Transcendence of solutions of q-Airy equation.

Seiji NISHIOKA

Abstract

In this paper, we prove transcendence of solutions of the iterated Riccati equations associated with q-Airy equation when q is not a root of unity. The same result is obtained for a certain q-Bessel equation. Previously, we studied them under a stronger assumption that q is a transcendental number.

1. Introduction

In his paper [3], the author studied transcendence of functions which satisfy the iterated Riccati equations associated with q-Airy equation,

$$
y\left(q^{2} t\right)+q t y(q t)-y(t)=0
$$

when q is a transcendental number. In this paper, we introduce a proof of transcendence which requires only that q is not a root of unity. The iterated Riccati equations are obtained in the following way. Setting $z(t)=y(q t) / y(t)$, we obtain the following first-order q-difference equation,

$$
z(q t)=\frac{-q t z(t)+1}{z(t)} .
$$

We call this the (difference) Riccati equation associated with q-Airy equation. By iterations, we can express $z\left(q^{i} t\right)$ in terms of $z(t)$ such as

$$
z\left(q^{2} t\right)=\frac{\left(q^{3} t^{2}+1\right) z(t)-q^{2} t}{-q t z(t)+1}
$$

This is a q^{2}-difference equation of Riccati form. The result of transcendence mentioned above implies unsolvability of q-Airy equation in the Franke's Liouvillian sense (cf. S. Nishioka $[\mathbf{3}, 4]$).

A solution of the above Riccati equation satisfies q-Painlevé II equation of type $A_{6}^{(1)}$ (or $\left.\left(A_{1}+A_{1}^{\prime}\right)^{(1)}\right)$, which is similar to the relations between Airy equation and Painlevé II equation. Moreover, each of the basic hypergeometric solutions of q-Airy equation has a limit to the Airy function (see Hamamoto, Kajiwara and Witte [2]).

The same result of transcendence is obtained for a q-Bessel equation

$$
y\left(q^{2} t\right)+\left(\frac{t^{2}}{4}-q^{\nu}-q^{-\nu}\right) y(q t)+y(t)=0
$$

in the very same way introduced in this paper, where value of the parameter ν does not matter. This equation is related to one of the q-Bessel functions, $J_{\nu}^{(3)}(t ; q)$. Here we set $y(q t)=J_{\nu}^{(3)}\left(t q^{\nu / 2} ; q^{2}\right)$. For details of this function, see the book [1] by G. Gasper and M. Rahman.

Notation. Throughout the paper every field is of characteristic zero. When K is a field and τ is an isomorphism of K into itself, namely an injective endomorphism, the pair $\mathcal{K}=(K, \tau)$ is called a difference field. We call τ the (transforming) operator and K the underlying field. For a difference field \mathcal{K}, K often denotes its underlying field. For $a \in K$, the element $\tau^{n} a \in K(n \in \mathbb{Z})$, if it exists, is called the n-th transform of a and is sometimes denoted by a_{n}. If $\tau K=K$, we say that \mathcal{K} is inversive. For an algebraic closure \bar{K} of K, the transforming operator τ is extended to an isomorphism $\bar{\tau}$ of \bar{K} into itself, not necessarily in a unique way. We call the difference field $(\bar{K}, \bar{\tau})$ an algebraic closure of \mathcal{K}. For $p \in \mathbb{Z}_{>0}, \mathcal{K}^{(p)}$ denotes the difference field $\left(K, \tau^{p}\right)$. For difference fields $\mathcal{K}=(K, \tau)$ and $\mathcal{K}^{\prime}=\left(K^{\prime}, \tau^{\prime}\right), \mathcal{K}^{\prime} / \mathcal{K}$ is called a difference field extension if K^{\prime} / K is a field extension and $\left.\tau^{\prime}\right|_{K}=\tau$. In this case, we say that \mathcal{K}^{\prime} is a difference overfield of \mathcal{K} and that \mathcal{K} is a difference subfield of \mathcal{K}^{\prime}. For brevity we sometimes use $\left(K, \tau^{\prime}\right)$ instead of $\left(K,\left.\tau^{\prime}\right|_{K}\right)$. We define a difference intermediate field in the proper way. Let \mathcal{K} be a difference field, $\mathcal{L}=(L, \tau)$ a difference overfield of \mathcal{K} and B a subset of L. The difference subfield $\mathcal{K}\langle B\rangle_{\mathcal{L}}$ of \mathcal{L} is defined to be the difference field $\left(K\left(B, \tau B, \tau^{2} B, \ldots\right), \tau\right)$ and is denoted by $\mathcal{K}\langle B\rangle$ for brevity. A solution of a difference equation over \mathcal{K} is defined to be an element of some difference overfield of \mathcal{K} which satisfies the equation.

We use the following lemma.
Lemma 1.1 (Lemma 8 in S. Nishioka [3]). Let C be an algebraically closed field, $q \in C^{\times}$not a root of unity, t a transcendental element over $C, F / C(t)$ a finite extension of degree n, and τ an isomorphism of F into itself over C sending t to $q t$. Then $F=C(x), x^{n}=t$.

2. Notation for difference Riccati equation

Let $\mathcal{K}=(K, \tau)$ be a difference field, and let

$$
\begin{gathered}
A=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in M_{2}(K) \\
A_{i}=\left(\begin{array}{ll}
a^{(i)} & b^{(i)} \\
c^{(i)} & d^{(i)}
\end{array}\right)=\left(\tau^{i-1} A\right)\left(\tau^{i-2} A\right) \cdots(\tau A) A \quad(i=1,2, \ldots)
\end{gathered}
$$

In this paper, $\operatorname{Eq}(A, i) / \mathcal{K}$ denotes the equation over \mathcal{K},

$$
y_{i}\left(c^{(i)} y+d^{(i)}\right)=a^{(i)} y+b^{(i)}
$$

We easily see the following.
Lemma 2.1. If f is a solution of $E q(A, k) / \mathcal{K}$ in a difference field extension $\mathcal{L} / \mathcal{K}, f \in \mathcal{L}$ is also a solution of $\operatorname{Eq}(A, k i) / \mathcal{K}(i=1,2, \ldots)$.

Lemma 2.2. Let $B=A_{k}$ and $B_{i}=\left(\tau^{k(i-1)} B\right)\left(\tau^{k(i-2)} B\right) \cdots B(i=1,2, \ldots)$. Then $B_{i}=A_{k i}$.

Lemma 2.3. For any $k, l, m \in \mathbb{Z}_{>0}$,

$$
\begin{aligned}
& f \in \mathcal{L} \text { is a solution of } E q\left(A_{k}, l m\right) / \mathcal{K}^{(k)} \\
\Longleftrightarrow & f \in \mathcal{L}^{(l)} \text { is a solution of } E q\left(A_{k l}, m\right) / \mathcal{K}^{(k l)},
\end{aligned}
$$

where \mathcal{L} is a difference overfield of $\mathcal{K}^{(k)}$.

3. Proof of transcendence

Let C be an algebraically closed field and t a transcendental element over C. Let $q \in C^{\times}$and $\mathcal{K}=\left(C(t), \tau_{q}: t \mapsto q t\right)$.

It is easy to prove that the Riccati equation associated with q-Airy equation has no rational function solution, and that is one of the keys to transcendence.

Lemma 3.1. The equation over \mathcal{K}, $y_{1} y=-q t y+1$, has no solution in $C(t)$.
Proof. We prove this by contradiction. Assume that there exists a solution $f \in$ $C(t)$. Let $f=P / Q$, where $P, Q \in C[t] \backslash\{0\}$ are relatively prime. Then we obtain

$$
\frac{P_{1}}{Q_{1}} \cdot \frac{P}{Q}=-q t \frac{P}{Q}+1
$$

and so

$$
P_{1} P=-q t P Q_{1}+Q_{1} Q
$$

This implies $P \mid Q_{1}$ and $Q_{1} \mid P$. Hence, we find $\operatorname{deg} P=\operatorname{deg} Q$. However, the above equation yields $2 \operatorname{deg} P=2 \operatorname{deg} P+1$, a contradiction.

Let

$$
A=\left(\begin{array}{cc}
-q t & 1 \\
1 & 0
\end{array}\right) \in \mathrm{GL}_{2}(C(t))
$$

and

$$
A_{i}=\left(\begin{array}{ll}
a^{(i)} & b^{(i)} \\
c^{(i)} & d^{(i)}
\end{array}\right)=\left(\tau_{q}^{i-1} A\right)\left(\tau_{q}^{i-2} A\right) \cdots\left(\tau_{q} A\right) A \quad(i=1,2, \ldots)
$$

Then

$$
A_{2}=\left(\tau_{q} A\right) A=\left(\begin{array}{cc}
q^{3} t^{2}+1-q^{2} t \\
-q t & 1
\end{array}\right)
$$

and for $i \geq 2$,

$$
A_{i}=\left(\tau_{q} A_{i-1}\right) A=\left(\begin{array}{ll}
a_{1}^{(i-1)} & b_{1}^{(i-1)} \\
c_{1}^{(i-1)} & d_{1}^{(i-1)}
\end{array}\right)\left(\begin{array}{cc}
-q t & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
-q t a_{1}^{(i-1)}+b_{1}^{(i-1)} & a_{1}^{(i-1)} \\
-q t c_{1}^{(i-1)}+d_{1}^{(i-1)} & c_{1}^{(i-1)}
\end{array}\right)
$$

and

$$
\begin{aligned}
A_{i} & =\left(\tau_{q}^{i-1} A\right) A_{i-1}=\left(\begin{array}{cc}
-q^{i} t \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
a^{(i-1)} & b^{(i-1)} \\
c^{(i-1)} & d^{(i-1)}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-q^{i} t a^{(i-1)}+c^{(i-1)} & -q^{i} t b^{(i-1)}+d^{(i-1)} \\
a^{(i-1)} & b^{(i-1)}
\end{array}\right)
\end{aligned}
$$

Hence we find

$$
b^{(i)}=a_{1}^{(i-1)}, \quad c^{(i)}=a^{(i-1)}, \quad d^{(i)}=b^{(i-1)}=c_{1}^{(i-1)}
$$

and so for $i \geq 3$,

$$
a^{(i)}=-q^{i} t a^{(i-1)}+c^{(i-1)}=-q^{i} t a^{(i-1)}+a^{(i-2)} .
$$

By induction, we easily see

$$
\begin{equation*}
a^{(i)}=(-1)^{i} q^{i(i+1) / 2} t^{i}+(\text { terms of deg } \leq i-2) \tag{1}
\end{equation*}
$$

for all $i \geq 1$. This implies

$$
\begin{gather*}
c^{(i)}=(-1)^{i-1} q^{(i-1) i / 2} t^{i-1}+(\text { terms of deg } \leq i-3) \quad(i \geq 1) \tag{2}\\
b^{(i)}=(-1)^{i-1} q^{(i-1)(i+2) / 2} t^{i-1}+(\text { terms of } \operatorname{deg} \leq i-3) \quad(i \geq 1) \tag{3}
\end{gather*}
$$

and

$$
d^{(i)}= \begin{cases}(-1)^{i-2} q^{(i-2)(i+1) / 2} t^{i-2}+(\text { terms of deg } \leq i-4) & (i \geq 2) \tag{4}\\ 0 & (i=1)\end{cases}
$$

Lemma 3.2. $E q\left(A_{k}, 1\right) / \mathcal{K}^{(k)}$ has a unique solution $f^{(k)}$ of the form

$$
\sum_{i=1}^{\infty} e_{i}\left(\frac{1}{t}\right)^{i}, \quad e_{i} \in C, \quad e_{1} \neq 0
$$

in $\left(\mathbb{C}((1 / t)), \tau_{k}: 1 / t \mapsto q^{-k}(1 / t)\right)$. Moreover, $f^{(1)}=f^{(2)}=f^{(3)}=\cdots$ holds.
Proof. (Uniqueness) Suppose there exists a solution f of $\operatorname{Eq}\left(A_{k}, 1\right) / \mathcal{K}^{(k)}$ in ($\left.\mathbb{C}((1 / t)), \tau_{k}\right)$ which is expressed as

$$
f=\sum_{i=1}^{\infty} e_{i}\left(\frac{1}{t}\right)^{i}, \quad e_{i} \in C, e_{1} \neq 0
$$

Then f satisfies

$$
\tau_{k}(f)\left(c^{(k)} f+d^{(k)}\right)=a^{(k)} f+b^{(k)}
$$

The left side is

$$
\begin{equation*}
\tau_{k}(f)\left(c^{(k)} f+d^{(k)}\right)=\left(\sum_{i=1}^{\infty} \frac{e_{i}}{q^{k i}}\left(\frac{1}{t}\right)^{i}\right)\left(c^{(k)} \sum_{i=1}^{\infty} e_{i}\left(\frac{1}{t}\right)^{i}+d^{(k)}\right) \tag{5}
\end{equation*}
$$

and the right side is

$$
\begin{equation*}
a^{(k)} f+b^{(k)}=a^{(k)} \sum_{i=1}^{\infty} e_{i}\left(\frac{1}{t}\right)^{i}+b^{(k)} \tag{6}
\end{equation*}
$$

Comparing the coefficients of $(1 / t)^{-k+1}$, we obtain

$$
0=(-1)^{k} q^{k(k+1) / 2} e_{1}+(-1)^{k-1} q^{(k-1)(k+2) / 2}
$$

and so $e_{1}=q^{-1}$. For $j \geq 2$, the coefficient of $(1 / t)^{-k+j}$ of the formula (6) is

$$
(-1)^{k} q^{k(k+1) / 2} e_{j}+P_{j}
$$

where P_{j} is determined by e_{1}, \ldots, e_{j-1}. On the other hand, for $j \geq 2$, the coefficient of $(1 / t)^{-k+j}$ of the formula (5) is equal to the coefficient of $(1 / t)^{-k+j}$ of

$$
\left(\sum_{i=1}^{j-1} \frac{e_{i}}{q^{k i}}\left(\frac{1}{t}\right)^{i}\right)\left(c^{(k)} \sum_{i=1}^{j-1} e_{i}\left(\frac{1}{t}\right)^{i}+d^{(k)}\right)
$$

which is denoted by Q_{j} and also determined by e_{1}, \ldots, e_{j-1}. Hence we find

$$
(-1)^{k} q^{k(k+1) / 2} e_{j}=Q_{j}-P_{j},
$$

and so

$$
e_{j}=(-1)^{k} q^{-k(k+1) / 2}\left(Q_{j}-P_{j}\right),
$$

which implies e_{j} is determined by e_{1}, \ldots, e_{j-1}. Therefore we conclude that f is unique.
(Existence) Define $e_{i}(i=1,2, \ldots)$ as

$$
e_{1}=q^{-1}, \quad e_{i}=(-1)^{k} q^{-k(k+1) / 2}\left(Q_{i}-P_{i}\right) \quad(i \geq 2)
$$

By the above discussion, it follows that

$$
f^{(k)}=\sum_{i=1}^{\infty} e_{i}\left(\frac{1}{t}\right)^{i}
$$

is a solution of $\operatorname{Eq}\left(A_{k}, 1\right) / \mathcal{K}^{(k)}$.
(Identity) Fix $k \geq 1$. Since $f^{(1)}$ is a solution of $\operatorname{Eq}(A, 1) / \mathcal{K}$ in $\left(\mathbb{C}((1 / t)), \tau_{1}\right)$, it is a solution of $\operatorname{Eq}(A, k) / \mathcal{K}$ in $\left(\mathbb{C}((1 / t)), \tau_{1}\right)$. Hence $f^{(1)}$ is a solution of $\operatorname{Eq}\left(A_{k}, 1\right) / \mathcal{K}^{(k)}$ in $\left(\mathbb{C}((1 / t)), \tau_{1}^{k}=\tau_{k}\right)$. By the uniqueness, we find $f^{(k)}=f^{(1)}$.

Theorem 3.3. Suppose q is not a root of unity. Then for any k, $E q\left(A_{k}, 1\right) / \mathcal{K}^{(k)}$ has no solution algebraic over $C(t)$.

Proof. We prove this by contradiction. Assume there exists k such that $\operatorname{Eq}\left(A_{k}, 1\right) / \mathcal{K}^{(k)}$ has a solution f algebraic over $C(t)$. Let $\mathcal{L}=(L, \tau)=\mathcal{K}^{(k)}\langle f\rangle$. Then f satisfies

$$
\begin{equation*}
\tau(f)\left(c^{(k)} f+d^{(k)}\right)=a^{(k)} f+b^{(k)} \tag{7}
\end{equation*}
$$

We obtain $\operatorname{det} A_{k} \neq 0$ from $\operatorname{det} A=-1$. Hence $c^{(k)} f+d^{(k)} \neq 0$, and so

$$
\tau(f)=\frac{a^{(k)} f+b^{(k)}}{c^{(k)} f+d^{(k)}} \in C(t, f)
$$

This means $L=C(t, f)$. Let $n=[L: C(t)]$ be the degree of the extension. By Lemma 1.1, we find $L=C(x), x^{n}=t$. It follows that x is transcendental over C. By the calculation,

$$
\left(\frac{\tau x}{x}\right)^{n}=\frac{\tau\left(x^{n}\right)}{x^{n}}=\frac{\tau t}{t}=\frac{\tau_{q}^{k} t}{t}=q^{k}
$$

we obtain $\tau x / x \in C^{\times}$. Let $r \in C^{\times}$denote it. Then $\tau x=r x$ holds. Note $f \in C(x)^{\times}$ and $A_{k} \in \mathrm{M}_{2}\left(C\left[x^{n}\right]\right)$. Expressing f as $f=P / Q$, where $P, Q \in C[x]$ are relatively
prime, we obtain the following equation from the equation (7),

$$
\frac{\tau P}{\tau Q}=\frac{a^{(k)} \frac{P}{Q}+b^{(k)}}{c^{(k)} \frac{P}{Q}+d^{(k)}}=\frac{a^{(k)} P+b^{(k)} Q}{c^{(k)} P+d^{(k)} Q}
$$

Since $\tau P, \tau Q$ are relatively prime, there exists $R \in C[x]$ such that

$$
\left\{\begin{array}{l}
R \tau(P)=a^{(k)} P+b^{(k)} Q \tag{8}\\
R \tau(Q)=c^{(k)} P+d^{(k)} Q
\end{array}\right.
$$

Noting $\operatorname{det} A_{k}=(-1)^{k}$, we can calculate as follows,

$$
\begin{gathered}
R\binom{\tau P}{\tau Q}=\left(\begin{array}{cc}
a^{(k)} & b^{(k)} \\
c^{(k)} & d^{(k)}
\end{array}\right)\binom{P}{Q}, \\
(-1)^{k} R\left(\begin{array}{cc}
d^{(k)} & -b^{(k)} \\
-c^{(k)} & a^{(k)}
\end{array}\right)\binom{\tau P}{\tau Q}=\binom{P}{Q} .
\end{gathered}
$$

Since P, Q are relatively prime, we find $R \in C^{\times}$. Comparing the degrees of the equation (8), we obtain

$$
\operatorname{deg}_{x}\left(a^{(k)} P+b^{(k)} Q\right)=\operatorname{deg}_{x}(R \tau(P))=\operatorname{deg}_{x} P
$$

Since $\operatorname{deg}_{x} a^{(k)}=k n \geq 1$,

$$
\operatorname{deg}_{x} a^{(k)} P=\operatorname{deg}_{x} b^{(k)} Q
$$

which means

$$
\operatorname{deg}_{x} Q-\operatorname{deg}_{x} P=\operatorname{deg}_{x} a^{(k)}-\operatorname{deg}_{x} b^{(k)}=k n-(k-1) n=n .
$$

By this result, express f as

$$
f=\sum_{i=n}^{\infty} e_{i}\left(\frac{1}{x}\right)^{i}, \quad e_{i} \in C, e_{n} \neq 0
$$

and extend the isomorphism $\tau: C(1 / x) \rightarrow C(1 / x)$ sending $1 / x$ to $r^{-1}(1 / x)$ to the isomorphism $\tau: C((1 / x)) \rightarrow C((1 / x))$ sending $1 / x$ to $r^{-1}(1 / x)$. We will show $f \in C(t)$. We prove that $n \nmid i$ implies $e_{i}=0(i \geq n)$ by contradiction. Assume there exists $i \geq n$ such that $n \nmid i$ and $e_{i} \neq 0$. Let $l n+m(0<m<n)$ be the
minimum of such numbers. The first term of

$$
\begin{aligned}
& a^{(k)} f+b^{(k)} \\
& =a^{(k)}\left(e_{n}\left(\frac{1}{x}\right)^{n}+\cdots+e_{l n}\left(\frac{1}{x}\right)^{l n}+e_{l n+m}\left(\frac{1}{x}\right)^{l n+m}+\cdots\right)+b^{(k)}
\end{aligned}
$$

whose exponent is not divisible by n has the exponent

$$
-k n+(l n+m) .
$$

On the other hand, the first term of

$$
\begin{aligned}
& \tau(f)\left(c^{(k)} f+d^{(k)}\right) \\
& =\left\{\frac{e_{n}}{r^{n}}\left(\frac{1}{x}\right)^{n}+\cdots+\frac{e_{l n}}{r^{l n}}\left(\frac{1}{x}\right)^{l n}+\frac{e_{l n+m}}{r^{l n+m}}\left(\frac{1}{x}\right)^{\ln +m}+\cdots\right\} \\
& \times\left\{c^{(k)}\left(e_{n}\left(\frac{1}{x}\right)^{n}+\cdots+e_{l n}\left(\frac{1}{x}\right)^{\ln }+e_{l n+m}\left(\frac{1}{x}\right)^{\ln +m}+\cdots\right)+d^{(k)}\right\}
\end{aligned}
$$

whose exponent is not divisible by n has the exponent greater than or equal to

$$
(2-k) n+(l n+m)
$$

Hence we obtain

$$
-k n+(l n+m) \geq(2-k) n+(l n+m)
$$

a contradiction. We proved that $n \nmid i$ implies $e_{i}=0(i \geq n)$, which means

$$
f \in C\left(\left((1 / x)^{n}\right)\right) \cap C(1 / x)=C\left((1 / x)^{n}\right)=C(1 / t)=C(t)
$$

It follows from the above result that $L=C(t, f)=C(t)$ and $n=[L: C(t)]=1$. Hence we find $x=t, r=q^{k}$ and

$$
f=\sum_{i=1}^{\infty} e_{i}\left(\frac{1}{t}\right)^{i} \in C(t), \quad e_{i} \in C, e_{1} \neq 0
$$

Since f is a solution of $\operatorname{Eq}\left(A_{k}, 1\right) / \mathcal{K}^{(k)}$ in $\left(C((1 / t)), \tau: 1 / t \mapsto q^{-k}(1 / t)\right), f$ is a solution of $\operatorname{Eq}\left(A_{1}, 1\right) / \mathcal{K}$ by Lemma 3.2. However, Lemma 3.1 says that $\operatorname{Eq}\left(A_{1}, 1\right) / \mathcal{K}$ has no solution in $C(t)$.

Remark 3.4. Considering the proofs in the author's paper [3] or paper [4], we
easily obtain the same theorem for q-Bessel equation,

$$
y\left(q^{2} t\right)+\left(\frac{t^{2}}{4}-q^{\nu}-q^{-\nu}\right) y(q t)+y(t)=0
$$

in the very same way. This result is independent of value of the parameter ν.

Acknowledgments. This work was partially supported by JSPS KAKENHI Grant Number 26800049.

References

[1] Gasper, G., Rahman, M., Basic Hypergeometric Series - 2nd edn., Cambridge University Press, 2004.
[2] Hamamoto, T., Kajiwara, K., Witte, N., Hypergeometric solutions to the q-Painlevé equation of type $\left(A_{1}+A_{1}^{\prime}\right)^{(1)}$, Int. Math. Res. Not. 2006, Art. ID 84619.
[3] Nishioka, S., Solvability of Difference Riccati Equations by Elementary Operations, J. Math. Sci. Univ. Tokyo, 17 (2010), 159-178.
[4] Nishioka, S., Proof of unsolvability of q-Bessel equation using valuations. To appear in J. Math. Sci. Univ. Tokyo.

Seiji Nishioka
Faculty of Science, Yamagata University
Kojirakawa-machi 1-4-12, Yamagata-shi, 990-8560, Japan
nishioka@sci.kj.yamagata-u.ac.jp

