Transcendence of solutions of q-Airy equation.

Seiji NISHIOKA

Abstract. In this paper, we prove transcendence of solutions of the iterated Riccati equations associated with q-Airy equation when q is not a root of unity. The same result is obtained for a certain q-Bessel equation. Previously, we studied them under a stronger assumption that q is a transcendental number.

1. Introduction

In his paper [3], the author studied transcendence of functions which satisfy the iterated Riccati equations associated with q-Airy equation,

$$y(q^{2}t) + qty(qt) - y(t) = 0,$$

when q is a transcendental number. In this paper, we introduce a proof of transcendence which requires only that q is not a root of unity. The iterated Riccati equations are obtained in the following way. Setting z(t) = y(qt)/y(t), we obtain the following first-order q-difference equation,

$$z(qt) = \frac{-qtz(t)+1}{z(t)}.$$

We call this the (difference) Riccati equation associated with q-Airy equation. By iterations, we can express $z(q^i t)$ in terms of z(t) such as

$$z(q^{2}t) = \frac{(q^{3}t^{2}+1)z(t) - q^{2}t}{-qtz(t) + 1}.$$

This is a q^2 -difference equation of Riccati form. The result of transcendence mentioned above implies unsolvability of q-Airy equation in the Franke's Liouvillian sense (cf. S. Nishioka [3, 4]).

A solution of the above Riccati equation satisfies q-Painlevé II equation of type $A_6^{(1)}$ (or $(A_1 + A'_1)^{(1)}$), which is similar to the relations between Airy equation and Painlevé II equation. Moreover, each of the basic hypergeometric solutions of q-Airy equation has a limit to the Airy function (see Hamamoto, Kajiwara and Witte [2]).

The same result of transcendence is obtained for a q-Bessel equation

$$y(q^{2}t) + \left(\frac{t^{2}}{4} - q^{\nu} - q^{-\nu}\right)y(qt) + y(t) = 0$$

in the very same way introduced in this paper, where value of the parameter ν does not matter. This equation is related to one of the *q*-Bessel functions, $J_{\nu}^{(3)}(t;q)$. Here we set $y(qt) = J_{\nu}^{(3)}(tq^{\nu/2};q^2)$. For details of this function, see the book [1] by G. Gasper and M. Rahman.

Notation. Throughout the paper every field is of characteristic zero. When K is a field and τ is an isomorphism of K into itself, namely an injective endomorphism, the pair $\mathcal{K} = (K, \tau)$ is called a difference field. We call τ the (transforming) operator and K the underlying field. For a difference field \mathcal{K} , K often denotes its underlying field. For $a \in K$, the element $\tau^n a \in K$ $(n \in \mathbb{Z})$, if it exists, is called the *n*-th transform of a and is sometimes denoted by a_n . If $\tau K = K$, we say that \mathcal{K} is inversive. For an algebraic closure \overline{K} of K, the transforming operator τ is extended to an isomorphism $\overline{\tau}$ of \overline{K} into itself, not necessarily in a unique way. We call the difference field $(\overline{K}, \overline{\tau})$ an algebraic closure of \mathcal{K} . For $p \in \mathbb{Z}_{>0}, \mathcal{K}^{(p)}$ denotes the difference field (K, τ^p) . For difference fields $\mathcal{K} = (K, \tau)$ and $\mathcal{K}' = (K', \tau'), \mathcal{K}'/\mathcal{K}$ is called a difference field extension if K'/K is a field extension and $\tau'|_K = \tau$. In this case, we say that \mathcal{K}' is a difference overfield of \mathcal{K} and that \mathcal{K} is a difference subfield of \mathcal{K}' . For brevity we sometimes use (K, τ') instead of $(K, \tau'|_K)$. We define a difference intermediate field in the proper way. Let \mathcal{K} be a difference field, $\mathcal{L} = (L, \tau)$ a difference overfield of \mathcal{K} and B a subset of L. The difference subfield $\mathcal{K}\langle B \rangle_{\mathcal{L}}$ of \mathcal{L} is defined to be the difference field $(\mathcal{K}(B, \tau B, \tau^2 B, \dots), \tau)$ and is denoted by $\mathcal{K}\langle B \rangle$ for brevity. A solution of a difference equation over \mathcal{K} is defined to be an element of some difference overfield of \mathcal{K} which satisfies the equation.

We use the following lemma.

LEMMA 1.1 (LEMMA 8 IN S. NISHIOKA [3]). Let C be an algebraically closed field, $q \in C^{\times}$ not a root of unity, t a transcendental element over C, F/C(t) a finite extension of degree n, and τ an isomorphism of F into itself over C sending t to qt. Then F = C(x), $x^n = t$.

2. Notation for difference Riccati equation

Let $\mathcal{K} = (K, \tau)$ be a difference field, and let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(K),$$
$$A_i = \begin{pmatrix} a^{(i)} & b^{(i)} \\ c^{(i)} & d^{(i)} \end{pmatrix} = (\tau^{i-1}A)(\tau^{i-2}A)\cdots(\tau A)A \quad (i = 1, 2, \dots)$$

In this paper, $\operatorname{Eq}(A, i)/\mathcal{K}$ denotes the equation over \mathcal{K} ,

$$y_i(c^{(i)}y + d^{(i)}) = a^{(i)}y + b^{(i)}$$

We easily see the following.

LEMMA 2.1. If f is a solution of $Eq(A,k)/\mathcal{K}$ in a difference field extension \mathcal{L}/\mathcal{K} , $f \in \mathcal{L}$ is also a solution of $Eq(A,ki)/\mathcal{K}$ (i = 1, 2, ...).

LEMMA 2.2. Let $B = A_k$ and $B_i = (\tau^{k(i-1)}B)(\tau^{k(i-2)}B)\cdots B$ (i = 1, 2, ...). Then $B_i = A_{ki}$.

LEMMA 2.3. For any $k, l, m \in \mathbb{Z}_{>0}$,

$$f \in \mathcal{L} \text{ is a solution of } Eq(A_k, lm)/\mathcal{K}^{(k)}$$
$$\iff f \in \mathcal{L}^{(l)} \text{ is a solution of } Eq(A_{kl}, m)/\mathcal{K}^{(kl)}.$$

where \mathcal{L} is a difference overfield of $\mathcal{K}^{(k)}$.

3. Proof of transcendence

Let C be an algebraically closed field and t a transcendental element over C. Let $q \in C^{\times}$ and $\mathcal{K} = (C(t), \tau_q \colon t \mapsto qt)$.

It is easy to prove that the Riccati equation associated with q-Airy equation has no rational function solution, and that is one of the keys to transcendence.

LEMMA 3.1. The equation over \mathcal{K} , $y_1y = -qty + 1$, has no solution in C(t).

PROOF. We prove this by contradiction. Assume that there exists a solution $f \in C(t)$. Let f = P/Q, where $P, Q \in C[t] \setminus \{0\}$ are relatively prime. Then we obtain

$$\frac{P_1}{Q_1} \cdot \frac{P}{Q} = -qt\frac{P}{Q} + 1,$$

and so

$$P_1P = -qtPQ_1 + Q_1Q.$$

This implies $P | Q_1$ and $Q_1 | P$. Hence, we find deg $P = \deg Q$. However, the above equation yields $2 \deg P = 2 \deg P + 1$, a contradiction.

Let

$$A = \begin{pmatrix} -qt \ 1\\ 1 \ 0 \end{pmatrix} \in \operatorname{GL}_2(C(t))$$

and

$$A_{i} = \begin{pmatrix} a^{(i)} \ b^{(i)} \\ c^{(i)} \ d^{(i)} \end{pmatrix} = (\tau_{q}^{i-1}A)(\tau_{q}^{i-2}A)\cdots(\tau_{q}A)A \quad (i = 1, 2, \dots).$$

Then

$$A_2 = (\tau_q A)A = \begin{pmatrix} q^3 t^2 + 1 - q^2 t \\ -qt & 1 \end{pmatrix},$$

and for $i \geq 2$,

$$A_{i} = (\tau_{q}A_{i-1})A = \begin{pmatrix} a_{1}^{(i-1)} & b_{1}^{(i-1)} \\ c_{1}^{(i-1)} & d_{1}^{(i-1)} \end{pmatrix} \begin{pmatrix} -qt \ 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -qta_{1}^{(i-1)} + b_{1}^{(i-1)} & a_{1}^{(i-1)} \\ -qtc_{1}^{(i-1)} + d_{1}^{(i-1)} & c_{1}^{(i-1)} \end{pmatrix}$$

and

$$A_{i} = (\tau_{q}^{i-1}A)A_{i-1} = \begin{pmatrix} -q^{i}t \ 1 \\ 1 \ 0 \end{pmatrix} \begin{pmatrix} a^{(i-1)} \ b^{(i-1)} \\ c^{(i-1)} \ d^{(i-1)} \end{pmatrix}$$
$$= \begin{pmatrix} -q^{i}ta^{(i-1)} + c^{(i-1)} & -q^{i}tb^{(i-1)} + d^{(i-1)} \\ a^{(i-1)} & b^{(i-1)} \end{pmatrix}.$$

Hence we find

$$b^{(i)} = a_1^{(i-1)}, \quad c^{(i)} = a^{(i-1)}, \quad d^{(i)} = b^{(i-1)} = c_1^{(i-1)},$$

and so for $i \geq 3$,

$$a^{(i)} = -q^{i}ta^{(i-1)} + c^{(i-1)} = -q^{i}ta^{(i-1)} + a^{(i-2)}$$

By induction, we easily see

$$a^{(i)} = (-1)^{i} q^{i(i+1)/2} t^{i} + (\text{ terms of deg} \le i-2)$$
(1)

for all $i \ge 1$. This implies

$$c^{(i)} = (-1)^{i-1} q^{(i-1)i/2} t^{i-1} + (\text{ terms of deg} \le i-3) \quad (i \ge 1),$$
(2)

$$b^{(i)} = (-1)^{i-1} q^{(i-1)(i+2)/2} t^{i-1} + (\text{ terms of deg} \le i-3) \quad (i \ge 1)$$
(3)

 $\quad \text{and} \quad$

$$d^{(i)} = \begin{cases} (-1)^{i-2} q^{(i-2)(i+1)/2} t^{i-2} + (\text{ terms of deg} \le i-4) & (i \ge 2), \\ 0 & (i = 1). \end{cases}$$
(4)

132

LEMMA 3.2. $Eq(A_k, 1)/\mathcal{K}^{(k)}$ has a unique solution $f^{(k)}$ of the form

$$\sum_{i=1}^{\infty} e_i \left(\frac{1}{t}\right)^i, \quad e_i \in C, \ e_1 \neq 0,$$

in $(\mathbb{C}((1/t)), \tau_k: 1/t \mapsto q^{-k}(1/t))$. Moreover, $f^{(1)} = f^{(2)} = f^{(3)} = \cdots$ holds.

PROOF. (Uniqueness) Suppose there exists a solution f of $Eq(A_k, 1)/\mathcal{K}^{(k)}$ in $(\mathbb{C}((1/t)), \tau_k)$ which is expressed as

$$f = \sum_{i=1}^{\infty} e_i \left(\frac{1}{t}\right)^i, \quad e_i \in C, \ e_1 \neq 0.$$

Then f satisfies

$$\tau_k(f)(c^{(k)}f + d^{(k)}) = a^{(k)}f + b^{(k)}.$$

The left side is

$$\tau_k(f)(c^{(k)}f + d^{(k)}) = \left(\sum_{i=1}^{\infty} \frac{e_i}{q^{ki}} \left(\frac{1}{t}\right)^i\right) \left(c^{(k)} \sum_{i=1}^{\infty} e_i \left(\frac{1}{t}\right)^i + d^{(k)}\right)$$
(5)

and the right side is

$$a^{(k)}f + b^{(k)} = a^{(k)} \sum_{i=1}^{\infty} e_i \left(\frac{1}{t}\right)^i + b^{(k)}.$$
(6)

Comparing the coefficients of $(1/t)^{-k+1}$, we obtain

$$0 = (-1)^{k} q^{k(k+1)/2} e_1 + (-1)^{k-1} q^{(k-1)(k+2)/2},$$

and so $e_1 = q^{-1}$. For $j \ge 2$, the coefficient of $(1/t)^{-k+j}$ of the formula (6) is

$$(-1)^k q^{k(k+1)/2} e_j + P_j,$$

where P_j is determined by e_1, \ldots, e_{j-1} . On the other hand, for $j \ge 2$, the coefficient of $(1/t)^{-k+j}$ of the formula (5) is equal to the coefficient of $(1/t)^{-k+j}$ of

$$\left(\sum_{i=1}^{j-1} \frac{e_i}{q^{ki}} \left(\frac{1}{t}\right)^i\right) \left(c^{(k)} \sum_{i=1}^{j-1} e_i \left(\frac{1}{t}\right)^i + d^{(k)}\right),$$

which is denoted by Q_j and also determined by e_1, \ldots, e_{j-1} . Hence we find

$$(-1)^k q^{k(k+1)/2} e_j = Q_j - P_j,$$

and so

$$e_j = (-1)^k q^{-k(k+1)/2} (Q_j - P_j),$$

which implies e_j is determined by e_1, \ldots, e_{j-1} . Therefore we conclude that f is unique.

(Existence) Define e_i (i = 1, 2, ...) as

$$e_1 = q^{-1}, \quad e_i = (-1)^k q^{-k(k+1)/2} (Q_i - P_i) \quad (i \ge 2).$$

By the above discussion, it follows that

$$f^{(k)} = \sum_{i=1}^{\infty} e_i \left(\frac{1}{t}\right)^i$$

is a solution of $\operatorname{Eq}(A_k, 1) / \mathcal{K}^{(k)}$.

(Identity) Fix $k \geq 1$. Since $f^{(1)}$ is a solution of Eq $(A, 1)/\mathcal{K}$ in $(\mathbb{C}((1/t)), \tau_1)$, it is a solution of Eq $(A, k)/\mathcal{K}$ in $(\mathbb{C}((1/t)), \tau_1)$. Hence $f^{(1)}$ is a solution of Eq $(A_k, 1)/\mathcal{K}^{(k)}$ in $(\mathbb{C}((1/t)), \tau_1^k = \tau_k)$. By the uniqueness, we find $f^{(k)} = f^{(1)}$.

THEOREM 3.3. Suppose q is not a root of unity. Then for any k, $Eq(A_k, 1)/\mathcal{K}^{(k)}$ has no solution algebraic over C(t).

PROOF. We prove this by contradiction. Assume there exists k such that $Eq(A_k, 1)/\mathcal{K}^{(k)}$ has a solution f algebraic over C(t). Let $\mathcal{L} = (L, \tau) = \mathcal{K}^{(k)} \langle f \rangle$. Then f satisfies

$$\tau(f)(c^{(k)}f + d^{(k)}) = a^{(k)}f + b^{(k)}.$$
(7)

We obtain det $A_k \neq 0$ from det A = -1. Hence $c^{(k)}f + d^{(k)} \neq 0$, and so

$$\tau(f) = \frac{a^{(k)}f + b^{(k)}}{c^{(k)}f + d^{(k)}} \in C(t, f).$$

This means L = C(t, f). Let n = [L : C(t)] be the degree of the extension. By Lemma 1.1, we find L = C(x), $x^n = t$. It follows that x is transcendental over C. By the calculation,

$$\left(\frac{\tau x}{x}\right)^n = \frac{\tau(x^n)}{x^n} = \frac{\tau t}{t} = \frac{\tau_q^k t}{t} = q^k,$$

we obtain $\tau x/x \in C^{\times}$. Let $r \in C^{\times}$ denote it. Then $\tau x = rx$ holds. Note $f \in C(x)^{\times}$ and $A_k \in M_2(C[x^n])$. Expressing f as f = P/Q, where $P, Q \in C[x]$ are relatively

134

prime, we obtain the following equation from the equation (7),

$$\frac{\tau P}{\tau Q} = \frac{a^{(k)} \frac{P}{Q} + b^{(k)}}{c^{(k)} \frac{P}{Q} + d^{(k)}} = \frac{a^{(k)} P + b^{(k)} Q}{c^{(k)} P + d^{(k)} Q}.$$

Since $\tau P, \tau Q$ are relatively prime, there exists $R \in C[x]$ such that

$$\begin{cases} R\tau(P) = a^{(k)}P + b^{(k)}Q, \\ R\tau(Q) = c^{(k)}P + d^{(k)}Q. \end{cases}$$
(8)

Noting det $A_k = (-1)^k$, we can calculate as follows,

$$R\begin{pmatrix} \tau P\\ \tau Q \end{pmatrix} = \begin{pmatrix} a^{(k)} b^{(k)}\\ c^{(k)} d^{(k)} \end{pmatrix} \begin{pmatrix} P\\ Q \end{pmatrix},$$
$$(-1)^k R\begin{pmatrix} d^{(k)} & -b^{(k)}\\ -c^{(k)} a^{(k)} \end{pmatrix} \begin{pmatrix} \tau P\\ \tau Q \end{pmatrix} = \begin{pmatrix} P\\ Q \end{pmatrix}.$$

Since P, Q are relatively prime, we find $R \in C^{\times}$. Comparing the degrees of the equation (8), we obtain

$$\deg_x(a^{(k)}P + b^{(k)}Q) = \deg_x(R\tau(P)) = \deg_x P.$$

Since $\deg_x a^{(k)} = kn \ge 1$,

$$\deg_x a^{(k)} P = \deg_x b^{(k)} Q,$$

which means

$$\deg_x Q - \deg_x P = \deg_x a^{(k)} - \deg_x b^{(k)} = kn - (k-1)n = n.$$

By this result, express f as

$$f = \sum_{i=n}^{\infty} e_i \left(\frac{1}{x}\right)^i, \quad e_i \in C, \ e_n \neq 0,$$

and extend the isomorphism $\tau: C(1/x) \to C(1/x)$ sending 1/x to $r^{-1}(1/x)$ to the isomorphism $\tau: C((1/x)) \to C((1/x))$ sending 1/x to $r^{-1}(1/x)$. We will show $f \in C(t)$. We prove that $n \nmid i$ implies $e_i = 0$ $(i \ge n)$ by contradiction. Assume there exists $i \ge n$ such that $n \nmid i$ and $e_i \ne 0$. Let ln + m (0 < m < n) be the minimum of such numbers. The first term of

$$a^{(k)}f + b^{(k)} = a^{(k)} \left(e_n \left(\frac{1}{x}\right)^n + \dots + e_{ln} \left(\frac{1}{x}\right)^{ln} + e_{ln+m} \left(\frac{1}{x}\right)^{ln+m} + \dots \right) + b^{(k)}$$

whose exponent is not divisible by n has the exponent

$$-kn + (ln + m).$$

On the other hand, the first term of

$$\tau(f)(c^{(k)}f + d^{(k)}) = \left\{ \frac{e_n}{r^n} \left(\frac{1}{x}\right)^n + \dots + \frac{e_{ln}}{r^{ln}} \left(\frac{1}{x}\right)^{ln} + \frac{e_{ln+m}}{r^{ln+m}} \left(\frac{1}{x}\right)^{ln+m} + \dots \right\}$$
$$\times \left\{ c^{(k)} \left(e_n \left(\frac{1}{x}\right)^n + \dots + e_{ln} \left(\frac{1}{x}\right)^{ln} + e_{ln+m} \left(\frac{1}{x}\right)^{ln+m} + \dots \right) + d^{(k)} \right\}$$

whose exponent is not divisible by n has the exponent greater than or equal to

$$(2-k)n + (ln+m).$$

Hence we obtain

$$-kn + (ln + m) \ge (2 - k)n + (ln + m)$$

a contradiction. We proved that $n \nmid i$ implies $e_i = 0$ $(i \geq n)$, which means

$$f \in C(((1/x)^n)) \cap C(1/x) = C((1/x)^n) = C(1/t) = C(t)$$

It follows from the above result that L = C(t, f) = C(t) and n = [L : C(t)] = 1. Hence we find $x = t, r = q^k$ and

$$f = \sum_{i=1}^{\infty} e_i \left(\frac{1}{t}\right)^i \in C(t), \quad e_i \in C, \ e_1 \neq 0.$$

Since f is a solution of $\operatorname{Eq}(A_k, 1)/\mathcal{K}^{(k)}$ in $(C((1/t)), \tau: 1/t \mapsto q^{-k}(1/t)), f$ is a solution of $\operatorname{Eq}(A_1, 1)/\mathcal{K}$ by Lemma 3.2. However, Lemma 3.1 says that $\operatorname{Eq}(A_1, 1)/\mathcal{K}$ has no solution in C(t).

Remark 3.4. Considering the proofs in the author's paper [3] or paper [4], we

easily obtain the same theorem for q-Bessel equation,

$$y(q^{2}t) + \left(\frac{t^{2}}{4} - q^{\nu} - q^{-\nu}\right)y(qt) + y(t) = 0,$$

in the very same way. This result is independent of value of the parameter ν .

Acknowledgments. This work was partially supported by JSPS KAKENHI Grant Number 26800049.

References

- Gasper, G., Rahman, M., Basic Hypergeometric Series 2nd edn., Cambridge University Press, 2004.
- [2] Hamamoto, T., Kajiwara, K., Witte, N., Hypergeometric solutions to the q-Painlevé equation of type (A₁ + A'₁)⁽¹⁾, Int. Math. Res. Not. 2006, Art. ID 84619.
- [3] Nishioka, S., Solvability of Difference Riccati Equations by Elementary Operations, J. Math. Sci. Univ. Tokyo, 17 (2010), 159–178.
- [4] Nishioka, S., Proof of unsolvability of q-Bessel equation using valuations. To appear in J. Math. Sci. Univ. Tokyo.

Seiji Nishioka

Faculty of Science, Yamagata University Kojirakawa-machi 1-4-12, Yamagata-shi, 990-8560, Japan nishioka@sci.kj.yamagata-u.ac.jp