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Tau functions and Hamiltonians of isomonodromic

deformations

Daisuke YAMAKAWA

Abstract. We describe the isomonodromy equations of Jimbo–Miwa–
Ueno as completely integrable non-autonomous Hamiltonian systems using the
isomonodromy tau functions.

1. Introduction

In [8] Jimbo, Miwa and Ueno established a general theory of isomonodromic

deformation for a system of first order linear ordinary differential equations with

rational coefficients

dY

dx
= A(x)Y, A(x) ∈ Mn(C(x)). (1)

In particular they found the isomonodromy equations, the systems of non-linear

differential equations which govern the isomonodromic deformations. The purpose

of this article is to describe the isomonodromy equations as completely integrable

non-autonomous Hamiltonian systems using the (isomonodromy) tau functions in-

troduced in [8].

It is known that the isomonodromy equations of Jimbo et al. can be described

as Hamiltonian systems, see e.g. [3, 7, 11, 12]. However the explicit relationship

between those descriptions and tau functions is not clear for us. Since well-known

classical examples of isomonodromy equations, especially Schlesinger equations and

Painlevé equations, can be described as non-autonomous Hamiltonian systems with

Hamiltonians being the logarithmic derivatives of tau functions, it seems natural

to expect that the tau functions always give Hamiltonians.

Another motivation comes from the quantization problem. In [9] Reshetikhin

showed that the Knizhnik–Zamolodchikov equations are obtained from Schlesinger

equations by quantization (see also [5]). It is thus interesting for us to find the

quantization of general isomonodromy equations.
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The organization of this article is as follows. Section 2 is a review on isomon-

odromy equations. In Section 3 we calculate the Hamiltonian vector fields associ-

ated to the logarithmic derivatives of tau functions. Results similar to Theorem 3.1

and Proposition 3.3 were announced in Harnad’s talk [6] in 2004, so they are es-

sentially not new. In Section 4 we examine the difference of those Hamiltonian

vector fields and the infinitesimal isomonodromic deformations, and show that it

gives a complete flat symplectic Ehresmann connection on our extended phase

space (which is a symplectic fiber bundle over the time space) for isomonodromy

equation. Finally in Section 5, we state and prove the main theorem of this article

(Theorem 5.1).

Throughout this article we fix the following data:

• a standard coordinate x on P1,

• a positive integer n (the size of systems),

• a non-negative integer m (the number of poles in C = P1 \ {∞}),

• a non-negative integer m0 ≤ m (the number of multiple poles in C),

• (ri)
m0
i=0 ∈ Zm0+1

>0 (the order minus one of each multiple pole).

Set G = GLn(C), g = gln(C). Let H ⊂ G be the standard maximal torus and

h ⊂ g its Lie algebra.

2. Isomonodromy equations

In this section let us recall the isomonodromy equations.

First, we introduce the independent variables for isomonodromy equations.

Definition 2.1. The space of deformation parameters is the product D =

Dpl × Dirr, where

• the set Dpl consists of all tuples a = (ai)
m
i=0 of distinct points on P1 with

a0 = ∞,

• the set Dirr consists of all tuples

T = (T
(i)
j | i = 0, 1, . . . ,m0, j = 1, 2, . . . , ri) ∈ h

∑m0
i=0 ri

of diagonal matrices such that each T
(i)
ri has distinct diagonal entries.

We use the symbols x0, x1, . . . , xm as indeterminates and also as meromorphic

functions on P1 × D in the following way:

xi =

{
1/x (i = 0),

x− ai (i > 0).
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Also we use h-valued meromorphic functions

Ti =
T

(i)
1

xi
+

T
(i)
2

x2
i

+ · · ·+ T
(i)
ri

xri
i

(i = 0, 1, . . . ,m0)

on P1 × D. Set Ti = 0 for i = m0 + 1, . . . ,m and write

T ′
i =

∂Ti

∂xi
= −

ri∑
j=1

jT
(i)
j x−j−1

i (i = 0, 1, . . . ,m).

For a ∈ Dpl, let g(∗a) be the Lie algebra of g-valued rational functions A(x)

holomorphic on P1 \ { a0, a1, . . . , am }. Then the partial fraction decomposition

yields a vector space isomorphism

g(∗a) ≃
m⊕
i=0

L−
i , L−

i :=

{
g[x−1

0 ] (i = 0),

x−1
i g[x−1

i ] (i > 0).

The right hand side is contained in the Lie algebra L =
⊕m

i=0 g((xi)) and comple-

mentary to the Lie subalgebra

L+ =

m⊕
i=0

L+
i , L+

i :=

{
x0g[[x0]] (i = 0),

g[[xi]] (i > 0).

The pairing

((Xi), (Yi)) �→ − res
x0=0

tr(x−2
0 X0Y0) +

m∑
i=1

res
xi=0

tr(XiYi)

on L enables us to identify g(∗a) as (a dense subset of) the dual of L+ and hence

induces a Poisson structure on g(∗a). The symplectic leaves of g(∗a) are finite-

dimensional and given by the coadjoint orbits of the group

�G+ := G(C[[x0]])1 ×
m∏
i=1

G(C[[xi]]),

where G(C[[xi]]) := GLn(C[[xi]]) and G(C[[x0]])1 ⊂ G(C[[x0]]) is the kernel of the

evaluation at x0 = 0. The action of �G+ on g(∗a) =
⊕

L−
i is explicitly given by

�g = (�gi)mi=0 : (Ai) �→ ([�giAi�g−1
i ]i,−),

where [ ]i,− means applying the projection g((xi)) → L−
i .

Let L = (Li)
m
i=1 be a tuple of diagonal matrices Li = diag(ℓi,α)

n
α=1 ∈ h satisfy-
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ing

ℓi,α − ℓi,β /∈ Z (i > m0, α ̸= β).

For (a,T) ∈ D, we then define

Λi(xi) =

{
T ′
0 (i = 0),

T ′
i + Lix

−1
i (i = 1, 2, . . . ,m),

and let M(a,T;L) be the �G+-coadjoint orbit through the element

Λ(x) := −x2
0Λ0 +

m∑
i=1

Λi. (2)

We use the symplectic fiber bundle

M(L) :=
∪

(a,T)∈D

M(a,T;L) → D

as the (extended) phase space for isomonodromy equations.

The proof of the following lemma is an easy exercise:

Lemma 2.2. An element �g = (�gi)mi=0 ∈ �G+, �gi(xi) =
∑∞

j=0 g
(i)
j xj

i stabilizes Λ

if and only if

• g
(0)
j , j = 1, 2, . . . , r0 − 1 are diagonal,

• g
(i)
j , j = 0, 1, . . . , ri are diagonal for i > 0.

To introduce the isomonodromy equations we need the following classical fact:

Proposition 2.3 ([10]). For any A ∈ M(a,T;L), there exists �u = (�ui)
m
i=0 ∈

�G+ such that

�u−1
i ◦ (dP1 −Adx) ◦ �ui = dP1 − dP1Ti − Li

dP1xi

xi
(i = 0, 1, . . . ,m)

for some unique L0 ∈ h (in particular, A = �u · Λ), where dP1 is the exterior

derivation in the P1-direction.

In other words, for any A ∈ M(a,T;L) there exists a unique L0 ∈ h such that

the system dY/dx = AY has the (formal) fundamental solutions of the form

Yi = �uie
TixLi

i , i = 0, 1, . . . ,m

with �u = (�ui) ∈ �G+.
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Remark 2.4. Such �u is unique up to multiplication �ui �→ �uihi, hi ∈ H (i > 0)

and the map M(a,T;L) → h, A �→ −L0 is known to be a moment map generating

the conjugation action of H (see [2]).

Put

Ξi =

{
dDT0 (i = 0),

dDTi + LidD log xi (i = 1, 2 . . . ,m),

where dD is the exterior derivation in the D-direction. Note that xi = x − ai
depends on ai and so for instance dD log xi = −dai/xi. For A ∈ M(a,T;L), take

�g = (�gi)mi=0 ∈ �G+ so that A = �g ·Λ and define a g-valued meromorphic one-form Ω

on P1 × D by

Ω =
m∑
i=0

Ωi, Ωi =
[�giΞi�g−1

i

]
i,− .

Lemma 2.2 shows that multiplying �g by an element stabilizing Λ from the right

has no effect on Ω; hence Ω only depends on A.

Definition 2.5. The isomonodromy equation is the differential equation on

M(L) defined by

dDA =
∂Ω

∂x
+ [Ω, A].

Remark 2.6. In [8] Jimbo et al. uses more larger space as the phase space for

isomonodromy equation. Our space M(L) is obtained from their phase space by

taking the Hamiltonian reduction. See [2] for more detail.

3. Isomonodromy tau functions and Hamiltonians

For A ∈ M(a,T;L), we take �u = (�ui)
m
i=0 ∈ �G+ as in Proposition 2.3 and define

ϖ =

m∑
i=0

ϖi, ϖi = − res
xi=0

tr

(
�u−1
i

∂�ui

∂xi
Ξi

)
,

which is viewed as a horizontal one-form on the fiber bundle M(L). We call it

the Jimbo–Miwa–Ueno one-form (JMU one-form for short). In [8] Jimbo et al.

showed that for any solution s : ∆ → M(L) (where ∆ ⊂ D is an open subset) of

the isomonodromy equation, the pull-back s∗ϖ is closed. Hence if ∆ is simply-

connected there is a function τ on ∆ such that d log τ = s∗ϖ. This is called the

isomonodromy tau function.

This section is devoted to calculate the Hamiltonian vector fields of the JMU
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one-form. The goal is to prove the following:

Theorem 3.1. For any (local) vector field v on D, the Hamiltonian vector

field Xf associated to the function f = ⟨ϖ, v⟩ is given by Xf (A) = [⟨Ω, v⟩, A].

Put

B0(x0) = −x−2
0 A, Bi(xi) = u−1

i Aui (i > 0),

where ui := �ui(0). Note that Bi, i > 0 depend on the choice of �u. We write

Ti = diag(ti,α)
n
α=1, T ′

i = diag(t′i,α)
n
α=1, Λi = diag(λi,α)

n
α=1.

Lemma 3.2. Let X = (xαβ)
n
α,β=1 be an n by n matrix of indeterminates

xαβ. Then for each i = 0, 1, . . . ,m and γ = 1, 2, . . . , n, the substitution X =

(Bi − Λi)(y − Λi)
−1 gives a well-defined map

C[[X]] = C[[xαβ ;α, β = 1, 2, . . . , n]] → C((xi))[[yi,γ , y
−1
i,γ ]],

where yi,γ := y − λi,γ and we regard (y − Λi)
−1 as an element of g((xi))((yi,γ)).

Proof. The formal Laurent series Bi − Λi in xi has order at least −ri. Also, for

any j ∈ Z and α1, α2, . . . , αk ∈ { 1, 2, . . . , n }, the degree j coefficient of the formal

Laurent series

1

(y − λi,α1)(y − λi,α2) · · · (y − λi,αk
)
∈ C((xi))((yi,γ))

in yi,γ has, as an element of C((xi)), order at least (j+k)(ri+1). Hence the substi-

tution X = (Bi −Λi)(y−Λi)
−1 transforms any degree k homogeneous polynomial

in xαβ into an element of C((xi))((yi,γ)) whose degree j coefficient has order at least

−kri + (j + k)(ri + 1) = j(ri + 1) + k.

Hence for any f(X) ∈ C[[X]], the substitution X = (Bi − Λi)(y − Λi)
−1 gives an

element of C((xi))[[yi,γ , y
−1
i,γ ]]. □

We apply the above lemma to the formal power series

tr log(1−X) =
∞∑
k=1

1

k
trXk,

which is equal to

log det(1−X) =

∞∑
k=1

1

k
(1− det(1−X))k.
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Since

1− (Bi − Λi)(y − Λi)
−1 = (y −Bi)(y − Λi)

−1,

we have the equality

∞∑
k=1

1

k
tr
[
(Bi − Λi)(y − Λi)

−1
]k

=

∞∑
k=1

1

k

(
1− det(y −Bi)

det(y − Λi)

)k

(3)

in C((xi))[[yi,α, y
−1
i,α]]. Note that the right hand side is invariant under the conjuga-

tion Bi �→ �giBi�g−1
i by �gi ∈ G(C((xi))).

We write

Ξi = diag(ξi,α)
n
α=1 (i = 0, 1, . . . ,m).

Proposition 3.3. For i = 0, 1, . . . ,m, the following equality holds:

ϖi = −
n∑

α=1

∞∑
k=1

1

k
res
xi=0

res
yi,α=0

tr
[
(Bi − Λi)(y − Λi)

−1
]k

ξi,α.

Proof. Assume i > 0. Observe that the equality

�u−1
i uiBiu

−1
i �ui = Λi + �u−1

i �u′
i

holds, where �u′
i := ∂�ui/∂xi. By G(C((xi)))-invariance we have

∞∑
k=1

1

k

(
1− det(y −Bi)

det(y − Λi)

)k

=
∞∑
k=1

1

k

(
1− det(y − Λi − �u−1

i �u′
i)

det(y − Λi)

)k

.

By order counting we can check that the substitution X = �u−1
i �u′

i(y − Λi)
−1 gives

a map C[[X]] → C((x))[[yi,γ , y−1
i,γ ]]. Thus we obtain

∞∑
k=1

1

k
tr
[
(Bi − Λi)(y − Λi)

−1
]k

=
∞∑
k=1

1

k
trXk, X := �u−1

i �u′
i(y − Λi)

−1.

The order counting shows

ord

(
res

yi,α=0
trXkξi,α

)
≥ (k − 1)(ri + 1)− (ri + 1) = (k − 2)(ri + 1)

for α = 1, 2, . . . , n. In particular, resyi,α=0 trX
kξi,α has no residue at xi = 0 if
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k ≥ 2. Thus we obtain

∞∑
k=1

1

k
res
xi=0

res
yi,α=0

tr
[
(Bi − Λi)(y − Λi)

−1
]k

ξi,α

= res
xi=0

res
yi,α=0

tr
[�u−1

i �u′
i(y − Λi)

−1
]
ξi,α

= res
xi=0

tr(�u−1
i �u′

iEα)ξi,α = res
xi=0

tr
(�u−1

i �u′
iΞiEα

)
,

where Eα is the diagonal matrix with 1 on the α-th diagonal entry and zero else-

where. In the case of i = 0, we have

∞∑
k=1

1

k
tr
[
(B0 − Λ0)(y − Λ0)

−1
]k

=
∞∑
k=1

1

k
trXk, X :=

(
L0

x0
+ �u−1

0 �u′
0

)
(y−Λ0)

−1.

Since

ord

(
res

y0,α=0
trXkξ0,α

)
≥ −k + (k − 1)(r0 + 1)− r0 = (k − 2)r0 − 1,

the formal Laurent series resy0,α=0 trX
kξ0,α has no residue if k ≥ 3. It is also true

in the case of k = 2 because

res
x0=0

res
y0,α=0

tr
[�u−1

0 �u′
0(y − Λ0)

−1
]2

ξ0,α = 0

by order counting and

res
y0,α=0

tr
[
L0x

−1
0 (y − Λ0)

−1�u−1
0 �u′

0(y − Λ0)
−1

]

= x−1
0 res

y0,α=0
tr
[
(y − Λ0)

−2L0�u−1
0 �u′

0

]
= 0,

res
y0,α=0

tr
[
L0x

−1
0 (y − Λ0)

−1L0x
−1
0 (y − Λ0)

−1
]

= res
y0,α=0

tr
[
x−2
0 L2

0(y − Λ0)
−2

]
= 0.

Thus we obtain

∞∑
k=1

1

k
res
x0=0

res
y0,α=0

tr
[
(B0 − Λ0)(y − Λ0)

−1
]k

ξ0,α

= res
x0=0

res
y0,α=0

tr
[
(L0x

−1
0 + �u−1

0 �u′
0)(y − Λ0)

−1
]
ξ0,α

= res
x0=0

tr
[
(L0x

−1
0 + �u−1

0 �u′
0)Eα

]
ξ0,α

= res
x0=0

tr(L0Eα)x
−1
0 ξ0,α + res

x0=0
tr(�u−1

0 �u′
0Eα)ξ0,α
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= res
x0=0

tr(�u−1
0 �u′

0Eα)ξ0,α = res
x0=0

tr
(�u−1

0 �u′
0Ξ0Eα

)
.

□

Remark 3.4. For i > m0, the above formula implies the following well-known

expression:

ϖi =
1

2
res
xi=0

trA2 dai.

Using the above proposition we can calculate the Hamiltonian vector fields

associated to the JMU one-form as follows:

Lemma 3.5. For each (local) vector field v on D the Hamiltonian vector field

Xf associated to the function f := ⟨ϖ, v⟩ is given by Xf (A) = [⟨Ω, v⟩, A], where

Ω =
m∑
i=0

Ωi,

Ωi :=

n∑
α=1

∞∑
k=1

ui

(
res

yi,α=0
(y − Λi)

−1
[
(Bi − Λi)(y − Λi)

−1
]k−1

ξi,α

)

i,−
u−1
i .

Proof. For each i = 0, 1, . . . ,m the direct sum decomposition g((xi)) = L+
i ⊕ L−

i

induces a new Lie bracket [X,Y ]R = [Xi,+, Yi,+]− [Xi,−, Yi,−], X,Y ∈ g((xi)) and

hence a Poisson structure on g((xi)) via the pairing (X,Y ) �→ resxi=0 trXY dx.

For A ∈ M(a,T;L), let ι0(A) ∈ g((x0)) be the Laurent expansion of −x−2
0 A and

for i > 0 let ιi(A) ∈ g((xi)) be the Laurent expansion of A. We first show that

the maps ιi : M(a,T;L) → g((xi)) are Poisson. By a direct calculation we see

that the transpose ι∗i : g((xi)) →
⊕m

j=0 L
+
j is given by ι∗i (X) = (ι∗i,j(X))mj=0, where

ι∗i,i(X) := Xi,+ and ι∗i,j(X) ∈ L+
j (j ̸= i) is the Laurent expansion of −Xi,− in xj .

For X,Y ∈ g((xi)), we have

ι∗i,i([X,Y ]R) = [Xi,+, Yi,+] = [ι∗i,i(X), ι∗i,i(Y )],

ι∗i,j([X,Y ]R) = [Xi,−, Yi,−] = [−Xi,−,−Yi,−] = [ι∗i,j(X), ι∗i,j(Y )] (j ̸= i).

Hence ι∗i is a Lie algebra homomorphism and hence ιi is Poisson.

Now set fi = ⟨ϖi, v⟩. To showXfi(A) = [⟨Ωi, v⟩, A], we calculate the differential
dfi of fi. Since the assertion is local, we may assume that each ui is chosen so that

it depends analytically on A. Then a tangent vector δA ∈ TAM(a,T;L) and the

corresponding vector δBi ∈ TBig((xi)) = g((xi)) are related by

δBi =

{
−x−2

0 δA (i = 0),

u−1
i δAui + [Bi, u

−1
i δui] (i > 0),
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where we embeds TAM(a,T;L) into g((xi)) using ιi and δui := (ui)∗(δA) ∈ TuiG =

Mn(C). Taking the degree −(ri+1) part of the above equality for i > 0, we obtain

u−1
i δA(i)

ri ui =

{
ri[T

(i)
ri , u−1

i δui] (i = 1, 2, . . . ,m0),

[Li, u
−1
i δui] (i > m0)

(where A =
∑

j∈Z A
(i)
j x−j−1

i ), which determines the off-diagonal part (u−1
i δui)OD

of the matrix u−1
i δui:

(u−1
i δui)OD =



r−1
i ad−1

T
(i)
ri

(u−1
i δA

(i)
ri ui) (i = 1, 2, . . . ,m0),

ad−1
Li

(u−1
i δA

(i)
ri ui) (i > m0),

where for a diagonal matrix T with distinct eigenvalues and an off-diagonal matrix

X, we denote by ad−1
T X a unique off-diagonal matrix Y satisfying [T, Y ] = X.

The differential (dfi)A ∈ T ∗
AM(a,T;L) of fi is given by

(dfi)A(δA) = −
n∑

α=1

∞∑
k=1

res
xi=0

res
yi,α=0

tr
(
δBiX

(i)
α,k

)
,

where

X
(i)
α,k := (y − Λi)

−1
[
(Bi − Λi)(y − Λi)

−1
]k−1 ⟨ξi,α, v⟩.

Note that fi is invariant under the conjugation Bi �→ hBih
−1 by h ∈ H, which

implies

n∑
α=1

∞∑
k=1

res
xi=0

res
yi,α=0

tr
(
[Bi, R]X

(i)
α,k

)
= 0 (R ∈ h).

For i = 1, 2, . . . ,m0, we thus have

n∑
α=1

∞∑
k=1

res
xi=0

res
yi,α=0

tr
(
[Bi, u

−1
i δui]X

(i)
α,k

)

=

n∑
α=1

∞∑
k=1

res
xi=0

res
yi,α=0

tr
(
[Bi, (u

−1
i δui)OD]X

(i)
α,k

)

=

n∑
α=1

∞∑
k=1

res
xi=0

res
yi,α=0

tr
(
(u−1

i δui)OD[X
(i)
α,k, Bi]

)

=
1

ri

n∑
α=1

∞∑
k=1

res
xi=0

res
yi,α=0

tr

(
ad−1

T
(i)
ri

(u−1
i δA(i)

ri ui)[X
(i)
α,k, Bi]

)
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=
1

ri

n∑
α=1

∞∑
k=1

res
xi=0

res
yi,α=0

tr

(
u−1
i δA(i)

ri ui ad
−1

T
(i)
ri

[X
(i)
α,k, Bi]OD

)
.

Hence

(dfi)A(δA) = −
n∑

α=1

∞∑
k=1

res
xi=0

res
yi,α=0

tr
(
δA · uiX

(i)
α,ku

−1
i

)

− 1

ri

n∑
α=1

∞∑
k=1

res
xi=0

res
yi,α=0

tr

[
δA(i)

ri · ui ad
−1

T
(i)
ri

(
[X

(i)
α,k, Bi]OD

)
u−1
i

]
,

in other words, the differential (dfi)A ∈ T ∗
AM(a,T;L) is obtained by taking the

projection (ιi)
∗
A : g((xi)) → T ∗

AM(a,T;L) of

−
n∑

α=1

∞∑
k=1

ui

[
res

yi,α=0
X

(i)
α,k +

1

ri
xri
i res

xi=0
res

yi,α=0
ad−1

T
(i)
ri

(
[X

(i)
α,k, Bi]OD

)]
u−1
i ∈ g((xi)).

In a similar way, we see that the differential (dfi)A ∈ T ∗
AM(a,T;L) for i > m0 is

obtained by taking the projection (ιi)
∗
A of

−
n∑

α=1

∞∑
k=1

ui

[
res

yi,α=0
X

(i)
α,k + res

xi=0
res

yi,α=0
ad−1

Li

(
[X

(i)
α,k, Bi]OD

)]
u−1
i ∈ g((xi)).

The minus of the L−
i -part of the above elements are

n∑
α=1

∞∑
k=1

ui

(
res

yi,α=0
X

(i)
α,k

)

i,−
u−1
i = Ωi (i = 1, 2, . . . ,m).

Therefore the theorem of Adler–Kostant–Symes (see e.g. [1]) implies Xfi(A) =

[⟨Ωi, v⟩, A] for i > 0. On the other hand, the differential (df0)A is given by

(df0)A(δA) =
n∑

α=1

∞∑
k=1

res
x0=0

res
yi,α=0

tr
(
x−2
0 δAX

(0)
α,k

)
,

i.e., (df0)A is the projection of

−
n∑

α=1

∞∑
k=1

res
yi,α=0

X
(0)
α,k ∈ g((x0)).

The theorem of Adler–Kostant–Symes again implies Xf0(A) = [⟨Ω0, v⟩, A]. □

Now Theorem 3.1 follows from the following lemma:

Lemma 3.6. We have Ω = Ω.
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Proof. Set Ri = C[xi]/(x
ri+1
i ) and

�Bi = xri+1
i Bi, �Λi = xri+1

i Λi, ỹi = xri+1
i y, ỹi,α = xri+1

i yi,α.

We regard �Bi, �Λi as elements of g⊗Ri ≃ Mn(Ri) by taking projection C[[xi]] → Ri.

Also we regard ỹi− �Λi as an element of Mn(Ri⊗C(ỹi,α)). Consider first the case of
i > 0. By order counting we see that Ωi has order at least (k−1)−(ri+1) ≥ −(ri+1)

and does not depend on the L+
i -part of Bi. Thus xri+1

i Ωi may be viewed as a

Mn(Ri)-valued one-form and we have

u−1
i xri+1

i Ωiui =
n∑

α=1

∞∑
k=1

res
ỹi,α=0

(ỹi − �Λi)
−1

[
( �Bi − �Λi)(ỹi − �Λi)

−1
]k−1

(xri+1
i ξi,α),

where xri+1
i ξi,α is also regarded as aMn(Ri)-valued one-form. Since �Bi(0) = �Λi(0),

the matrix �Bi − �Λi ∈ Mn(Ri) is nilpotent. Thus we have

∞∑
k=1

[
( �Bi − �Λi)(ỹi − �Λi)

−1
]k−1

=
[
1− ( �Bi − �Λi)(ỹi − �Λi)

−1
]−1

= (ỹi − �Λi)(ỹi − �Bi)
−1.

Hence

xri+1
i Ωi = ui

n∑
α=1

res
ỹi,α=0

(ỹi − �Bi)
−1(xri+1

i ξi,α)u
−1
i .

Let ũi ∈ GLn(Ri) be the element obtained from �ui by taking projection C[[xi]] →
Ri. Then

ui res
ỹi,α=0

(ỹi − �Bi)
−1u−1

i = ũi

(
res

ỹi,α=0
(ỹi − �Λi)

−1

)
ũ−1
i = ũiEαũ

−1
i .

Thus we obtain

Ωi =
n∑

α=1

[�uiEα�u−1
i ξi,α

]
i,− = Ωi.

In the case of i = 0, a similar argument shows that Ω0 has order at least −r0 and

does not depend on the holomorphic part of B0. Thus xr0
0 Ω0 may be viewed as a

Mn(R0)-valued one-form and we have

xr0
0 Ω0 =

n∑
α=1

∞∑
k=1

res
ỹ0,α=0

(ỹ0 − �Λ0)
−1

[
( �B0 − �Λ0)(ỹ0 − �Λ0)

−1
]k−1

(xr0
0 ξ0,α),
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from which we deduce

xr0
0 Ω0 =

n∑
α=1

res
ỹ0,α=0

(ỹ0 − �B0)
−1(xr0

0 ξ0,α).

Denoting by ũ0 ∈ GLn(R0) the projection of �u0, we have

res
ỹ0,α=0

(ỹ0 − �B0)
−1 = ũ0

(
res

ỹ0,α=0
(ỹ0 − �Λ0 − L0x

r0
0 )−1

)
ũ−1
0 = ũ0Eαũ

−1
0 .

Hence Ω0 = Ω0. □

4. A flat connection on the phase space

In the previous section, we showed that the Hamiltonian vector fields associated

to the JMU one-form ϖ is given by [Ω, A]; so the associated differential equation

is dDA = [Ω, A]. In this section, we construct an Ehresmann connection on the

symplectic fiber bundle M(L) → D whose horizontal sections are characterized by

the differential equation dDA = ∂Ω/∂x, and show that it is symplectic, flat and

moreover complete.

Let Ωpl (resp. Ωirr) be the Dpl-part (resp. Dirr-part) of the one-form Ω:

Ωpl = −
m∑
i=1

[�giΛi�g−1
i

]
i,− dai, Ωirr =

m∑
i=0

[�gi(dDirrTi)�g−1
i

]
i,− .

Note that if we write A =
∑m

i=0 Ai, Ai ∈ L−
i , then Ωpl = −

∑m
i=1 Ai dai.

For each T ∈ Dirr, the image of M(a,T;L) via the embedding g(∗a) →⊕m
i=0 g((xi)) does not depend on a; we denote it by M(T;L). Then we obtain a

partial trivialization M(L) = M(L)irr × Dpl, where M(L)irr :=
∪

T∈Dirr
M(T;L).

We define an Ehresmann connection on the fiber bundle M(L)irr → Dirr.

Identify each fiber M(T;L) with the quotient �G+/Stab(Λ), where Stab(Λ) is

the stabilizer of the element Λ given in (2). Note that it does not depend on T.

Lemma 4.1. There exists a connection on the fiber bundle �G+ × Dirr → Dirr

such that the exterior derivation ∂Dirr on functions on �G+ × Dirr in the horizontal

direction satisfies the following conditions:

∂Dirrg
(i)
0 = 0,

[x2δ0i
i �g−1

i ∂Dirr�gi, T ′
i ]i,− = [x2δ0i

i �g−1
i �g′i, dDirrTi]i,− (i = 0, 1, . . . ,m),

(4)

where we write �gi = ∑∞
j=0 g

(i)
j xj

i , ∂Dirr�gi =
∑∞

j=0 ∂Dirrg
(i)
j · xj

i .

Proof. Write �g−1
i =

∑∞
j=0 ḡ

(i)
j xj

i . The above equalities hold if and only if the
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equality

−ri[�gi(0)−1∂Dirr
g
(i)
k , T (i)

ri ] =
k∑

j=1

k−j∑
l=0

j[ḡ
(i)
k−j−lg

(i)
j , dDT

(i)
ri−l]

−
k−1∑
j=0

k−j∑
l=0

(l − ri)[ḡ
(i)
k−j−l∂Dirrg

(i)
j , T

(i)
ri−l]

(5)

holds for all i = 0, 1, . . . ,m and k = 0, 1, . . . , ri − δ0i (when k = 0, the right hand

side is understood to be zero). Note that each ḡ
(i)
j is expressed as an algebraic

combination of g
(i)
l , l = 0, 1, . . . ,m and the expression on the right hand side

of the above equality does not contain ∂Dirrg
(i)
j , j ≥ k. Thus, starting from the

definition ∂Dirrg
(i)
0 := 0, we can recursively define ∂Dirrg

(i)
k , k = 0, 1, . . . ri − δ0i so

that �gi(0)−1∂Dirrg
(i)
k is a unique off-diagonal matrix satisfying the above equality.

For k > ri − δ0i, we define ∂Dirr�g(i)k = 0. We extend the definition of ∂Dirrf for

functions f on �G+ × D using the Leibniz rule and ∂Dirr(C) = 0. Then it satisfies

conditions (4). □

Proposition 4.2. The connection on �G+×Dirr → Dirr given by ∂Dirr is equiv-

ariant with respect to the action of Stab(Λ), and hence descends to a connection

on M(L)irr → Dirr. The horizontal sections wth respect to the induced connection

on M(L) satisfy the differential equation dDA = ∂Ω/∂x.

Proof. For �g ∈ �G+ and �h ∈ Stab(Λ), we have

[x2δ0i
i (�gi�hi)

−1(�gi�hi)
′, dDirrTi]i,− =

(�h−1
i [x2δ0i

i �g−1
i �g′i, dDirrTi]�hi

)
i,−

= [x2δ0i
i

�h−1
i �g−1

i ∂Dirr�gi · �hi, T
′
i ]i,− (i = 0, 1, . . . ,m),

which implies that the connection is Stab(Λ)-equivariant.

Let ∂D be the exterior derivation in the horizontal direction with respect to the

induced connection on M(L). Then its Dpl-part ∂Dpl
satisfies

∂Dpl
A = −

m∑
i=1

∂Ai

∂xi
dai =

∂Ωpl

∂x
.

Furthermore, conditions (4) imply

∂DirrA = −∂Dirr

[�g0(x2
0T

′
0)�g−1

0

]
0,− +

m∑
i=1

∂Dirr

[�giΛi�g−1
i

]
i,−

= −
[�g0(x2

0dDirrT
′
0)�g−1

0

]
0,− +

m∑
i=1

[�gi(dDirrT
′
i )�g−1

i

]
i,−
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−
(�g0[�g−1

0 ∂Dirr�g0, x2
0T

′
0]�g−1

0

)
0,− +

m∑
i=1

∂Dirr

(�gi[�g−1
i ∂Dirr�gi, T ′

i ]�g−1
i

)
i,−

= −
[�g0(x2

0dDirrT
′
0)�g−1

0

]
0,− +

m∑
i=1

[�gi(dDirrT
′
i )�g−1

i

]
i,−

−
(�g0[�g−1

0 �g′0, x2
0dDirrT0]�g−1

0

)
0,− +

m∑
i=1

(�gi[�g−1
i �g′i, dDirrTi]�g−1

i

)
i,− =

∂Ωirr

∂x
.

The proof is completed. □

We have another way to construct the above connection. Recall that if M → X

is a symplectic fiber bundle and ω is a two-form on M whose restriction to each

fiber coincides with the symplectic form, then the orthogonal complement of the

vertical subbundle of TM with respect to ω defines a connection on M . This

connection is symplectic if and only if ι(v1 ∧ v2)dω = 0 for every pair of vertical

vector fields v1, v2; in particular, if ω is closed, then the associated connection is

symplectic. Furthermore, if ω is closed, then the associated connection is flat if

and only if for every pair of horizontal vector fields v1, v2, the function ω(v1, v2) is

constant along each fiber. See [4] for those facts.

Proposition 4.3. Define a two-form �ω on �G+ × Dirr by

�ω =

m∑
i=0

�ωi, �ωi = d res
xi=0

tr
(
Λi�g−1

i d�gi − dTi · �g−1
i �g′i

)
.

Then it descends to a closed two-form ω =
∑

ωi on M(L)irr whose restriction

to each fiber coincides with the Kirillov–Kostant–Souriau symplectic form. Fur-

thermore, the associated connection on M(L)irr coincides with the one given in

Proposition 4.2. In particular, the connection is symplectic.

Proof. For i = 0, 1, . . . ,m, we have

�ωi = res
xi=0

tr
(
dΛi ∧ �g−1

i d�gi − Λi�g−1
i d�gi ∧ �g−1

i d�gi
)

− res
xi=0

tr
(
dTi ∧ �g−1

i d�gi · �g−1
i �g′i − dTi ∧ �g−1

i d�g′i
)

= res
xi=0

tr(dT ′
i ∧ �g−1

i d�gi)− res
xi=0

tr
(
Λi�g−1

i d�gi ∧ �g−1
i d�gi

)

− res
xi=0

tr
(
dTi ∧ �g−1

i d�gi · �g−1
i �g′i − dTi ∧ �g−1

i d�g′i
)
.

The first term on the most right hand side can be expressed as

res
xi=0

tr(dT ′
i ∧ �g−1

i d�gi) = res
xi=0

tr(dTi ∧ �g−1
i d�gi)′ − res

xi=0
tr
(
dTi ∧ (�g−1

i d�gi)′
)
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= res
xi=0

tr(dTi ∧ �g−1
i �g′i�g−1

i d�gi)− res
xi=0

tr(dTi ∧ �g−1
i d�g′i).

Thus we obtain

�ωi = − res
xi=0

tr
(
Λi�g−1

i d�gi ∧ �g−1
i d�gi + [�g−1

i �g′i, dTi] ∧ �g−1
i d�gi

)
. (6)

Since [x2δ0i
i

�h−1
i

�h′
i, dTi]i,− = 0 for all �h ∈ Stab(Λ) and i = 0, 1, . . . ,m, we see that

�ω is Stab(Λ)-invariant. Also, since

[x2δ0i
i Λi, �ξi]i,− = 0, [x2δ0i

i dTi, �ξi]i,− = 0 (i = 0, 1, . . . ,m)

for all elements �ξ = (�ξi) of the Lie algebra of Stab(Λ), we see that ι(v)�ω = 0 for

all infinitesimal action v of Stab(Λ). Hence �ω descends to a closed two-form ω on

M(L)irr. The restriction of ω to the vertical subbundle is given by

ωvert = − res
x0=0

tr
(
T ′
0�g−1

0 d�g0 ∧ �g−1
0 d�g0

)
−

m∑
i=1

res
xi=0

tr
(
Λi�g−1

i d�gi ∧ �g−1
i d�gi

)
,

which is exactly the Kirillov–Kostant–Souriau form.

Let v be a vertical vector field and w a horizontal vector field. Then conditions

(4) imply

[x2
0�g−1

0 �g′0, dT0(w)]0,− = [�g−1
0 d�g0(w), x2

0T
′
0]0,−,

[�g−1
i �g′i, dTi(w)]i,− = [�g−1

i d�gi(w), T ′
i ]i,− = [�g−1

i d�gi(w),Λi]i,− (i > 0).

For i = 0, 1, . . . ,m, we thus have

res
xi=0

tr
(
[�g−1

i �g′i, dTi] ∧ �g−1
i d�gi

)
(w, v)

= res
xi=0

tr
(
[�g−1

i �g′i, dTi(w)]�g−1
i d�gi(v)

)

− res
xi=0

tr
(
[�g−1

i �g′i, dTi(v)]�g−1
i d�gi(w)

)

= res
xi=0

tr
(
[�g−1

i d�gi(w), T ′
i + (1− δ0i)Lix

−1
i ]�g−1

i d�gi(v)
)

= − res
xi=0

tr
(
(T ′

i + (1− δ0i)Lix
−1
i )[�g−1

i d�gi(w), �g−1
i d�gi(v)]

)
,

which implies ω(v, w) = 0. □

Next we show that our connection is flat. The following lemma is useful:

Lemma 4.4.

[�g−1
i ∂Dirr�gi, dDirrTi] ∈ x1−δ0i

i g[[xi]]⊗ Ω2(Dirr) (i = 0, 1, . . . ,m).
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Proof. Conditions (4) imply

[�g−1
i ∂Dirr�gi, T ′

i ]− [�g−1
i �g′i, dDirrTi] ∈ x−δ0i

i g[[xi]]⊗ Ω1(Dirr).

Hence the off-diagonal part of �g−1
i ∂Dirr�gi satisfies

(�g−1
i ∂Dirr�gi

)
OD

+ ad−1
T ′
i

(
[�g−1

i �g′i, dDirrTi]
)
∈ xri+1−δ0i

i g[[xi]]⊗ Ω1(Dirr),

which implies

[�g−1
i ∂Dirr

�gi, dDirr
Ti] +

[
ad−1

T ′
i

(
[�g−1

i �g′i, dDirr
Ti]

)
, dDirr

Ti

]
∈ x1−δ0i

i g[[xi]]⊗ Ω2(Dirr).

The assertion now follows from
[
ad−1

T ′
i

(
[�g−1

i �g′i, dDirrTi]
)
, dDirrTi

]
= ad−1

T ′
i

([
[�g−1

i �g′i, dDirrTi], dDirrTi

])
= 0.

□

Proposition 4.5. ω(v, w) = 0 for every pair of horizontal vector fields v, w.

In particular, the associated connection is flat.

Proof. For i > 0, equalities (5) and (6) show

ωi(v, w) = − res
xi=0

tr
(
Λi[�g−1

i d�gi(v), �g−1
i d�gi(w)]

)

− res
xi=0

tr
(
[�g−1

i �g′i, dTi(v)]�g−1
i d�gi(w)

)

+ res
xi=0

tr
(
[�g−1

i �g′i, dTi(w)]�g−1
i d�gi(v)

)

= res
xi=0

tr
(�g−1

i �g′i[dTi(w), �g−1
i d�gi(v)]

)
,

which is zero thanks to the previous lemma. □

Finally we show that our connection is complete.

Proposition 4.6. The connection on M(L)irr is complete.

Proof. Let γ : [0, 1] → Dirr be an arbitrary smooth curve. To show that there

exists a horizontal lift �γ : [0, 1] → �G+ × Dirr of γ with arbitrary initial value in



156 D. YAMAKAWA

M(γ(0);L), we have to solve the system of ordinary differential equations

−ri

[
(g

(i)
0 )−1 dg

(i)
k

dt
, γ∗T (i)

ri

]
=

k∑
j=1

k−j∑
l=0

j

[
ḡ
(i)
k−j−lg

(i)
j ,

d(γ∗T
(i)
ri−l)

dt

]

−
k−1∑
j=0

k−j∑
l=0

(l − ri)

[
ḡ
(i)
k−j−l

dg
(i)
j

dt
, γ∗T

(i)
ri−l

]
(k ≤ ri − δ0i),

dg
(i)
k

dt
= 0 (k > ri − δ0i)

(7)

with (g
(i)
0 )−1gk off-diagonal. We rewrite the first equation as

−ri

[
(g

(i)
0 )−1 dg

(i)
k

dt
, γ∗T (i)

ri

]
= k

[
(g

(i)
0 )−1g

(i)
k ,

d(γ∗T
(i)
ri )

dt

]
+

⟨
�γ∗Γi,k,

d

dt

⟩
,

where

Γi,k :=
k−1∑
j=1

k−j∑
l=0

(
j[ḡ

(i)
k−j−lg

(i)
j , dDirrT

(i)
ri−l]− (l − ri)[ḡ

(i)
k−j−l∂Dirrg

(i)
j , T

(i)
ri−l]

)
.

Note that it only depends on g
(i)
j , j < k and T. For α, β = 1, 2, . . . , n with α ̸= β,

the (α, β)-entry of the above equation is expressed as

(
(g

(i)
0 )−1 dg

(i)
k

dt

)

αβ

= − k

ri

(
(g

(i)
0 )−1g

(i)
k

)
αβ

d

dt
log(t(i)α,ri − t

(i)
β,ri

) +
1

ri

(Γi,k)αβ

t
(i)
α,ri − t

(i)
β,ri

,

where we write T
(i)
j = diag(t

(i)
α,j)

n
α=1 and abbreviate γ∗t

(i)
α,ri as t

(i)
α,ri . Assuming that

g
(i)
j for j < k are known, this equation can be explicitly solved as

(
(g

(i)
0 )−1g

(i)
k

)
αβ

=
1

ri
(t(i)α,ri − t

(i)
β,ri

)
− k

ri

∫
(t(i)α,ri − t

(i)
β,ri

)
k
ri

−1
(Γi,k)αβ .

It follows that the connection is complete. □

5. Isomonodromy equations as completely integrable non-

autonomous Hamiltonian systems

Let π : �Dirr → Dirr be a universal covering and choose a symplectic manifold M
isomorphic to fibers of M(L)irr. Then the results in the previous section shows that

there exists a trivialization φ : π∗M(L)irr
≃−→ M× �Dirr of symplectic fiber bundles

under which the connection given by ω corresponds to the trivial connection on
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M× �Dirr. Taking the base change via the projection D → Dirr, we thus obtain a

covering π̃ : �Dirr × Dpl → D and a trivialization φ̃ : π̃∗M(L)
≃−→ M× (�Dirr × Dpl).

Now our main theorem is as follows:

Theorem 5.1. Under the trivialization φ̃, the isomonodromy equation is

described as the completely integrable non-autonomous Hamiltonian system with

Hamiltonian one-form ϖ.

Proof. It remains to show that our non-autonomous Hamiltonian system is inte-

grable. First, the theorem of Adler–Kostant–Symes shows that the Hamiltonians

are Poisson commutative: {ϖ,ϖ} = 0. We show that ϖ is closed with respect to

the exterior derivation in the horizontal direction: ∂Dϖ = 0. The proof is similar

to [8, Theorem 5.1]. Since the assertion is local, we may assume that �u is chosen

so that it depends analytically on A. Applying ∂D to the equality

A = �uiΛi�u−1
i + �u′

i�u−1
i (i = 1, 2, . . . ,m),

we obtain

∂Ω

∂x
= ∂DA = [∂D�ui · �u−1

i , �uiΛi�u−1
i ]

+ �uidDΛi�u−1
i + ∂D�u′

i · �u−1
i − �u′

i�u−1
i ∂D�ui · �u−1

i ,

i.e.,

�u−1
i

∂Ω

∂x
�ui = [�u−1

i ∂D�ui,Λi] + dDΛi + �u−1
i ∂D�u′

i − �u−1
i �u′

i�u−1
i ∂D�ui

for i > 0. We use it to calculate ∂Dϖi for i > 0:

−∂Dϖi = res
xi=0

tr
(
∂D(�u−1

i �u′
i) ∧ Ξi

)

= res
xi=0

tr
(�u−1

i ∂D�u′
i ∧ Ξi

)
− res

xi=0
tr
(�u−1

i ∂D�ui · �u−1
i �u′

i ∧ Ξi

)

= res
xi=0

tr

(
�u−1
i

∂Ω

∂x
�ui ∧ Ξi

)
− res

xi=0
tr
(
[�u−1

i ∂D�ui,Λi] ∧ Ξi

)

− res
xi=0

tr (dDΛi ∧ Ξi) + res
xi=0

tr
(�u−1

i �u′
i[�u−1

i ∂D�ui,Ξi]
)
.

The second and third terms are zero because [�u−1
i ∂D�ui,Λi] is off-diagonal and

dDΛi∧Ξi has no residue. We show that the fourth term is also zero. First, we have

res
xi=0

tr
(�u−1

i �u′
i[�u−1

i ∂Dpl
�ui,Ξi]

)

= − res
xi=0

tr
(�u−1

i �u′
i[�u−1

i �u′
i dai,Ξi]

)

= − res
xi=0

tr
(
[�u−1

i �u′
i, �u−1

i �u′
i dai] ∧ Ξi

)
= 0.
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Also, since �u · Λ = A, we can decompose �ui as �ui = �gi�hi, where �hi ∈ Stab(Λ) and

�gi satisfies equality (4). Therefore Lemma 4.4 implies

[�u−1
i ∂Dirr�ui,Ξi]i,− =

(�h−1
i [�g−1

i ∂Dirr�gi,Ξi]�hi

)
i,−

+ [�h−1
i ∂Dirr

�hi,Ξi]i,−

= −
(�h−1

i [�g−1
i ∂Dirr�gi,Λi]�hi

)
i,−

∧ dai

= −
(�h−1

i [�g−1
i �g′i, dDirrTi]�hi

)
i,−

∧ dai

= −[�u−1
i �u′

i, dDirrTi]i,− ∧ dai.

Thus we obtain

res
xi=0

tr
(�u−1

i �u′
i[�u−1

i ∂D�ui,Ξi]
)
= − res

xi=0
tr
(
[�u−1

i �u′
i, �u−1

i �u′
i]dDirrTi ∧ dai

)
= 0.

Hence

−∂Dϖi = res
xi=0

tr

(
∂Ω

∂x
∧ �uiΞi�u−1

i

)
(i = 1, 2, . . . ,m).

A similar argument shows

−∂Dϖ0 = res
x0=0

tr

(
∂Ω

∂x0
∧ �ui(dDT0)�u−1

i

)
.

Hence

−∂Dϖ =
m∑
i=0

res
xi=0

tr

(
∂Ω

∂xi
∧ �uiΞi�u−1

i

)

=

m∑
i=0

res
xi=0

tr

(
∂Ω

∂xi
∧ Ωi

)
+

m∑
i=0

res
xi=0

tr

(
∂Ω

∂xi
∧Ri

)
,

where Ri := �uiΞi�u−1
i − Ωi ∈ L+

i . Since

tr

(
∂

∂xi
(Ωi +Ri) ∧ (Ωi +Ri)

)
= tr

∂

∂xi
Ξi ∧ Ξi

has no residue at xi = 0, we have

res
xi=0

tr

(
∂Ω

∂xi
∧Ri

)
=

1

2
res
xi=0

tr

(
∂

∂xi
(Ωi +Ri) ∧ (Ωi +Ri)

)
= 0.

Also, we have

res
xi=0

tr

(
∂Ω

∂xi
∧ Ω

)
=

m∑
j=0

res
xi=0

tr

(
∂Ω

∂xi
∧ Ωj

)
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=
∑
j ̸=i

res
xi=0

tr

(
∂Ωi

∂xi
∧ Ωj

)
+

∑
j ̸=i

res
xi=0

tr

(
∂Ωj

∂xi
∧ Ωi

)

= 2
∑
j ̸=i

res
xi=0

tr

(
∂Ωj

∂xi
∧ Ωi

)
= 2 res

xi=0
tr

(
∂Ω

∂xi
∧ Ωi

)
.

Thus we obtain

−∂Dϖ =
1

2

m∑
i=0

res
xi=0

tr

(
∂Ω

∂xi
∧ Ω

)
= 0

by the residue theorem. □
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