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Transcendence of solutions of q-Airy equation.

Seiji NISHIOKA

Abstract. In this paper, we prove transcendence of solutions of the
iterated Riccati equations associated with q-Airy equation when q is not a root
of unity. The same result is obtained for a certain q-Bessel equation. Previ-

ously, we studied them under a stronger assumption that q is a transcendental
number.

1. Introduction

In his paper [3], the author studied transcendence of functions which satisfy

the iterated Riccati equations associated with q-Airy equation,

y(q2t) + qty(qt)− y(t) = 0,

when q is a transcendental number. In this paper, we introduce a proof of tran-

scendence which requires only that q is not a root of unity. The iterated Riccati

equations are obtained in the following way. Setting z(t) = y(qt)/y(t), we obtain

the following first-order q-difference equation,

z(qt) =
−qtz(t) + 1

z(t)
.

We call this the (difference) Riccati equation associated with q-Airy equation. By

iterations, we can express z(qit) in terms of z(t) such as

z(q2t) =
(q3t2 + 1)z(t)− q2t

−qtz(t) + 1
.

This is a q2-difference equation of Riccati form. The result of transcendence men-

tioned above implies unsolvability of q-Airy equation in the Franke’s Liouvillian

sense (cf. S. Nishioka [3, 4]).

A solution of the above Riccati equation satisfies q-Painlevé II equation of type

A
(1)
6 (or (A1 + A′

1)
(1)), which is similar to the relations between Airy equation

and Painlevé II equation. Moreover, each of the basic hypergeometric solutions of

q-Airy equation has a limit to the Airy function (see Hamamoto, Kajiwara and

Witte [2]).
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The same result of transcendence is obtained for a q-Bessel equation

y(q2t) +

(
t2

4
− qν − q−ν

)
y(qt) + y(t) = 0

in the very same way introduced in this paper, where value of the parameter ν does

not matter. This equation is related to one of the q-Bessel functions, J
(3)
ν (t; q).

Here we set y(qt) = J
(3)
ν (tqν/2; q2). For details of this function, see the book [1] by

G. Gasper and M. Rahman.

Notation. Throughout the paper every field is of characteristic zero. When K is a

field and τ is an isomorphism of K into itself, namely an injective endomorphism,

the pair K = (K, τ) is called a difference field. We call τ the (transforming)

operator and K the underlying field. For a difference field K, K often denotes its

underlying field. For a ∈ K, the element τna ∈ K (n ∈ Z), if it exists, is called the

n-th transform of a and is sometimes denoted by an. If τK = K, we say that K is

inversive. For an algebraic closure K of K, the transforming operator τ is extended

to an isomorphism τ of K into itself, not necessarily in a unique way. We call the

difference field (K, τ) an algebraic closure of K. For p ∈ Z>0, K(p) denotes the

difference field (K, τp). For difference fields K = (K, τ) and K′ = (K ′, τ ′), K′/K
is called a difference field extension if K ′/K is a field extension and τ ′|K = τ . In

this case, we say that K′ is a difference overfield of K and that K is a difference

subfield of K′. For brevity we sometimes use (K, τ ′) instead of (K, τ ′|K). We

define a difference intermediate field in the proper way. Let K be a difference

field, L = (L, τ) a difference overfield of K and B a subset of L. The difference

subfield K⟨B⟩L of L is defined to be the difference field (K(B, τB, τ2B, . . . ), τ) and

is denoted by K⟨B⟩ for brevity. A solution of a difference equation over K is defined

to be an element of some difference overfield of K which satisfies the equation.

We use the following lemma.

Lemma 1.1 (Lemma 8 in S. Nishioka [3]). Let C be an algebraically closed

field, q ∈ C× not a root of unity, t a transcendental element over C, F/C(t) a

finite extension of degree n, and τ an isomorphism of F into itself over C sending

t to qt. Then F = C(x), xn = t.

2. Notation for difference Riccati equation

Let K = (K, τ) be a difference field, and let

A =

(
a b

c d

)
∈ M2(K),

Ai =

(
a(i) b(i)

c(i) d(i)

)
= (τ i−1A)(τ i−2A) · · · (τA)A (i = 1, 2, . . . ).
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In this paper, Eq(A, i)/K denotes the equation over K,

yi(c
(i)y + d(i)) = a(i)y + b(i).

We easily see the following.

Lemma 2.1. If f is a solution of Eq(A, k)/K in a difference field extension

L/K, f ∈ L is also a solution of Eq(A, ki)/K (i = 1, 2, . . . ).

Lemma 2.2. Let B = Ak and Bi = (τk(i−1)B)(τk(i−2)B) · · ·B (i = 1, 2, . . . ).

Then Bi = Aki.

Lemma 2.3. For any k, l,m ∈ Z>0,

f ∈ L is a solution of Eq(Ak, lm)/K(k)

⇐⇒f ∈ L(l) is a solution of Eq(Akl,m)/K(kl),

where L is a difference overfield of K(k).

3. Proof of transcendence

Let C be an algebraically closed field and t a transcendental element over C.

Let q ∈ C× and K = (C(t), τq : t �→ qt).

It is easy to prove that the Riccati equation associated with q-Airy equation

has no rational function solution, and that is one of the keys to transcendence.

Lemma 3.1. The equation over K, y1y = −qty + 1, has no solution in C(t).

Proof. We prove this by contradiction. Assume that there exists a solution f ∈
C(t). Let f = P/Q, where P,Q ∈ C[t] \ {0} are relatively prime. Then we obtain

P1

Q1
· P
Q

= −qt
P

Q
+ 1,

and so

P1P = −qtPQ1 +Q1Q.

This implies P |Q1 and Q1 |P . Hence, we find degP = degQ. However, the above

equation yields 2 degP = 2degP + 1, a contradiction. □

Let

A =

(
−qt 1

1 0

)
∈ GL2(C(t))
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and

Ai =

(
a(i) b(i)

c(i) d(i)

)
= (τ i−1

q A)(τ i−2
q A) · · · (τqA)A (i = 1, 2, . . . ).

Then

A2 = (τqA)A =

(
q3t2 + 1−q2t

−qt 1

)
,

and for i ≥ 2,

Ai = (τqAi−1)A =

(
a
(i−1)
1 b

(i−1)
1

c
(i−1)
1 d

(i−1)
1

)(
−qt 1

1 0

)
=

(
−qta

(i−1)
1 + b

(i−1)
1 a

(i−1)
1

−qtc
(i−1)
1 + d

(i−1)
1 c

(i−1)
1

)

and

Ai = (τ i−1
q A)Ai−1 =

(
−qit 1

1 0

)(
a(i−1) b(i−1)

c(i−1) d(i−1)

)

=

(
−qita(i−1) + c(i−1) −qitb(i−1) + d(i−1)

a(i−1) b(i−1)

)
.

Hence we find

b(i) = a
(i−1)
1 , c(i) = a(i−1), d(i) = b(i−1) = c

(i−1)
1 ,

and so for i ≥ 3,

a(i) = −qita(i−1) + c(i−1) = −qita(i−1) + a(i−2).

By induction, we easily see

a(i) = (−1)iqi(i+1)/2ti + ( terms of deg ≤ i− 2 ) (1)

for all i ≥ 1. This implies

c(i) = (−1)i−1q(i−1)i/2ti−1 + ( terms of deg ≤ i− 3 ) (i ≥ 1), (2)

b(i) = (−1)i−1q(i−1)(i+2)/2ti−1 + ( terms of deg ≤ i− 3 ) (i ≥ 1) (3)

and

d(i) =

{
(−1)i−2q(i−2)(i+1)/2ti−2 + ( terms of deg ≤ i− 4 ) (i ≥ 2),

0 (i = 1).
(4)
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Lemma 3.2. Eq(Ak, 1)/K(k) has a unique solution f (k) of the form

∞∑
i=1

ei

(
1

t

)i

, ei ∈ C, e1 ̸= 0,

in (C((1/t)), τk : 1/t �→ q−k(1/t)). Moreover, f (1) = f (2) = f (3) = · · · holds.

Proof. (Uniqueness) Suppose there exists a solution f of Eq(Ak, 1)/K(k) in

(C((1/t)), τk) which is expressed as

f =
∞∑
i=1

ei

(
1

t

)i

, ei ∈ C, e1 ̸= 0.

Then f satisfies

τk(f)(c
(k)f + d(k)) = a(k)f + b(k).

The left side is

τk(f)(c
(k)f + d(k)) =

( ∞∑
i=1

ei
qki

(
1

t

)i
)(

c(k)
∞∑
i=1

ei

(
1

t

)i

+ d(k)

)
(5)

and the right side is

a(k)f + b(k) = a(k)
∞∑
i=1

ei

(
1

t

)i

+ b(k). (6)

Comparing the coefficients of (1/t)−k+1, we obtain

0 = (−1)kqk(k+1)/2e1 + (−1)k−1q(k−1)(k+2)/2,

and so e1 = q−1. For j ≥ 2, the coefficient of (1/t)−k+j of the formula (6) is

(−1)kqk(k+1)/2ej + Pj ,

where Pj is determined by e1, . . . , ej−1. On the other hand, for j ≥ 2, the coefficient

of (1/t)−k+j of the formula (5) is equal to the coefficient of (1/t)−k+j of

(
j−1∑
i=1

ei
qki

(
1

t

)i
)(

c(k)
j−1∑
i=1

ei

(
1

t

)i

+ d(k)

)
,

which is denoted by Qj and also determined by e1, . . . , ej−1. Hence we find

(−1)kqk(k+1)/2ej = Qj − Pj ,
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and so

ej = (−1)kq−k(k+1)/2(Qj − Pj),

which implies ej is determined by e1, . . . , ej−1. Therefore we conclude that f is

unique.

(Existence) Define ei (i = 1, 2, . . . ) as

e1 = q−1, ei = (−1)kq−k(k+1)/2(Qi − Pi) (i ≥ 2).

By the above discussion, it follows that

f (k) =
∞∑
i=1

ei

(
1

t

)i

is a solution of Eq(Ak, 1)/K(k).

(Identity) Fix k ≥ 1. Since f (1) is a solution of Eq(A, 1)/K in (C((1/t)), τ1), it is
a solution of Eq(A, k)/K in (C((1/t)), τ1). Hence f (1) is a solution of Eq(Ak, 1)/K(k)

in (C((1/t)), τk1 = τk). By the uniqueness, we find f (k) = f (1). □

Theorem 3.3. Suppose q is not a root of unity. Then for any k,

Eq(Ak, 1)/K(k) has no solution algebraic over C(t).

Proof. We prove this by contradiction. Assume there exists k such that

Eq(Ak, 1)/K(k) has a solution f algebraic over C(t). Let L = (L, τ) = K(k)⟨f⟩.
Then f satisfies

τ(f)(c(k)f + d(k)) = a(k)f + b(k). (7)

We obtain detAk ̸= 0 from detA = −1. Hence c(k)f + d(k) ̸= 0, and so

τ(f) =
a(k)f + b(k)

c(k)f + d(k)
∈ C(t, f).

This means L = C(t, f). Let n = [L : C(t)] be the degree of the extension. By

Lemma 1.1, we find L = C(x), xn = t. It follows that x is transcendental over C.

By the calculation,

(τx
x

)n

=
τ(xn)

xn
=

τt

t
=

τkq t

t
= qk,

we obtain τx/x ∈ C×. Let r ∈ C× denote it. Then τx = rx holds. Note f ∈ C(x)×

and Ak ∈ M2(C[xn]). Expressing f as f = P/Q, where P,Q ∈ C[x] are relatively
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prime, we obtain the following equation from the equation (7),

τP

τQ
=

a(k) PQ + b(k)

c(k) PQ + d(k)
=

a(k)P + b(k)Q

c(k)P + d(k)Q
.

Since τP, τQ are relatively prime, there exists R ∈ C[x] such that

{
Rτ(P ) = a(k)P + b(k)Q,

Rτ(Q) = c(k)P + d(k)Q.
(8)

Noting detAk = (−1)k, we can calculate as follows,

R

(
τP

τQ

)
=

(
a(k) b(k)

c(k) d(k)

)(
P

Q

)
,

(−1)kR

(
d(k) −b(k)

−c(k) a(k)

)(
τP

τQ

)
=

(
P

Q

)
.

Since P,Q are relatively prime, we find R ∈ C×. Comparing the degrees of the

equation (8), we obtain

degx(a
(k)P + b(k)Q) = degx(Rτ(P )) = degx P.

Since degx a
(k) = kn ≥ 1,

degx a
(k)P = degx b

(k)Q,

which means

degx Q− degx P = degx a
(k) − degx b

(k) = kn− (k − 1)n = n.

By this result, express f as

f =

∞∑
i=n

ei

(
1

x

)i

, ei ∈ C, en ̸= 0,

and extend the isomorphism τ : C(1/x) → C(1/x) sending 1/x to r−1(1/x) to the

isomorphism τ : C((1/x)) → C((1/x)) sending 1/x to r−1(1/x). We will show

f ∈ C(t). We prove that n ∤ i implies ei = 0 (i ≥ n) by contradiction. Assume

there exists i ≥ n such that n ∤ i and ei ̸= 0. Let ln + m (0 < m < n) be the
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minimum of such numbers. The first term of

a(k)f + b(k)

= a(k)

(
en

(
1

x

)n

+ · · ·+ eln

(
1

x

)ln

+ eln+m

(
1

x

)ln+m

+ · · ·

)
+ b(k)

whose exponent is not divisible by n has the exponent

−kn+ (ln+m).

On the other hand, the first term of

τ(f)(c(k)f + d(k))

=

{
en
rn

(
1

x

)n

+ · · ·+ eln
rln

(
1

x

)ln

+
eln+m

rln+m

(
1

x

)ln+m

+ · · ·

}

×

{
c(k)

(
en

(
1

x

)n

+ · · ·+ eln

(
1

x

)ln

+ eln+m

(
1

x

)ln+m

+ · · ·

)
+ d(k)

}

whose exponent is not divisible by n has the exponent greater than or equal to

(2− k)n+ (ln+m).

Hence we obtain

−kn+ (ln+m) ≥ (2− k)n+ (ln+m),

a contradiction. We proved that n ∤ i implies ei = 0 (i ≥ n), which means

f ∈ C(((1/x)n)) ∩ C(1/x) = C((1/x)n) = C(1/t) = C(t).

It follows from the above result that L = C(t, f) = C(t) and n = [L : C(t)] = 1.

Hence we find x = t, r = qk and

f =
∞∑
i=1

ei

(
1

t

)i

∈ C(t), ei ∈ C, e1 ̸= 0.

Since f is a solution of Eq(Ak, 1)/K(k) in (C((1/t)), τ : 1/t �→ q−k(1/t)), f is a

solution of Eq(A1, 1)/K by Lemma 3.2. However, Lemma 3.1 says that Eq(A1, 1)/K
has no solution in C(t). □

Remark 3.4. Considering the proofs in the author’s paper [3] or paper [4], we
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easily obtain the same theorem for q-Bessel equation,

y(q2t) +

(
t2

4
− qν − q−ν

)
y(qt) + y(t) = 0,

in the very same way. This result is independent of value of the parameter ν.
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