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Factorization spaces and moduli spaces over curves

Shintarou YANAGIDA

Abstract. The notion of factorization space is a non-linear counterpart
of the factorization algebra, which was introduced by Beilinson and Drinfeld

in the theory of chiral algebras developing a geometric framework of vertex
algebras. We give a review of factorization spaces with an emphasis on the
connection to moduli problems on algebraic curves, and explain a general
construction of factorization spaces from moduli spaces.

0. Introduction

0.1.

The two-dimensional quantum conformal field theory (CFT for short) is inti-

mately related to moduli problems on algebraic curves. The first understanding

of this claim is that the Virasoro Lie algebra controlling the symmetry of CFT is

nothing but the Lie algebra of the vector fields on the affine line. By the Kodaira-

Spencer deformation theory, the sheaf of Lie algebras of vector fields on a given

variety X describes the infinitesimal deformation of X. Thus we see that CFT

should be related to the moduli space of algebraic curves. A more precise treat-

ment of this viewpoint was presented in the paper [5] of Beilinson and Schechtman.

The WZW model, or the CFT attached to affine Lie algebras, has a similar feature,

as shown in the work of Tsuchiya, Ueno and Yamada [16] formulating the WZW

model on the moduli space of pointed complex curves.

The theory of vertex algebras began its life as one of the mathematical for-

mulations of CFT, and at present it is the best established one in the algebraic

viewpoint. For instance, representation theoretic methods can be applied relatively

easily in the vertex algebra context.

However there are still many subjects in CFT to study. One of them is the

relation to moduli problems mentioned above. The purpose of this article is to

give a review on a non-linear or geometric reformulation of vertex algebra which

seems to be powerful to reveal the relation of CFT and moduli problems. The

formulation was introduced by Beilinson and Drinfeld in [3] and is nowadays called

factorization space.
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Since the notion of factorization space is of abstract and complicated nature,

we will not start with its definition but with some explanation on the way how

Beilinson and Drinfeld reached it. In the first step some recollection will be given

on vertex algebras, and then two equivalent notions of vertex algebras will be

explained. They are chiral algebras and factorization algebras. Then we introduce

our main object, factorization spaces. After explaining standard examples, we will

show a general construction of factorization spaces from deformation problems.

0.2. Organization

Let us explain the organization of this article. §1 gives some recollection of

vertex algebras. After the recollection of the definition and some standard examples

in §1.1 and §1.2, we explain the construction of vertex algebra bundles on algebraic

curves in §1.4.
§2 is an introduction to chiral and factorization algebras. These are almost

equivalent notions of vertex algebra bundles. The definitions require some knowl-

edge on D-modules, on which we give a brief summary in §2.1.
In §3 we introduce the main object, namely the factorization space. For explain-

ing the motivation of the definition, we start with the reformulation of factorization

algebras as sheaves on the Ran space, explained in §3.1 and §3.2. The definition

is given in §3.4 after the recollection of ind-schemes in §3.3. A factorization space

gives a factorization algebra after the linearization explained in §3.6.
§4 and §5 give standard examples of factorization spaces, the Beilinson-Drinfeld

Grassmannian and the factorization space associated to moduli spaces of pointed

curves.

In the final §6 we explain a general method to construct factorization spaces

from moduli spaces. The examples in §4 and §5 are special cases of our construction.
Let us remark that the contents in §§1–5 are based on known facts. The claim

in §6 is new.

0.3. Notation

We will work over the field C of complex numbers unless otherwise stated. The

symbol ⊗ denotes the tensor product of vector spaces over C.
For a scheme or an algebraic stack Z, OZ , ΘZ , ΩZ and DZ denote the structure

sheaf, the tangent sheaf, the sheaf of 1-forms and the sheaf of differential operators

on Z respectively (if they are defined). By “an O-module on Z” we mean a quasi-

coherent sheaf on Z. By “a D-module on Z” we mean a sheaf of DZ-modules

quasi-coherent as OZ-modules.

For a morphism f : Z1 → Z2, the symbols f · and f· denote the inverse and

direct image functors of O-modules respectively.

1. Recollection on vertex algebras

We begin with the recollection of vertex algebras. The basic reference is [8].
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1.1. Vertex algebras

The notion of vertex algebra is introduced to encode the chiral part of two

dimensional quantum conformal field theory, which arises from string theory and

condensed matter theory in physics. Let us begin with the definition of quantum

fields in the context of vertex algebras.

Definition. For a vector space V , a field on V is a formal power series

A(z) =
∑
i∈Z

Aiz
−i ∈ (EndV )[[z±1]]

valued in the algebra EndV of linear endomorphisms on V such that for any v ∈ V

we have

A(z) · v =
∑
i∈Z

(Ai · v)z−i ∈ V ((z)).

In other words, for any v ∈ V we have Ai · v = 0 for large enough i.

Next we want to restrict the way two quantum fields interact. The interaction

is encoded the following description of singularity.

Definition. Two fields A(z) and B(w) acting on a vector space V are called

local with respect to each other if there exists N ∈ Z≥0 such that

(z − w)N [A(z), B(w)] = 0

as a formal power series in (EndV )[[z±1, w±1]].

It is known (see [8, §1.2]) that this definition is equivalent to the following: for

any v ∈ V and φ ∈ V ∗ the elements ⟨φ,A(z)B(w)v⟩ and ⟨φ,B(w)A(z)v⟩ are the

expansions of the same element

fv,φ ∈ C[[z, w]][z−1, w−1, (z − w)−1]

in C(z))((w)) and C((w))((z)) respectively, and the pole order of fv,φ in (z−w) is

uniformly bounded for all v and φ.

Now the definition of vertex algebra is

Definition. A vertex algebra is a collection (V, |0⟩ , T, Y ) consisting of

• a vector space V , called the space of states

• a vector |0⟩ ∈ V , called the vacuum vector

• a linear operator T ∈ EndV , called the translation operator
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• a linear operation Y (−, z) : V → (EndV )[[z±1]] with the image Y (A, z)

always a field on V for any A ∈ V , called the state-field correspondence

satisfying the following axioms.

1. Y (|0⟩ , z) = idV and Y (A, z) |0⟩ = A+ · · · ∈ V [[z]] for any A ∈ V .

2. [T, Y (A, z)] = ∂zY (A, z) for any A ∈ V and T |0⟩ = 0.

3. All fields Y (A, z) are local with respect to each other.

This definition has an obvious super version. It is given by replacing the vector

space V with a super vector space V = V0⊕V1, and replacing the locality condition

with

(z − w)NY (A, z)Y (B,w) = (−1)p(A)p(B)(z − w)NY (B,w)Y (A, z),

where p(A) ∈ {0, 1} denotes the parity of a homogeneous element A ∈ V . One

should also require that |0⟩ ∈ V0, that T should have even parity, that for A ∈ Vi

the field Y (A, z) is a series of endomorphisms of V with parity i. The obtained

object is called a vertex superalgebra.

Before showing some examples of vertex algebras, we introduce

Definition. The formal delta function δ(z, w) is the series

δ(z, w) :=
∑
n∈Z

znw−n−1.

As is well-known, this series satisfies A(z)δ(z, w) = A(w)δ(z, w) for any formal

power series A(z) ∈ C[[z±1]], and (z − w)n+1∂n
wδ(z, w) = 0 for n ∈ Z≥0.

1.2. Examples of vertex algebras

Here are some standard examples of vertex (super) algebras.

Example 1.1. 1. For k ∈ C\{0}, let Hk be the one-dimensional Heisenberg

Lie algebra, given by the central extension

0 −→ C1 −→ Hk −→ C((t)) −→ 0

of Lie algebras with the cocycle

c(f, g) := −kRes
t=0

fdg.

Here the space C((t)) of formal Laurent series is considered as a commutative

Lie algebra. The standard set of topological generators is given by bn :=
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tn (n ∈ Z) and 1. The defining relation is

[bn, bm] = knδn,−m1, [1, bn] = 0.

Denote by πk,ν the Fock representation of Hk with ν ∈ C. It is defined to be

the induced representation

πk,ν := �U(Hk)⊗Ũ(H+) Cν .

Here �U(Hk) is the completion of the universal enveloping algebra U(Hk) with

respect to the subspaces tNC[[t]] with N ∈ Z. H+ is the Lie subalgebra of

Hk generated by b0, b1, . . .. Cν is the one-dimensional representation of H+

with b0 acting by ν and bn acting trivially for n > 0.

Now set ν = 0. As a vector space, we have an isomorphism

πk,0
∼−−→ C[b−1, b−2, . . .].

This vector space πk,0 has a structure of vertex algebra with

• |0⟩ := 1.

• T is determined by T · 1 = 0 and T, bi = −ibi−1.

• Y is determined by

Y (b−1, z) = b(z) :=
∑
n∈Z

bnz
−n−1,

Y (bi1 · · · bik , z) :=
1

(−j1 − 1)! · · · (−jk − 1)!
: ∂−j1−1

z b(z) · · · ∂−jk−1
z b(z) : .

Here the symbol : : denotes the normally ordered product defined by

: bibj :=

{
bjbi i > 0

bibj otherwise

for a two-length monomial, and for a longer monomial we define

: biX :=: bi(: X :) : .

Finally we assume :: is linear over the space of formal series.

One can check the axioms of vertex algebra easily except the locality axiom.

The locality follows from the formula

b(z)b(w) =: b(z)b(w) : +k
∑
n>0

nz−n−1wn−1,
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and the fact that the last summation is the expansion of (z − w)−2 in

C((z))((w)). The resulting vertex algebra πk,0 will be called the Heisenberg

vertex algebra (of rank one).

2. The next example is associated to the vacuum representation of a current Lie

algebra (the derived Lie algebra of an affine Kac-Moody Lie algebra). Let g

be a finite dimensional simple Lie algebra, and Lg = g((t)) = g ⊗ C((t)) be

the formal loop algebra with the commutator [A⊗ f(t), B ⊗ g(t)] = [A,B]⊗
f(t)g(t). Denote by �g the current Lie algebra, which is the central extension

0 −→ CK −→ �g −→ Lg −→ 0

of Lie algebras with the Lie bracket given by

[A⊗ f(t), B ⊗ g(t)] = [A,B]⊗ f(t)g(t)− (Res
t=0

fdg) (A,B)K, [K,−] = 0.

Here the bilinear form (−,−) on g is the normalized Killing form given by

(A,B) :=
1

2h∨ (A,B)K =
1

2h∨ trg(ad(A) ad(B)) (1.2.1)

with h∨ the dual Coxeter number of g.

The vacuum representation of level k ∈ C of �g is the induced representation

Vk(g) := U(�g)⊗U(g[[t]]⊗CK) Ck

where Ck is the one-dimensional representation of g[[t]]⊗CK on which g[[t]]

acts by 0 and K acts by k.

As a vector space, we have an isomorphism Vk(g) ≃ U(g⊗ t−1C[t−1]). Take

an ordered basis {Ja}dim g
a=1 of g, and set An := A⊗ tn ∈ Lg for A ∈ g. Denote

by vk the basis of Ck and the resulting element in Vk. Then Vk(g) has a PBW

basis of monomials of the form

Ja1
n1

· · · Jam
nm

vk, n1 ≤ n2 ≤ · · · ≤ nm < 0, if ni = ni+1 then ai ≤ ai+1.

Now Vk(g) has a structure of vertex algebra with

• |0⟩ = vk.

• T is determiend by Tvk = 0 and [T, Ja
n ] = −nJa

n−1.

• Y is determiend by

Y (Ja
−1vk, z) = Ja(z) :=

∑
n∈Z

Ja
nz

−n−1

Y (Ja1
n1

· · · Jam
nm

vk, z) =
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1

(−n1 − 1)! · · · (−nm − 1)!
: ∂−n1−1

z Ja1(z) · · · ∂−nm−1
z Jam(z) : .

Here the symbol : : denotes the normally ordered product given by

: Ja
nJ

b
m :=

{
Jb
mJa

n n > 0 or a > b

Ja
nJ

b
m otherwise

for two-length monomials and : AX : = : A(: X :) : for longer elements.

We also assume the linearity over the space of formal series.

The locality axiom follows from the computation

[Ja(z), Jb(w)] = [Ja, Jb](w)δ(z, w) + k(Ja, Jb)∂wδ(z, w).

The resulting vertex algebra Vk(g) will be called the affine vertex algebra of

g with level k.

3. Let K := C((t)) ⊃ O := C[[t]] be the structure sheaf of the punctured disc

D× and the formal disc D. The space DerK of derivations of K (or vector

fields on D×) has a natural structure of Lie algebra. The Virasoro Lie algebra

is the central extension

0 −→ CC −→ Vir −→ DerK −→ 0.

The Lie bracket is given by

[f(t)∂t, g(t)∂t] = (fg′ − f ′g)∂t −
1

12
(Res
t=0

fg′′′dt)C, [C,−] = 0.

The standard generators and the relation are

Ln = −tn+1∂t, [Ln, Lm] = (n−m)Ln+m +
1

12
(n3 − n)δn,−mC.

For c ∈ C consider the induced representation

Virc := U(Vir)⊗U(DerO⊕CC) Cc, (1.2.2)

where Cc = Cvc is the one-dimensional vector space on which

DerO = C[[t]]∂t = ⟨Ln (n ≥ −1)⟩,

acts trivially and C acts by c. Virc has a PBW basis of the form

Lj1 · · ·Ljmvc, j1 ≤ j2 ≤ · · · ≤ jm ≤ −2
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Virc has a structure of vertex algebra with

• |0⟩ = vk.

• T := L−1.

• Y is determiend by

Y (L−2vk, z) = T (z) :=
∑
n∈Z

Lnz
−n−2

Y (Lj1 · · ·Ljmvk, z) =

1

(−j1 − 2)! · · · (−jm − 2)!
: ∂−j1−2

z T (z) · · · ∂−jm−2
z T (z) : .

The normally ordered product is defined similarly as before.

The locality axiom is checked by the computation

[T (z), T (w)] =
c

12
∂3
wδ(z, w) + 2T (w)∂wδ(z, w) + ∂wT (w) · δ(z, w). (1.2.3)

The resulting vertex algebra Virc will be called the Virasoro vertex algebra

of central charge c.

It is known that both πk,0 and Vk(g) have a Virasoro element ω, namely the

elements

ωλ :=
1

k

(1
2
b2−1 + λb−2

)
v0 ∈ πk,0,

ωg,k :=
1

2(k + h∨)

dim g∑
a=1

Ja
−aJa,−1vk ∈ Vk(g)

yield T (z) := Y (ω, z) satisfying the equation (1.2.3) with the central charges given

respectively by

cλ = 1− 12λ2, c(g, k) =
k dim g

k + h∨ .

1.3. Quasi-conformal vertex algebras

The existence of Virasoro element ensures an action of the Lie algebra Vir on

the vertex algebra considered. Let us introduce a weaker condition to ensure an

action of a certain Lie subalgebra of Vir . To state that, we consider the following

Lie subalgebras of Vir .

DerO = C[[t]]∂t = ⟨Ln (n ≥ −1)⟩
⊃ Der+ O := z2C[[z]]∂z = ⟨Ln (n ≥ 1)⟩.
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Definition. A vertex algebra is called quasi-conformal if it carries an action

of DerO such that

• L−1 = −∂z acts as T ,

• L0 = −z∂z acts semi-simply with integral eigenvalues,

• Let {v−1, v0, v1, . . .} be a set of infinite variables, and set v(z) :=∑
n≥−1 vnz

n+1 and �v :=
∑

n≥−1 vnLn. Then the following formula holds

for any A ∈ V .

[�v, Y (A,w)] = −
∑

m≥−1

1

(m+ 1)!
∂m+1
w v(w) · Y (LmA,w).

• The Lie subalgebra Der+ O of DerO acts locally nilpotently.

A typical example is the conformal vertex algebra, which is defined to be a

vertex algebra with a Virasoro element and a Z-gradation bounded below. Vertex

algebras in Example 1.1 are conformal, and therefore quasi-conformal.

The nilpotency axiom of a quasi-conformal algebra V enables us to exponen-

tiate the action of DerO on V to the action of AutO = AutC[[z]], the group of

topological automorphisms of O. In order to see it, we remark

Lemma 1.2 ([8, 6.2.1 Lemma]). Consider the following Lie groups

Aut+ O := {z + a2z
2 + · · · } ⊂ AutO = {a1z + a2z

2 + · · · | a1 ̸= 0}

and Lie algebras

Der+ O := z2C[[z]]∂z ⊂ Der0 O := zC[[z]]∂z ⊂ DerO = C[[z]]∂z (1.3.1)

1. AutO is a semi-direct product of the one-dimensional multiplicative group

Gm and the group Aut+ O.

2. Aut+ O has a structure of pro-unipotent pro-algebraic group.

3. Lie(AutO) = Der0 O and Lie(Aut+ O) = Der+ O.

4. The exponential map exp : Der+ O → Aut+ O is an isomorphism.

1.4. Vertex algebra bundles

Let X be a smooth complex curve. For a point x ∈ X, denote by Ox the

completion of the local ring at x, Kx the field of fractions of Ox. We also set

Dx := SpecOx, the disc with x the center, and S×
x := Spec shKx, the punctured

disc at x.
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A choice tx of formal coordinate at x corresponds to a choice of isomorphism

Ox
∼−→ O = C[[z]]. Let us denote by Autx the set of all formal coordinates at x.

The group AutO acts on Autx so that Autx is an AutO-torsor (principal bundle

of infinite rank). On the curve X, these torsors form an AutO-torsor which we

denote by AutX .

Now let V be a quasi-conformal vertex algebra. By the argument in the last

subsection, V has an AutO-action. Let

VX := AutX ×AutO V.

Precisely speaking, V is of infinite dimension so that we need to take a completion

with respect to a filtration on V . Such a filtration comes from the action of the

operator L0 = −z∂z ∈ DerO on V , since the semisimplicity yields a Z-gradation
V = ⊕nVn. Let us call the obtained torsor VX the vertex algebra bundle.

The state-field correspondence Y gives the following important property of the

vertex algebra bundle. Hereafter we sometimes suppress the subscript X and de-

note V if confusion may not occur. Denote by O the sheaf of differentials on X.

Fact 1.3 ([8, §6.3]). Let U ⊂ X be an open subset and z a coordinate on U .

Define

∇ : V −→ V⊗ Ω, ∇∂z := ∂z + L−1.

Then ∇ is a well-defined connection on V and independent of the choice of z.

Thus every quasi-conformal vertex algebra V gives rise a left D-module V on a

smooth curve X.

2. Chiral algebras and factorization algebras

We quickly review the notions of chiral algebras and factorization algebras which

are sheaf theoretic reformulations of vertex algebras. These notions are introduced

by Beilinson and Drinfeld in [3]. We also cite [9] and [8, Chap. 19, 20] for nice

previews of the theory of chiral algebras.

2.1. Recollection on D-modules

Since we need to use the language of D-modules extensively, let us give a brief

recollection. For a detailed presentation, see [11, Chap. 1] for example.

Let Z be a smooth algebraic variety over C (or a field of characteristic 0).

Denote by MO(Z) the category of O-modules on Z (recall §0.3). Also denote by

Mℓ(Z) and M(Z) the categories of left and right D-modules on Z respectively. (In

this note the smooth case is enough. For general case, we need the Kashiwara

lemma.)



Factorization spaces and moduli spaces 107

Recall that the canonical sheaf

ωZ := ∧dimZΩZ

has a natural right D-module structure determined by

ν · τ := −Lieτ (ν), ν ∈ ωZ , τ ∈ ΘZ ⊂ DZ

where Lieτ is the Lie derivative with respect to τ . Then the two categories M(Z)

and Mℓ(Z) are equivalent under the functor

Mℓ(Z) −→ M(Z), L �−→ Lr := ωZ ⊗OZ L,

where the structure of right D-module on Lr is determined by

(ν ⊗ l) · τ := (ν · τ)⊗ l − ν ⊗ (τ · l).

The inverse functor is given by

M �−→ Mℓ := ω−1
Z ⊗OZ

M. (2.1.1)

For a morphism f : Z1 → Z2 of smooth varieties, the inverse image functor f∗

of D-module as follows. As an O-module we set

f∗ : Mℓ(Z2) −→ Mℓ(Z1), f∗L := OZ1 ⊗f ·OZ2
f ·L.

Recall that we have a morphism

ΘZ1 −→ f∗ΘZ2 = OZ1 ⊗f ·OZ2
f ·ΘZ2 , τ �−→ τ̂

of OZ1-modules, defined by taking the OZ1 -dual of the morphism OZ1 ⊗f ·OZ2

f ·ΩZ2 → ΩZ1 . Then the left D-module structure on f∗L, is determined by

τ(s⊗ l) := τ(s)⊗ l + sτ̂(s), τ ∈ ΘZ1 , s ∈ OZ1 , l ∈ L.

The direct image functor f∗ is naturally defined in the derived category, so we

make a detour. Let us introduce the DZ1 -f
·DZ2-bimodule

DZ1→Z2 := OZ1 ⊗f ·OZ2
f ·DZ2

for a morphism f : Z1 → Z2 of smooth varieties. Then we have an isomorphism

f∗L ≃ DZ1→Z2 ⊗f ·DZ2
f ·L

of left DZ1 -modules.

The abelian category Mℓ(Z) has the following nice property.
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Fact. Assume Z is quasi-projective. Then any L ∈ Mℓ(Z) is a quotient of a

locally free left DZ-module, so that it has a resolution by locally free DZ-modules.

M(Z) also has a similar property.

Denote by DbMℓ(Z) the bounded derived category of left D-modules on a

smooth quasi-projective variety Z. By the above fact any object of DbMℓ(Z) is

represented by a bounded complex of locally free DZ-modules. We also denote by

DbM(Z) the bounded derived category of rightD-modules. We have an equivalence

DbMℓ(Z)
∼−−→ DbM(Z), L �−→ Lr[dimZ]. (2.1.2)

Therefore DbM(Z) has two t-structures given by M(Z) and Mℓ(Z).

Now let f : Z1 → Z2 be a morphism of smooth quasi-projective varieties. Define

a functor Lf∗ by

Lf∗(L•) := DZ1→Z2 ⊗L
f ·DZ2

f ·L•

by using a locally free resolution of L• ∈ DbMℓ(Z1). Then we have

Fact. Lf∗ sends DbMℓ(Z2) to DbMℓ(Z1).

Lf∗ is called the derived inverse image functor. Let us also recall the shifted

inverse image functor

f ! := Lf∗[dimZ1 − dimZ2] : D
bMℓ(Z2) −→ DbMℓ(Z1).

We denote by the same symbol f ! : DbM(Z2) −→ DbM(Z1) induced by the equiv-

alence (2.1.2).

Now we can treat the definition of the direct image functor. Let f : Z1 → Z2

be a morphism of smooth algebraic varieties. Consider the direct image functor f·
for O-modules. We have the derived functor

Rf· : D
bMO(Z1) −→ DbMO(Z2).

Assuming that Z1 and Z2 are quasi-projective, we define the derived direct image

functor f∗ by

f∗(M
•) := Rf·(M

• ⊗L
DX

DZ1→Z2)

for M• ∈ DbM(Z1). Then we have

Fact. f∗ sends DbM(Z1) to DbM(Z2).

A non-trivial result is
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Fact. If f is a closed embedding, then for M ∈ Mℓ(Z1) we have

Hk(f∗M) = 0 (k ̸= 0).

The 0th cohomology gives an exact functor

H0f∗ : M(Z1) −→ M(Z2).

We will simply write f! := H0f∗.

Thus we have two functors

f∗ : DbM(Z1) ⇆ DbM(Z2) : f !.

We also note that

Fact. Consider the t-structure of DbM(Z) given by M(Z).

1. If f is quasi-finite, then f∗ is left exact.

2. If f is affine, then f∗ is right exact.

Hereafter the term “a D-module” means a right D-module.

2.2. Chiral algebra

The notion of chiral algebra is introduced by Beilinson and Drinfeld in [3]

to formulate the vertex algebra in terms of D-modules and operads. We will not

explain the formalism of operads here, and give a review of chiral algebras following

the presentation in [8, Chap. 19]. For a more detailed review including operads,

see [17] for example.

Let X be a smooth complex curve as in the previous §1.4. Denote by D = DX

the sheaf of differential operators and by Ω = ΩX the sheaf of differential forms on

X. We also denote by

∆ : X ↪−→ X2, j : X2 \∆ ↪−→ X2 (2.2.1)

the embeddings of the diagonal divisor and its complement.

Note that for O-modules M and N on X we can identify

j·j
·(M⊗N) ≃ (M⊗N)(∞∆)

on X2. Recall also the direct image functor ∆! of D-modules, which is expressed

as

∆!M = (Ω⊠M)(∞∆)/Ω⊠M.
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On the other hand, we have

Ω⊠2 ∼−−→ ωX2 , dz ⊠ dw �−→ dz ∧ dw,

where ω denotes the canonical sheaf. We also have ∆!Ω ≃ ωX2(∞∆)/ωX2 . Let us

define the composition of morphisms

µΩ : j∗j
∗Ω

∼−−→ ωX2(∞∆) −↠ ωX2(∞∆)/ωX2
∼−−→ ∆!Ω (2.2.2)

where the second morphism is the natural projection.

Definition. A chiral algebra on X is a right D-module A together with a

DX2-module morphism µ : A⊠2(∞∆) → ∆!A called the chiral multiplication and

an embedding Ω ↪→ ∆!A called the unit, satisfying the following axioms.

• The skew-symmetry µ = −σ12 ◦ µ ◦ σ12, where the permutation acts on the

factors of X2.

• The Jacobi identity for µ.

• The unit map is compatible with the morphism µΩ in (2.2.2).

Roughly speaking, the first and second conditions on the chiral product µ indi-

cate that a chiral algebra is a Lie object in a “tensor category” of right D-modules

with the non-standard tensor structure. See [3, Chap. 2,3] for the precise defini-

tion of this non-standard tensor structure which is called the chiral pseudo-tensor

structure.

In order to relate chiral algebras and vertex algebras, we need to restate the

state-field correspondence Y in the language of D-modules. Recall that the canon-

ical sheaf ωX has a natural right D-module structure determined by

ντ := −Lieτ (ν), ν ∈ ωX , τ ∈ ΘX ⊂ DX

with Lieτ the Lie derivative with respect to τ . For a left D-module M on X, set

Mr := ωX ⊗M

which is naturally a right D-module by

(ν ⊗m)τ := ντ ⊗m− ν ⊗ τm.

For a quasi-conformal vertex algebra V , we have the vertex algebra bundle V

which is a left D-module by Fact 1.3. Then a local section of Vr on Dx with

coordinate z can be expressed as f(z)Adz with f(z) ∈ OX(Dx) and A ∈ V . Recall

the state-field correspondence Y for V . Then we have
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Fact ([8, §19.2.1–19.2.2.6]). Define a morphism

(Y2)rx : j∗j
∗(V⊠2)r −→ ∆!V

r

of O-modules on D2
x by

(Y2)rx(f(z, w)Adz ⊠Bdw) := f(z, w)Y (A, z − w)Bdz ∧ dw mod V [[z, w]]

Then (Y2)rx is well defined and independent of the choice of z. Moreover the

morphisms (Y2)rx for x ∈ X form a morphism

(Y2)r : j∗j
∗(V⊠2)r −→ ∆!V

r

of D-modules on X2.

Now we can state the relation of chiral algebras and vertex algebras.

Fact ([8, §19.3.3], [3, §3.3]). For a quasi-conformal vertex algebra V and a

smooth curve X, the right D-module Vr carries the structure of a chiral algebra

with the chiral multiplication µ = (Y2)r.

Definition 2.1. The chiral algebras Vr associated to the vertex algebras

V = πk,0, Vk(g), Virc in Example 1.1 will be called the Heisenberg, affine, and

Virasoro chiral algebra respectively.

2.3. Factorization algebra

The notion of factorization algebra is introduced in [3, §3.4] as an equivalent

notion of chiral algebra. Its origin goes back to the geometric Langlands corre-

spondence, but we will not touch this topic.

We will repeatedly use the following category of sets.

Definition 2.2. Let S be the category of finite non-empty sets and surjec-

tions. For π : J ↠ I in S and i ∈ I we set Ji := π−1(i) ⊂ J .

Let X be a smooth complex curve as before. For π : J ↠ I in S, denote by

∆(π) ≡ ∆(J/I) : XI ↪−→ XJ (2.3.1)

an embedding of the locus such that xj = xj′ if π(j) = π(j′) for j, j′ ∈ J . Also set

U (π) ≡ U (J/I) :=
{
(xj)j∈J ∈ XJ | xj ̸= xj′ if π(j) ̸= π(j′)

}
.

One can also see that U (π) is the complement of the diagonals that are transversal

to ∆(π) : XI ↪→ XJ . Denote the open embedding U (π) ⊂ XJ by

j(π) ≡ j(J/I) : U (π) ↪−→ XJ .
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If the surjection π is {1, 2} ↠ {1}, then these notations coincide with (2.2.1).

Definition 2.3. A factorization algebra on X is the data consisting of

• for each i ∈ S, a quasi-coherent O-modules VI over XI

• for any surjection J ↠ I in S, a functorial isomorphism

∆(J/I) ·VJ
∼−−→ VI

of O-modules on XI

• for any surjection J ↠ I in S, a functorial isomorphism

j(J/I) ·VJ
∼−−→ j(J/I) ·

(
⊠i∈IVJi

)

of O-modules over U (J/I), called the factorization isomorphism

• a global section 1 ∈ V(X) called the unit

satisfying the following conditions.

1. VI should have no non-zero local sections supported on the union of all partial

diagonals.

2. Set V := V{1} and V2 := V{1,2}. For every local section f ∈ V(U) with U ⊂ X

open, the section

1⊠ f ∈ V2(U
2 \∆)

defined by the factorization isomorphism extends across the diagonal and

restricts to

f ∈ V ≃ ∆·V2 = V2|∆ .

One may worry that factorization algebras lack D-module structures which

appear in the definitions of chiral algebras and vertex algebra bundles. Actually

the axiom of factorization algebra ensures left D-module structures for all VI .

The key is the crystalline point of view. Recall that a connection on a O-module

M on a scheme X is equivalent to the data of a morphism

p·1M|N1(∆)
∼−−→ p·2M|N1(∆)

of O-modules on the first-order neighborhood N1(∆) of the diagonal divisor ∆ ∈
X2. Here pi : X

2 → X is the i-th projection.
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Given a factorization algebra {VI} on X, set V := V{1} and V2 := V{1,2}. Then

we have two morphisms

p·1V = V⊠ OX −→ V2 ←− OX ⊠ V = p·2V

defined by the left and right multiplication by the unit. By the second condition,

both are isomorphisms when restricted to ∆, so that they are on the formal neigh-

borhood of ∆. The composition of these isomorphisms gives the desired connection

on V. The same argument can be applied to VI for any I.

Next we discuss the Lie property hidden in the factorization algebra. We keep

the notations V and V2. The second condition says that V2 has no sections on the

diagonal. Together with the factorization isomorphism applied to π = id{1,2}, we

have an injective morphism V2 ↪→ j∗j
∗V⊠2 with j = j(π) : X2 \∆ ↪→ X2. Now set

Y2 : j∗j
∗V⊠2 −↠ V⊠2/V2.

By the construction the image of Y2 is supported on the diagonal, and we can

identify

V⊠2/V2 ≃ j∗j
∗(O⊠ V)/(O⊠ V).

Also note that the factorization isomorphism applied to the permutation {1, 2} →
{2, 1} implies that the sheaf V2, hence the morphism Y2, is symmetric under the

permutation of factors of X2. Therefore, on the right D-module

A := Vr = V⊗ ΩX ,

we have an anti-symmetric morphism

µ := (Y2)r : j∗j
∗A⊠2 −→ j∗j

∗(Ω⊠A)/(Ω⊠A) = ∆!A. (2.3.2)

We skip the check of the Jacobi identity of µ, which comes from the Cousin

complex of ω on X3. See [8, §19.3.4, §20.2.2] for the detail. The unit of {VI}I
yields

u : Ω −→ A = Vr (2.3.3)

which satisfies the conditions of the unit of chiral algebra. Now the conclusion of

this subsection is

Fact 2.4 ([3, §3.4]). Factorization algebras and chiral algebras on a smooth

curve X are equivalent under the assignment

{VI}I �−→ {A = Vr, µ, u}
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with µ given by (2.3.2) and u given by the construction (2.3.3)

3. Factorization space

We follow [8, §20.4.1], [9, Chap. 5] and [12].

3.1. Ran space

Factorization algebras are defined in terms of the category S of finite sets with

surjections (recall Definition 2.2). One may reformulate factorization algebras by

considering the system {XI} of schemes parametrized by I ∈ S together with some

morphisms between them. This is the origin of the Ran space named in [3] after

the work of Z. Ran.

Actually, Ran introduced the limit object of this system in [14] for constructing

a universal deformation theory. See also [7, 10] for related studies. Let us recall

the original definition of the Ran space here.

Definition. For a topological space X, denote by R(X) the Ran space which

is the set of all non-empty finite subsets in X with the strongest topology such that

the following obvious map is continuous for any finite index set I.

rI : XI −→ R(X)

The point of R(X) associated to a finite subset S ⊂ X is denoted by [S].

Recall the diagonal map ∆(J/I) : XI ↪→ XJ in (2.3.1). For any surjection

J ↠ I we have rJ∆
(J/I) = rI , and R(X) is the inductive limit of the spaces XI

with respect to these embeddings ∆(J/I).

For n ∈ Z, denote by R(X)n the subspace of R(X) consisting of [S] such that

|S| ≤ n. Then we have

rn = r{1,...,n} : Xn −↠ R(X)n = Xn/ ∼,

where (xi)
n
i=1 ∼ (x′

i)
n
i=1 if and only if {xi} = {x′

i}.
R(X) is a commutative semi-group under the continuous map

u : R(X)× R(X) −→ R(X), ([S], [T ]) �−→ [S ∪ T ].

Denoting by um,n the restriction of u to R(X)m × R(X)n, we have the relation

rm+n = um,n ◦ (rm × rn).

The subspaces R(X)n form an increasing filtration

R(X)0 = ∅ ⊂R(X)1 = X ⊂ R(X)2 = Sym2(X) ⊂ R(X)3 ⊂ · · ·

· · · ⊂R(X)∞ := R(X).
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Here Symn(X) := Xn/Sn is the usual symmetric product. Denoting

R(X)◦n := R(X)n \ R(X)n−1, we have R(X)◦n = U (n)/Sn with U (n) := Xn \
∪ (partial diagonals). Thus R(X)◦n is nothing but the configuration space of n

points in X.

3.2. Factorization algebra as sheaves on the Ran space

Beilinson and Drinfeld used the Ran space to rebuild the theory of chiral al-

gebras and factorization algebras. The point is that these notions can be seen as

sheaves on the Ran space. Let us briefly explain this reformulation following [3,

§3.4.1].
In this subsection X denotes a scheme with finite cohomological dimension.

Sheaves on schemes mean the ones in the étale topology. Let S be the category of

finite non-empty sets and surjections.

Definition. An O-module on R(X) is a rule F assigning to each I ∈ S an

OXI -module FI and to each π : J ↠ I in S an isomorphism

ν
(π)
F : ∆(π)·FJ

∼−−→ FI

of OXI -modules compatible with the composition of surjections, namely for any

ρ : K ↠ J and π : J ↠ I we have

ν
(π)
F ◦∆(π)·(ν

(ρ)
F ) = ν

(π◦ρ)
F ,

and also have ν
(id)
F = idFI

. Denote by MO(R(X)) the category of O-modules on

R(X).

Then a factorization algebra (without unit) can be reformulated as follows.

Definition 3.1. A factorization structure on F ∈ MO(R(X)) is the set of

isomorphisms

c(π) ≡ c(J/I) : j(J/I) ·
(
⊠i∈IFJi

) ∼−−→ j(J/I) ·FJ

of O-modules on U (J/I) for every π : J ↠ I in S, satisfying the following conditions.

1. For every ρ : K ↠ J and π : J ↠ I in S,

c(K/J) = c(K/I)
(
⊠i∈Ic

(Ki/Ji)
)
.

Here we set c(K/I) := c(σ) with σ := π ◦ ρ : K ↠ I, and c(Ki/Ji) := c(ρi) with

ρi := ρ|σ−1(i) : σ
−1(i) ↠ π−1(i).

2. For every K ↠ J and J ↠ I,

ν
(K/J)
F ∆(K/J) ·(c(K/I)) = c(J/I)

(
⊠i∈Iν

(Ki/Ji)
F

)
.
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We immediately have

Proposition 3.2. A factorization algebra in the sense of Definition 2.3 is

equivalent to an object F ∈ MO(R(X)) with factorization structure in the sense of

Definition 3.1.

3.3. Recollection on ind-schemes

Before introducing the factorization spaces, we need to recall the notion of ind-

schemes, since otherwise we have no good examples. We follow [12, §1.1] for the

presentation.

For any category C, an ind-object of C is a filtering inductive system over C.

Ind-objects form a category where a morphism is a collection of morphisms between

the objects in the inductive systems satisfying some compatibility conditions. An

ind-object will be represented by the symbol “ lim−→i
”Ci with Ci ∈ C.

Denote by Sch the category of separated schemes over C. An ind-scheme is

an ind-object of Sch represented by an inductive system of schemes. For example,

formal schemes are ind-schemes, like

Spf C[[t]] = “ lim−→
n

” SpecC[t]/(tn+1).

A strict ind-scheme is an ind-scheme with an inductive system given by closed

embeddings of quasi-compact schemes.

Recall that a scheme S is equivalent to the functor of points Fs : T �→
HomSch(T, S). This functor is a sheaf of sets on Sch which is seen as the Zariski

site. Let us call such a sheaf a C-space. An ind-scheme is a C-space represented

by an inductive system of schemes.

One can define an ind-scheme over a scheme Z similarly by replacing the cate-

gory Sch by the category SchZ of schemes over Z. For a morphism f : Z1 → Z2 of

schemes, denote by f∗ and f∗ the push-forward and the pull-back of ind-schemes

over Zi’s. Although these notations are the same as those for functors of D-

modules, let us use them for the simplicity of symbols.

3.4. Definition of factorization space

Now we turn to our main object, factorization space. It is a non-linear coun-

terpart of factorization algebra, which can be seen as sheaves on the Ran space.

Recall once again the category S in Definition 2.2.

Definition 3.3. Let X be a scheme. A factorization space G on X consists

of the following data.

• A formally smooth ind-scheme GI over XI for each I ∈ S.
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• An isomorphism

ν(π) ≡ ν(J/I) : ∆(π)∗GJ
∼−−→ GI

of ind-schemes over XI for each π : J ↠ I in S.

• An isomorphism

κ(π) ≡ κ(J/I) : j(π)∗
(∏
i∈I

GJi

) ∼−−→ j(π)∗GJ

of ind-schemes over U (π) for each π : J ↠ I in S, called the factorization

isomorphism.

These should satisfy the following compatibility conditions.

1. ν(π)’s are compatible with compositions of surjections π.

2. For any π : J ↠ I and ρ : K ↠ J , we should have

κ(K/J) = κ(K/I)
(
⊠i∈Iκ

(Ki/Ji)
)
.

3. For any J ↠ I and K ↠ J , we should have

ν(K/J)∆(K/J)∗(κ(K/I)
)
= κ(J/I)

(
⊠i∈Iν

(Ki/Ji)
)
.

A factorization space G is attached with the structure morphism r(I) : GI → XI

of ind-schemes. Thus a factorization space can be considered as an ind-scheme over

the Ran space R(X).

3.5. Units and connections

Let us also introduce the object corresponding to the unit of factorization al-

gebra.

Definition. A unit of a factorization space G on a scheme X is the collection

of morphisms

u(I) : XI −→ GI

of ind-schemes for each I ∈ S such that for any morphism f : U → G{1} with

open U ⊂ X, u({1}) ⊠ f , which can be seen as a morphism U2 \ ∆ → G{1,2} by

κ(π:{1,2}↠{1}), extends to a morphism U2 → G{1,2}, and ∆(π)∗(u({1}) ⊠ f) = f .

Recall the argument in §2.3 of the connection on a factorization algebra. One

can make a similar argument for a factorization space. The result is
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Proposition 3.4. A factorization space G on X together with a unit has a

connection along X.

Let us explain precisely what a connection on G along X is. Assume that we

are given

• a local Artin scheme T of length 1,

• a morphism f : T × S → X of schemes with a scheme S,

• g0 : T0 × S → G{1} of ind-schemes with T0 := Tred ≃ Spec(C) the reduced

scheme of T

such that r(1) ◦ g0 : T0 × S → G{1} → X coincides with the composition T0 × S →
T × S → X. A connection on G along X is equivalent to the property that for

given (T, f, g0) there is a map g : T × S → G such that r ◦ g = f extending g0.

3.6. Linearization of factorization spaces

Let G be a factorization space over a smooth scheme X with a unit. Recall the

morphisms r(I) : GI → XI and u(I) : XI → GI . Consider the O-module

AG,I := r
(I)
∗ u

(I)
! ωXI .

This sheaf can be considered as the space of delta functions on GI along the section

u(I)(XI).

The connection on G along X given in Proposition 3.4 defines a right D-module

structure on AG,I and the section u(I) defines an embedding ωXI ↪→ AG,I . Then

the axiom of factorization space implies

Proposition 3.5. If X is a smooth curve, then the collection {Aℓ
G,I}I∈S has

a structure of factorization algebra on X, and hence AG,{1} has a structure of chiral

algebra on X.

Here we used the notation (2.1.1). As a corollary, AG,{1} has a sturcutre of

chiral algebra.

Definition. We call the obtained chiral algebra AG,{1} the chiral algebra

associated to G.

3.7. Twisted version

One can make a twist on this construction. We start with

Definition. Let G be a factorization space over a smooth scheme X. A

factorization line bundle L over G is a collection of line bundles LI on GI together

with isomorphisms

j(J/I) ·LI
∼−−→ j(J/I) ·

(
⊗i∈ILJi

)



Factorization spaces and moduli spaces 119

over U (J/I) which should satisfy the factorization property (similar as the condi-

tions in Definition 3.3).

Now assume X is a curve and consider the O-modules AG,I . We can twist these

sheaves by LI , and obtain the collection of sheaves

AL
G,I := r

(I)
∗

(
LI ⊗GI

u
(I)
! (ωXI )

)
.

The construction in Proposition 3.5 can be applied to this L-twisted sheaf.

Proposition 3.6. Assume that G is a factorization space with a unit over a

smooth curve X, and that a factorization linear bundle L over G is given. Then

AL
G,{1} has a structure of chiral algebra on X.

The chiral algebra AL
G,{1} is called the L-twisted chiral algebra associated to G.

4. The Beilinson-Drinfeld Grassmannian

In this section we explain the first example of factorization space, namely the

Beilinson-Drinfeld Grassmannian GrG,X . Here G is a reductive group and X is a

smooth algebraic curve. GrG,X = {GrG,X,I}I∈S is a collection of moduli spaces of

G-torsors on X with a trivialization away from finite points {xi}i∈I ⊂ X.

GrG,X was introduced in the study of geometric Langlands correspondence, but

we skip that topic. We only explain that the associated chiral algebra coincides

with the affine chiral algebra (recall Definition 2.1). Let us also comment that

Beilinson and Drinfeld started with the study of GrG,X , and then they reached the

notion of factorization space.

Before introducing GrG,X , we recall some facts on the moduli space ofG-bundles

on an algebraic curve. We denote by MG(X) the category of G-bundles on X.

4.1. Affine Grassmannian and moduli space of G-bundles on curve

Let G be a reductive algebraic group. Recall that the affine Grassmannian

G(K)/G(O) = G
(
C((z))

)
/G

(
C[[z]]

)

can be considered as the moduli space ofG-bundles on the discD = SpecO together

with a trivialization on D× = SpecK. Strictly speaking, G(K) is an ind-scheme,

and G(K)/G(O) is a formally smooth strict ind-scheme. Recall also the following

fact.

Fact 4.1 ([2, 5]). Let X be a smooth algebraic curve and x ∈ X be a point.

1. A choice of local coordinate z at x gives an identification

GrX,G,x :={(P, φ) | P ∈ MG(X), φ : trivialization of P|X\{x}} (4.1.1)
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∼−−→ G(K)/G(O).

2. If G is semi-simple, then any G-bundle on X \ {x} is trivial.

Let MG(X) be the moduli stack of G-bundles on a smooth projective curve X.

We have a natural morphism GrX,G,x → MG(X) by forgetting the trivialization φ.

If G is semisimple, then Fact 4.1 implies the following adelic description of MG(X).

MG(X) ≃ G(Kx)out\G(Kx)/G(Ox).

Here and hereafter we simplify the symbols Ox := OX,x and Kx := KX,x. Also

G(Kx)out denotes the space of regular functions X \ {x} → G, which is naturally

a subgroup of G(Kx).

4.2. Definition of Beilinson-Drinfeld Grassmannian

Let X be a smooth algebraic curve as before. Denote by Sch the category of

schemes over C.
For I ∈ S, consider the functor which maps S ∈ Sch to the data (fI ,P, φ)

consisting of

• a morphism f I : S → XI of schemes

• a G-torsor P on S ×X

• a trivialization φ of P on S × X \
{
ΓfI

i

}
i∈I

, where f I
i : S → X is the

composition of f I with the i-th projection XI → X, and Γs ⊂ S ×X is the

graph scheme of the morphism s : S → X.

By Fact 4.1, this functor can be represented by an ind-scheme GrX,G,I . For

S = SpecC, the image of the functor is the collection of the data

{(
P, {xi}i∈I , φ

) ��P ∈ MG(X), xi ∈ X, φ : trivialization of P|X\{xi}i∈I

}
.

Thus the space GrX,G,x in (4.1.1) is the special case of |I| = 1. We have a

natural morphism

r(I) : GrX,G,I −→ XI ,
(
P, {xi}i∈I , φ

)
�−→ {xi}i∈I .

It is known that GrX,G,I is a formally smooth ind-scheme over XI .

Theorem 4.2. The collection

GrX,G := {GrX,G,I}I∈S

has a structure of factorization space on X.
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Here we only check the axioms for I = {1, 2}. The general case can be checked

similarly. Let us denote by Gr{xi}i∈I
the fiber of r(I) over {xi}i∈I ⊂ XI . By Fact

4.1, in the case |I| = 1, we have

Gr{x} ≃ G(K)/G(O).

If x1 ̸= x2, then {x1, x2} ∈ X2 \∆, and we have a morphism Gr{x1,x2} → Gr{x1} ×
Gr{x2} by restricting the data to X \ {x1} and X \ {x2}. We also have the other

direction map Gr{x1} × Gr{x2} → Gr{x1,x2} by gluing the G-bundles over X \
{x1, x2}. If x1 = x2, then {x1, x2} ∈ ∆, and we have an identification Gr{x1,x2}

∼−→
Gr{x1}.

Definition 4.3. The resulting factorization space GrX,G will be called the

Beilinson-Drinfeld Grassmannian.

We immediately have

Lemma 4.4. GrX,G is equipped with a unit determined by the trivial G-

bundle.

In other words, define u(I) : XI → GrX,G,I by setting u(I)
(
{xi}i∈I

)
to be the

trivial G-bundle with the obvious trivialization away from xi’s, then we have a unit

of GrX,G.

4.3. Relation to afffine vertex algebra

By Lemma 4.4 and Proposition 3.5 we have the chiral algebra AX.G associated

to GrX,G. The motivation of the introduction of GrX.G is the following theorem.

Theorem 4.5 ([9, Theorem 16.1]). If G is semi-simple, then the chiral algebra

AX,G is isomorphic to the affine chiral algebra of Lie(G) of level 0.

4.4. Twist construction and level of affine vertex algebra

GrX,G has a natural factorization line bundle, so that the twisted construction

(Proposition 3.6) can be applied. Assume G is semi-simple, and let g = Lie(G)

be the corresponding Lie algebra. Recall the normalized invariant inner product

(1.2.1) for g. It yields a central extension

1 −→ Gm −→ �G −→ G(K) −→ 1

of algebraic group ind-schemes, and hence a Gm-torsor

�G(K)/G(O) −→ �G(K)/G(O)

over the affine Grassmannian. It defines a factorization line bundle LG over Gr .

Now Proposition 3.6 yields an LG-twisted chiral algebra. We can also construct
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an L⊗k
G -twisted chiral algebra for any k ∈ Z. One can prove

Theorem 4.6 ([8, Proposition 20.4.3]). If G is semi-simple, then the L⊗k
G -

twisted chiral algebra associated to GrX,G is isomorphic to the affine chiral algebra

of Lie(G) of level k.

4.5. Abelian case

Continuing the situation in Definition 4.3, let us set G = GL1 and consider the

Beilinson-Drinfeld Grassmaniann GrX,GL1
. Still Proposition 3.5 can be applied.

We also have a factorization line bundle on GrX,GL1
by choosing an even integral

bilinear form on Lie(G) = gl1. Such a form is determined by the choice of N ∈ 2Z,
so that the coweight lattice is identified with the lattice

√
NZ. Denote by LN the

resulting factorization line bundle. Now we have

Theorem 4.7 ([9, Chap. 6]). The LN -twisted chiral algebra associated to

GrX,GL1
coincides with the Heisenberg chiral algebra π√

N,0.

5. Moduli space of pointed curves as factorization space

We saw in the previous §4 that moduli stacks of G-torsors on an algebraic curve

X give rise to the Beilinson-Drinfeld Grassmannian, and that one can construct the

affine or Heisenberg vertex algebra as the associated chiral algebras. Let us now

consider the Virasoro vertex algebra. Does it have a corresponding factorization

space? The answer is yes, and the factorization space is related to the moduli

spaces of curves as we now start to explain.

5.1. Recollection of moduli spaces of pointed curves

Let Mg,n denote the moduli space of smooth projective curves of genus g with

n distinct points. We assume the stability condition, namely

(g > 1, n ≥ 0) or (g = 1, n ≥ 1) or (g = 0, n ≥ 3). (5.1.1)

Mg,n is a Deligne-Mumford stack.

Denote by M̂g,n the moduli space of collections (X, {xi, zi}ni=1) of smooth pro-

jective curves X with distinct points {xi} and formal coordinates zi at xi. It has

a natural map

M̂g,n −→ Mg,n, (X, {xi, zi}ni=1) �−→ (X, {xi}ni=1). (5.1.2)

Recalling the group scheme AutO = AutC[[z]] of automorphisms of formal

coordinates, one can find that (AutO)n acts on the fiber of this map (5.1.2) simply

transitively. Thus M̂g,n is an (AutO)n-torsor over Mg,n.

The above observation tells us that the Lie algebra Lie(AutO) ≃ Der0 O (recall

Lemma 1.2 and (1.3.1)) acts on the fiber of M̂g,1 → Mg,1. The following statement
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says that �Mg,1 has an action of the much larger Lie algebra DerK.

Fact 5.1 ([1, 5, 13, 16]). There is an action of the Lie algebra (DerK)n

on �Mg,n which is compatible with the (AutO)n-action along the fibers of the map

(5.1.2).

Proof. Let us explain an outline of the proof in the case n = 1. It is enough to

construct a right action of the corresponding ind-group AutK on �Mg,1. Let us take

a C-algebra R and consider R-points of AutK and �Mg,1 (otherwise (AutK)(C) =
(AutO)(C) so that we can do nothing).

Let (X,x, z) ∈ �Mg,1(R) and ρ ∈ (AutK)(R). We want to define a new R-point

(Xρ, xρ, zρ). Define Xρ to be the scheme with the same topological space as X but

with the structure sheaf OXρ such that OXρ(U) is the subring of OX(U \{x}) given
by

OXρ(U) := {f ∈ OX(U \ {x}) | fx(ρ−1(z)) ∈ R[[z]]}.

Here fx(z) ∈ R((z)) is the expansion of f at x in the coordinate z. Then Xρ is an

algebraic curve over R.

Next define xρ ∈ Xρ by the ideal of OXρ(U) given by the intersection of zR[[z]]

with the image of OXρ
(U) ↪→ R[[z]]. Here the embedding is defined by

OXρ(U \ {x}) ↪−→ R((z)), f �−→ fx
(
ρ−1(z)

)
.

By the definition of OXρ , it extends to an embedding OXρ(U) ↪→ R[[z]]. The triple

(Xρ, xρ, z) is an R-point of �Mg,1.

The correspondence (X,x, z) �→ (Xρ, zρ, z) defines a right action of AutK on
�Mg,1, extending the AutO-action by changing the coordinate z.

The transitivity of the corresponding action of DerK follows from the statement

that for any pointed curve (X ′, x′) over R := C[[t]]/(t2) which is an infinitesimal

deformation of (X,x) can be obtained by the above construction for R. However

it follows from the fact that X ′ \ {x′} ≃ (X \ {x}) × SpecR and the formal

neighborhood of x′ in X ′ is isomorphic to Dx × SpecR, which is the consequence

of the Kodaira-Spencer isomorphism. □

As a corollary, we can identify the tangent spaces as

T(X,x,z)
�Mg,1 ≃Vect(X \ {x})\DerKx/Der0 Ox,

T(X,x)Mg,1 ≃Vect(X \ {x})\DerKx. (5.1.3)

Here Vect(Z) denotes the space of vector fields regular on Z, which is naturally a

Lie algebra.
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5.2. Factorization space associated to pointed curves

Mimicking the discussion on the Beilinson-Drinfeld Grassmannian in the previ-

ous section, we can construct a factorization space associated to the moduli space
�Mg,n.

Let X be a smooth projective curve of genus g and Sch the category of schemes

over C. In this section we only consider I ∈ S such that (g, |I|) satisfies the stability
condition (5.1.1).

Fix an I ∈ S. Consider the functor which maps S ∈ Sch to the data

(f I ,X, {si}i∈I , φ) consisting of

• a morphism f I : S → XI of schemes

• a family X → S of smooth projective curves over S

• sections si : S → X of X → S for i ∈ I

• an isomorphism

φ : X \
{
Γsi

}
i∈I

∼−−→ S ×X \
{
ΓfI

i

}
i∈I

,

where f I
i is the composition of f I with the i-th projection XI → X, and Γs

is the graph scheme of s : S → X.

As in the case of the Beilinson-Drinfeld Grassmannian in §4.2, one can write

down the image of S = Spec(C) under this functor. Simply stating, it is the

collection of the data ({xi}i∈I , X
′, {x′

i}i∈I , φ) consisting of a finite set {xi}i∈I of

points in X, an algebraic curve X ′ and an isomorphism

φ : X \ {xi}i∈I
∼−−→ X ′ \ {x′

i}i∈I

away from finitely many points {x′
i}i∈I ⊂ X ′. This functor is also represented by

a formally smooth ind-scheme GX,I . We have a natural map r(I) : GX.I −→ XI .

Similar arguments in §4.2 yields

Fact 5.2 ([8, §17.3]). The collection

GX := {GX,I}I∈S

has a structure of factorization space. It has a unit associated to the trivial family

S ×X and the identity morphism on X.

5.3. Relation to Virasoro vertex algebra

Now we can state the main statement in this section.

Theorem 5.3 ([8, §17.3]). The chiral algebra AX associated to the factor-

ization space GX coincides with the Virasoro chiral algebra of central charge 0.
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Let us explain an outline of the proof. The map r(1) : GX,{1} → X enables us

to consider the fiber AX,x of the chiral algebra AX at a point x ∈ X. The action

of DerK on M̂g,1 given in Fact 5.1 induces an action

ax : DerK⊗AX,x −→ AX,x.

On the other hand, we have a map GX,{1} → Mg,1. Also recall the description

(5.1.3) of the tangent space of Mg,1. We then find that there is a natural isomor-

phism

AX,x
∼−−→ U(DerK)⊗U(Der0 O) C0 = Vir0

(see (1.2.2)). Let us denote by V the vertex algebra bundle associated to Vir0. V
r

is the associated right D-module. Now the key point of the proof is that we have

a morphism

j∗j
∗(Vr ⊠AX) −→ ∆!AX

such that Vr acts by derivations of the chiral algebra structure and that the induced

map

H0(Spec(Kx),V
r/VrΘX)⊗AX,x −→ AX,x

coincides with ax. Assuming the existence of such a morphism, the result follows

from a formal argument on chiral algebras (see [9, Chap. 6]).

5.4. Determinant line bundle on the moduli space as a factorization

line bundle

The moduli space Mg,n has a universal family π : Xg,n → Mg,n. Let ω be the

relative canonical sheaf on Xg,n with respect to π whose fiber over X ∈ Mg,n is

the canonical bundle ωX . For µ ∈ Z, the determinant line bundle Detµ on Mg,n is

defined to be

Detµ := detRπ·ω
⊗µ.

Now we have

Fact 5.4 ([8, §17.3]). The determinant line bundle Detµ induces a factoriza-

tion line bundle Lµ on GX such that the Lµ-twisted chiral algebra associated to

GX is isomorphic to the Virasoro chiral algebra of central charge

c(µ) = −2(6µ2 − 6µ+ 1).

Let us remark that this central charge formula was given in [5, 13].
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6. Deformation theory and factorization space

6.1. Universal deformation

Let us briefly recall the universal deformation theory by Ziv Ran [14, 15]. See

also [18].

Assume that g is a sheaf of Lie algebras on a scheme X. Then we can consider

the Chevalley complex C(g) of g. As an OX -module it is given by the symmetric

algebra

C(g) := Sym•
OX

(g[1]).

The standard Chevalley-Eilenberg construction gives a dg Lie algebra structure on

C(g).

Let M be an OX -module with OX -linear g-action. Then we have a complex

C(g,M) := C(g)⊗OX M

with a C(g)-action.

The standard deformation theory tells us that the deformations of g and M

are controlled by the dg Lie algebras C(g) and C(g,M) respectively. Namely on

the schemes SpecH0(C(g)) and SpecH0(C(g,M)) we have universal deformation

families of g and M respectively.

6.2. Factorization spaces from deformation problems

Let us state a general construction of factorization spaces from deformation

problems. We have in mind such deformation problems having fine moduli schemes,

but the following assumptions are enough.

Assume that we are given

• a scheme X and an algebraic stack M

• an OX -module g which is a sheaf of Lie algebras over OX

• a sheaf E on M×X which is an OX -module and a g-module

such that for each point m ∈ M, setting E := E|m×X = E ⊗ k(m) with k(m) the

residue field of M at m, the formal completion Ê of E along m ×X is isomorphic

to the universal g-deformation of E.

Then for I ∈ S let us consider a triple (E, {xi}i∈I , φ) consisting of

• {xi}i∈I ⊂ X

• E = E|m×X with some m ∈ M

• trivialization of E away from {xi}i∈I
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As in §4.2 and §5.2, we have a corresponding functor FM,I from Sch whose value

on Spec(C) is the collection of the triples above.

Now one can show

Proposition 6.1. There exists a strict ind-scheme GM,I representing the

functor FM,I . If M is formally smooth, then so is GM,I .

The construction of factorization spaces considered in the previous sections can

be applied in the present situation.

Theorem 6.2. The collection {GM,I}I∈S has a structure of factorization space

with the unit induced by the sheaf E having trivial g-module structure.

Therefore if X is a curve, then by Proposition 3.5 we obtain a chiral algebra.

If we take M to be the moduli stack MG(X) of G-bundles on X, g to be the sheaf

Lie(G) ⊗ OX and E to be the tautological g-module associated to MG(X), then

we obtain the Beilinson-Drinfeld Grassmannian. A similar consideration for the

moduli space M̂g,n of pointed curves gives the factorization space given in §5.2.
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