prime}, d^{\prime}\right)}\right)
$$

By the calculation based on the explicit formulas in the previous section, we can improve Theorem 5.2 as follows:

Theorem 5.3. Retain the notation. Then there exist $W_{0} \in \mathcal{W}\left(\pi_{(\nu, d)}, \psi_{1}\right)$, $W_{0}^{\prime} \in \mathcal{W}\left(\pi_{\left(\nu^{\prime}, d^{\prime}\right)}, \psi_{-1}\right)$ and $f_{0} \in \mathcal{S}\left(\mathbb{C}^{2}\right)^{\text {std }}$ such that

$$
\begin{equation*}
Z\left(s, W_{0}, W_{0}^{\prime}, f_{0}\right)=L\left(s, \pi_{(\nu, d)} \times \pi_{\left(\nu^{\prime}, d^{\prime}\right)}\right) . \tag{5}
\end{equation*}
$$

In the proof of this theorem, appropriate choices of Whittaker functions play important roles. We regard $\mathcal{S}\left(\mathbb{C}^{2}\right)^{\text {std }}$ as a K-module via

$$
(\tau(k) f)\left(z_{1}, z_{2}\right)=f\left(\left(z_{1}, z_{2}\right) k\right) \quad\left(k \in K, f \in \mathcal{S}\left(\mathbb{C}^{2}\right)^{\text {std }}\right)
$$

For $p, q \in \mathbb{Z}_{\geq 0}$, let $\mathcal{S}\left(\mathbb{C}^{2}\right)_{p, q}^{\text {std }}$ be the subspace of $\mathcal{S}\left(\mathbb{C}^{2}\right)^{\text {std }}$ consisting of all functions of the form (4) with polynomial functions $p\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ which are degree p homogeneous with respect to w_{1}, w_{2}, and degree q homogeneous with respect to w_{3}, w_{4}. Then we have

$$
\mathcal{S}\left(\mathbb{C}^{2}\right)^{\mathrm{std}}=\bigoplus_{p, q \geq 0} \mathcal{S}\left(\mathbb{C}^{2}\right)_{p, q}^{\mathrm{std}}, \quad \mathcal{S}\left(\mathbb{C}^{2}\right)_{p, q}^{\mathrm{std}} \simeq V_{(p, 0)} \otimes_{\mathbb{C}} V_{(0,-q)}
$$

Because of the isomorphism (1), we may assume $d \in \Lambda$ and $d^{\prime} \in \Lambda$. Let $m, m^{\prime} \in$ $\mathbb{Z}_{\geq 0}$, and we set $\lambda=\left(d_{1}+m, d_{2}-m\right), \lambda^{\prime}=\left(d_{1}^{\prime}+m^{\prime}, d_{2}^{\prime}-m^{\prime}\right)$. For each $s \in \mathbb{C}$, we note that

$$
V_{\lambda} \otimes_{\mathbb{C}} V_{\lambda^{\prime}} \otimes_{\mathbb{C}} \mathcal{S}\left(\mathbb{C}^{2}\right)_{p, q}^{\operatorname{std}} \ni v \otimes v^{\prime} \otimes f \mapsto Z\left(s, \phi_{[\nu, d ; m]}^{(1)}(v), \phi_{\left[\nu^{\prime}, d^{\prime} ; m^{\prime}\right]}^{(-1)}\left(v^{\prime}\right), f\right) \in V_{(0,0)}
$$

is a K-homomorphism, and this homomorphism vanishes if

$$
\operatorname{Hom}_{K}\left(V_{\lambda} \otimes_{\mathbb{C}} V_{\lambda^{\prime}} \otimes_{\mathbb{C}} \mathcal{S}\left(\mathbb{C}^{2}\right)_{p, q}^{\text {std }}, V_{(0,0)}\right)=\{0\}
$$

Because of the local functional equations, we may assume $d_{1}+d_{2}+d_{1}^{\prime}+d_{2}^{\prime} \geq 0$. Moreover, interchanging $\pi_{(\nu, d)}$ and $\pi_{\left(\nu^{\prime}, d^{\prime}\right)}$ if necessary, we may assume $d_{1}+d_{2}^{\prime} \geq 0$. Under these assumptions, if we set $m=0$ and $p=0$, then the smallest integers $q=q_{0}$ and $m^{\prime}=m_{0}^{\prime}$ satisfying $\operatorname{Hom}_{K}\left(V_{d} \otimes_{\mathbb{C}} V_{\lambda^{\prime}} \otimes_{\mathbb{C}} \mathcal{S}\left(\mathbb{C}^{2}\right)_{0, q}^{\text {std }}, V_{(0,0)}\right) \neq\{0\}$ are given by

$$
q_{0}=d_{1}+d_{2}+d_{1}^{\prime}+d_{2}^{\prime}, \quad \quad m_{0}^{\prime}=\max \left\{d_{2}+d_{2}^{\prime}, 0,-d_{2}-d_{1}^{\prime}\right\}
$$

and the space

$$
\begin{equation*}
\operatorname{Hom}_{K}\left(V_{d} \otimes_{\mathbb{C}} V_{\left(d_{1}^{\prime}+m_{0}^{\prime}, d_{2}^{\prime}-m_{0}^{\prime}\right)} \otimes_{\mathbb{C}} \mathcal{S}\left(\mathbb{C}^{2}\right)_{0, q_{0}}^{\operatorname{std}}, V_{(0,0)}\right) \tag{6}
\end{equation*}
$$

is one dimensional. Let ι be a unique nonzero element of the space (6), and take $v_{0} \in V_{d}, v_{0}^{\prime} \in V_{\left(d_{1}^{\prime}+m_{0}^{\prime}, d_{2}^{\prime}-m_{0}^{\prime}\right)}$ and $f_{1} \in \mathcal{S}\left(\mathbb{C}^{2}\right)_{0, q_{0}}^{\text {std }}$ so that $\iota\left(v_{0} \otimes v_{0}^{\prime} \otimes f_{1}\right) \neq 0$. We can show that there exists some nonzero constant C such that

$$
Z\left(s, \phi_{[\nu, d ; 0]}^{(1)}\left(v_{0}\right), \phi_{\left[\nu^{\prime}, d^{\prime} ; m_{0}^{\prime}\right]}^{(-1)}\left(v_{0}^{\prime}\right), f_{1}\right)=C L\left(s, \pi_{(\nu, d)} \times \pi_{\left(\nu^{\prime}, d^{\prime}\right)}\right) \quad(s \in \mathbb{C}),
$$

by the calculation using Barnes' lemma ([Ba1, §1.7]):

$$
\begin{aligned}
& \frac{1}{2 \pi \sqrt{-1}} \int_{\alpha-\sqrt{-1} \infty}^{\alpha+\sqrt{-1} \infty} \Gamma(a+s) \Gamma(b+s) \Gamma(c-s) \Gamma(d-s) d s \\
& =\frac{\Gamma(a+c) \Gamma(a+d) \Gamma(b+c) \Gamma(b+d)}{\Gamma(a+b+c+d)}
\end{aligned}
$$

for $a, b, c, d \in \mathbb{C}$ and $\alpha \in \mathbb{R}$ such that

$$
-\min \{\operatorname{Re}(a), \operatorname{Re}(b)\}<\alpha<\min \{\operatorname{Re}(c), \operatorname{Re}(d)\} .
$$

Hence, $W_{0}=\phi_{[\nu, d ; 0]}^{(1)}\left(v_{0}\right), W_{0}^{\prime}=\phi_{\left[\nu^{\prime}, d^{\prime} ; m_{0}^{\prime}\right]}^{(-1)}\left(v_{0}^{\prime}\right)$ and $f_{0}=C^{-1} f_{1}$ satisfy (5).

References

[Ba1] W. N. Bailey. Generalized hypergeometric series. Cambridge Tracts in Mathematics and Mathematical Physics, No. 32. Stechert-Hafner, Inc., New York, 1964.
[Ja1] Hervé Jacquet. Automorphic forms on GL(2). Part II. Lecture Notes in Mathematics, Vol. 278. Springer-Verlag, Berlin-New York, 1972.
[Ja2] Hervé Jacquet. Archimedean Rankin-Selberg integrals. In Automorphic forms and Lfunctions II. Local aspects, volume 489 of Contemp. Math., pages 57-172. Amer. Math. Soc., Providence, RI, 2009.
[Po] Alexandru A. Popa. Whittaker newforms for Archimedean representations. J. Number Theory, 128(6):1637-1645, 2008.
[Sha] J. A. Shalika. The multiplicity one theorem for GL_{n}. Ann. of Math. (2), 100:171-193, 1974.
[SV] Birgit Speh and David A. Vogan, Jr. Reducibility of generalized principal series representations. Acta Math., 145(3-4):227-299, 1980.
[Wa] Nolan R. Wallach. Asymptotic expansions of generalized matrix entries of representations of real reductive groups. In Lie group representations, I (College Park, Md., 1982/1983), volume 1024 of Lecture Notes in Math., pages 287-369. Springer, Berlin, 1983.

Tadashi MIYAZAKI

Department of Mathematics, College of Liberal Arts and Sciences, Kitasato University 1-15-1, Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
miyaza@kitasato-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 11F66, Secondary 11F30
 Key words and phrases. Whittaker functions; zeta integrals.

