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Ramified irregular singularities of meromorphic connections

and plane curve singularities

Kazuki Hiroe

Abstract. In this paper we propose similarity between ramified irreg-
ular singularities of meromorphic connections on formal disk and plane curve
singularities. First we relate Komatsu-Malgrange irregularities of meromor-
phic connections to intersection numbers and Milnor numbers of plane curve

germs. Next we see that local Fourier transforms of connections can be seen
as blow up of plane curves. Moreover a necessary and sufficient condition for
an irreducible connection to have a resolution of the ramified singularity is de-

termined as an analogy of the resolution of plane curve singularities. Finally,
for meromorphic connections we define an analogue of Puiseux characteristics
which are topological invariants of plane curve singularities and show that it
can be seen as an invariant of Stokes structures of meromorphic connections.

Introduction

Our interest in this paper is the similarity between ramified irregular singu-

larities of meromorphic connections on formal disk and plane curve singularities.

Meromorphic connections can be seen as modules over a “non-commutative” ring,

the ring of differential operators, and plane curve germs have “commutative” rings

as their local rings, stalks of structure sheaves. Between these commutative and

non-commutative ones, we shall find similarities of (i) invariants: intersection num-

bers and Milnor numbers of curves and Komatsu-Malgrange irregularities of con-

nections, of (ii) transformations: the blow up of curves and the local Fourier trans-

form of connections, and of (iii) topological structures: knots arising from curve

singularities and Stokes structures of connections.

To state our main theorems, we recall some definitions which are explained in

detail in the latter sections. Let K be an algebraically closed field of characteristic

zero. For a positive integer q and f ∈ K((x
1
q )) with −p/q = ord(f) < 0, let us

define Ef,q = (V,∇), a connection over K((x)), as follows. Regard V = K((x
1
q )) as
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a K((x))-vector space and define ∇(v) = ( d
dx +x−1f)v for v ∈ V . To an irreducible

Ef,q, we associate a plane curve germ,

Cf,q(x, y) =

q∏
k=1

(
y − 1

fk(x
1
q )

)
,

where fk(x
1
q ) = f(ζkq x

1
q ) and ζq is a primitive q-th root of unity. Then the inter-

section numbers I( , ) and Milnor numbers µ of curve germs can be written by the

irregularities Irr( ) of connections as follows.

Theorem 0.1 (Theorem 3.5). Let Ef,q = (V,∇), Eg,q′ = (W,∇′) be irre-

ducible K((x))-connections. Set −p/q = ord(f), −p′/q′ = ord(g). If Ef,q ̸∼= Eg,q′ ,

then

I (Cf,q, Cg,q′) = pq′ + p′q − Irr(HomK((x))(V,W )).

Theorem 0.2 (Theorem 3.6). Let Ef,q be an irreducible K((x))-connection

with ord(f) = −p/q. Then the Milnor number µ of the associated curve Cf,q is

µ = (2p− 1)(q − 1)− Irr(EndK((x))(V )).

The Milnor number is a geometric invariant of a curve defined as the first Betti

number of a Milnor fiber, the dimension of the Jacobian ring and so on. Also

Komatsu-Malgrange irregularity is an analytic invariant of a connection defined

as an index of the differential operator, the dimension of the Malgrange-Shibya

cohomology (see [4]), etc. The formula in the above theorem connects these geo-

metric invariant and analytic one. Moreover this formula may evoke a similarity of

global invariants, genera of curves and indices of rigidity of connections. Namely

the topological genus of the normalization of an algebraic curve on P2 can be writ-

ten as the sum of Milnor numbers of the singular points and the index of rigidity

of a meromorphic connection on P1 is written as the sum of Komatsu-Malgrange

irregularities of the singular points (see [2] for instance) as well.

Next we consider similarity between the local Fourier transform of connections

and the blow up of plane curves, which is already pointed out by Sabbah who

successfully uses the blowing up technique to calculate an explicit formula of local

Fourier transforms in [25] after the work of Roucairol in [24].

The explicit formula of the local Fourier transforms is independently obtained

by two authors, Fang in [11] and Sabbah in [25], from the different point of view.

Fang uses an algebraic computation and Sabbah uses a technique of the blowing

up of curves. After their works Graham-Squire gave an simple description of their

formulas in [13]. We shall see that Graham-Squire’s description leads us to a

formula which may connect Fang’s and Sabbah’s different approaches. Namely, we
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show that the local Fourier transform of Ef,q can be seen as the blowing up of the

associated curve Cf,q, see Proposition 3.8.

The Fourier-Laplace transform plays important roles in the theory of linear

ordinary differential equations on the Riemann sphere. The local analogy of the

transform, say the local Fourier transform, is introduced by Laumon [18] in the l-

adic setting, and by Bloch-Esnault [7] and Garćıa Lopéz [12] in the complex domain

to study local structures of the image of Fourier transform of global differential

equations. There are many applications of this transform to the analytic theory of

differential equations, for example, see the works of Mochizuki [23], Sabbah [26]

and Hien-Sabbah[15] in which the local Fourier transform is successfully applied

to study the Stokes structure of differential equations. This realization of the local

Fourier transform as the blow up may introduce a new algebraic and geometric

tool for the study of this analytic transformation.

Furthermore as an application of this realization, we use the blowing up tech-

nique to show the following necessary and sufficient condition for the existence of

a resolution of ramified irregular singularities of irreducible connections via local

Fourier transforms.

To an irreducible Ef,q, we associate a sequence of integers as follows. Let us

write f(x
1
q ) = anx

n
q + an+1x

n+1
q + · · · . Define

−β1 = min{i | ai ̸= 0, q ̸ |i}, e1 = gcd(q, β1).

Also define

−βk = min{i | ai ̸= 0, ek−1 ̸ |i}, ek = gcd(ek−1, βk),

inductively till we reach g with eg = 1. Then we call the sequence of the integers

(q, p;β1, . . . , βg),

the dual Puiseux characteristic of Ef,q.

Theorem 0.3 (Theorem 3.10). Let Ef,q be an irreducible connection with

the dual Puiseux characteristic (q, p;β1, . . . , βg). Then we can reduce Ef,q to a rank

1 connection by a finite iteration of local Fourier transforms and additions if and

only if we have

ei−1 ≡ ±ei (modβi)

for all i = 1, . . . , g. Here e0 = q.

In the final section, we shall moreover consider the following problem. We take

K as the field of complex numbers C. Let us fix a dual Puiseux characteristic
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(q, p;β1, . . . , βg) and consider a family

E = {Ef,q : irreducible connection |
Ef,q has the dual Puiseux characteristic (q, p;β1, . . . , βg)}.

We look for an invariance of this family whose elements are not isomorphic as

connections in general. For instance, it is well known that if two plane curve germs

have the same Puiseux characteristic, then the knot structures of these curves

around the singular point are isotopic. Namely the Puiseux characteristic gives an

topological invariant of plane curve germs. The aim of this section is to look for

the analogy for connections.

Let us fix an element Ef,q ∈ E and define f̃(x
1
q ) =

∑g
i=1 aβix

− βi
q where we

write f(x
1
q ) = apx

− p
q + ap−1x

− p−1
q + · · · . Also define f̃i(x

1
q ) = f̃(ζiqx

1
q ) for i =

1, . . . , q. If x moves in a small circle Sη = {z ∈ C | |z| = η}, the order of

sizes of Re(f̃i(x
1
q )) for i = 0, . . . , q − 1 will change according to the argument

of x. Namely, we have Re(f̃i(x
1
q )) < Re(f̃j(x

1
q )) for an argument, Re(f̃i(x

1
q )) >

Re(f̃j(x
1
q )) for another argument and there also are some arguments for which these

are incomparable. This is one of the reasons why the Stokes phenomenon happens.

Thus to understand the Stokes phenomenon of the connections over C({x}) formally

isomorphic to Ef,q, we study the closed curve

St =
{
(x, y)

���x ∈ Sη, y = Re(f̃(x
1
q ))

}
.

Then Theorem 4.7 and Corollary 4.8 show that the curve St has an invariance which

depends only on the dual Puiseux characteristic and is independent of Ef,q ∈ E .
The invariance is obtained from the structure of iterated torus knot of the associated

curve germ Cf̃ ,q(x, y).

Our theorem show that a structure of the space of the Stokes matrices of C({x})-
connections which is formally isomorphic to Ef,q is determined by the curve St

(see Theorem 4.5 for instance). Thus we may say that our theorem also gives

an ‘topological’ invariant of wild fundamental groupoid [22] and wild character

varieties [8].

1. Singularities of plane curve germs

In this section we give basic definitions and facts on singularities of plane curve

germs, which are found in standard references [10, 14, 29] for example. Let K

be an algebraically closed field of characteristic zero. Let K[x],K[[x]] and K((x))

denote the polynomial ring, the ring of formal power series and the field of formal

Laurent series. For f(x) = anx
n + an+1x

n+1 + · · · ∈ K((x)), we call the lowest
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exponent with nonzero coefficient the order of f and denote by ordx(f), i.e.,

ordx(f) = min{i | ai ̸= 0}.

Similarly the multi-variable analogue, K[x, y],K[[x, y]] are defined. We can de-

compose f(x, y) ∈ K[[x, y]] as the sum of homogeneous terms,

f(x, y) = · · ·+ fk(x, y) + fk+1(x, y) + · · · ,

where fk(x, y) ∈ K[x, y] are homogeneous polynomials of degree k. The least

integer k0 such that fk(x, y) ̸= 0 is called multiplicity of f .

Definition 1.1. A plane curve germ is the equivalence class of a non-

invertible element f of K[[x, y]]\{0}. Here f, g ∈ K[[x, y]] are equivalent when

there is a unit u ∈ K[[x, y]] such that f = ug. A plane curve germ of multiplicity

one is called regular. When the multiplicity is greater than one, the curve is called

singular.

1.1. Good parametrizations

Suppose that f(x, y) ∈ K[[x, y]]\{0} is regular of order m > 0 with respect to

y, i.e., f(0, y) ∈ K[[y]] has the order m. Then the Weierstrass preparation theorem

says that there exists an unit u ∈ K[[x, y]] such that

f(x, y) = u

(
ym +

m−1∑
r=0

ar(x)y
r

)

where ar(x) ∈ K[[x[].

Then Puiseux’s theorem tells us that f can be decomposed as

f(x, y) = u
m∏
j=1

(
y − gj(x

1
mj )

)
,

where gj(t) ∈ K[[t]].

Definition 1.2. Let f(x, y) be an irreducible element in K[[x, y]] and regular

of order l > 0 with respect of y. Then we see that the equation f(x, y) = 0 admits

at least one solution of the form y = ϕ(x
1
m ) with ϕ(t) ∈ K[[t]]. Here we may assume

m = min
{
r ∈ N

���ϕ ∈ K((x
1
r ))

}
.

Then the parametrization x = tm, y = ϕ(t) of the curve germ is called the good

parametrization.

Conversely a good parametrization defines an irreducible curve germ as follows.
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Let x = tm, y = ϕ(t) be a good parametrization and define

f(x, y) =

m∏
i=1

(
y − ϕ(ζimx

1
m )

)
,

where ζm is a primitive m-th root of unity.

Let x = tm, y =
∑

i≥n ait
i (an ̸= 0) be a good parametrization. Here we may

assume n ≥ m because if not, we can take another parametrization y = un, x =∑
i≥m biu

i (bm ̸= 0) by solving un =
∑

i≥n ait
i. Define β1 to be the first exponent

of
∑

i≥n ait
i which is indivisible by m and e1 to be the greatest common divisor of

m and β1, i.e.,

β1 = min{i | ai ̸= 0, m ̸ | i}, e1 = gcd(m,β1).

Inductively define

βk = min{i | ai ̸= 0, ek−1 ̸ | i}, ek = gcd(ek−1, βk)

till we reach g with eg = 1.

Definition 1.3. For the above good parametrization, the sequence of positive

integers

(m;β1, . . . , βg)

is called the Puiseux characteristic of the curve germ.

1.2. Blowing up

Let us recall the blowing up of the affine space A2(K).

Definition 1.4. Let us define a subspace of A2(K)× P1(K) by

T = {(x, y, (ξ : η)) | xη = yξ},

where (ξ : η) is the homogeneous coordinate of P1(K). Then the natural projection

π : T → A2(K) is called the blowing up of A2(K) with the center O = (0, 0).

The projective line P1(K) is covered by two open sets U1 = {(ξ : η) | ξ ̸= 0}
and U2 = {(ξ : η) | η ̸= 0} which are isomorphic to A(K). Hence we can cover T

by T1 = T ∩ (A2(K) × U1) and T2 = T ∩ (A2(K) × U2). Both T1 and T2 can be

seen as A2(K) by

ρ1 : T1 −→ A2(K)

(x, y, (ξ : η)) �−→ (X,Y ) = (x, η
ξ )

,
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ρ2 : T2 −→ A2(K)

(x, y, (ξ : η)) �−→ (X,Y ) = ( ξη , y).

Thus the restrictions of π on T1 and T2 give transformations in A2(K), say σ1 =

π ◦ ρ−1
1 and σ2 = π ◦ ρ−1

2 .

Definition 1.5. Transformations in A2(K) defined by

σ1 : A2(K) −→ A2(K)

(x1, y1) �−→ (x, y) = (x1, x1y1)
,

σ2 : A2(K) −→ A2(K)

(x1, y1) �−→ (x, y) = (x1y1, y1)
,

are called quadratic transforms. These induce homomorphisms

σ1 : K[[x, y]]−→K[[x1, y1]]

x �−→ x1

y �−→ x1y1

,

σ2 : K[[x, y]]−→K[[x1, y1]]

x �−→ x1y1
y �−→ y1

.

These are called quadratic transforms as well.

If f(x, y) has the multiplicity k, then σ1(f)(x1, y1) and σ2(f)(x1, y1) can be

divided by xk
1 and yk1 respectively.

Definition 1.6. Let f(x, y) be a curve germ with the multiplicity k. Then

σ∗
1(f)(x1, y1) = 1

xk
1
σ1(f)(x1, y1) and σ∗

2(f)(x1, y1) = 1
yk
1
σ2(f)(x1, y1) are called

strict transforms of f .

Suppose that an irreducible curve germ f has a good parametrization x =

tm, y = ant
n+an+1t

n+1+ · · · where an ̸= 0 and n ≥ m. Then the strict transform

σ∗
1(f)(x1, y1) has the good parametrization x1 = tm, y1 = ant

n−m+an+1t
n−m+1+

· · · . Here we note that σ1(f)
∗(0, 0) ̸= 0, i.e., σ∗

1 is invertible if n = m. Thus we

define

σ∗(f)(x1, y1) =

{
σ∗
1(f)(x1, y1) if n > m,

σ∗
1(f)(x1, y1 − an) if n = m,

and call σ∗(f)(x1, y1) the blowing up of f . If f has a good parametrization y =

un, x = bmum + bm+1u
m+1 + · · · where bm ̸= 0 and m ≥ n, then we define

σ∗(f)(x1, y1) =

{
σ∗
2(f)(x1, y1) if m > n,

σ∗
2(f)(x1 − bm, y1) if m = n,

similarly.
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Let us see how the blowing up changes Puiseux characteristics of curve germs.

Proposition 1.7 (see Theorem 3.5.5 in [29] for example). For an irre-

ducible curve germ f(x, y) with the Puiseux characteristic (m;β1, . . . , βg), we can

compute the Puiseux characteristic of σ∗(f) as follows.

1. If β1 > 2m,

(m;β1 −m, . . . , βg −m).

2. If β1 < 2m and (β1 −m) ̸ |m,

(β1 −m;m,β2 − β1 +m, . . . , βg − β1 +m).

3. If (β1 −m) |m,

(β1 −m;β2 − β1 +m, . . . , βg − β1 +m).

1.3. Some invariants of curves

Definition 1.8. Let f, g be curve germs. Then the integer

I(f, g) = dimKK[[x, y]]/⟨f, g⟩

is called the intersection number of f and g. Here ⟨f, g⟩ is the ideal of K[[x, y]]

generated by f, g.

Definition 1.9. Let f(x, y) be a curve germ. Then the integer

µ = I

(
∂f

∂x
,
∂f

∂y

)

is called the Milnor number of f .

These integers can be computed from good parametrizations and Puiseux char-

acteristics as follows, see the section 4 in [29] and the section 7.4 in [14].

Lemma 1.10. Let f(x, y) be an irreducible curve germ with a good parametriza-

tion x = tm, y = ϕ(t) = ant
n + an+1t

n+1 + · · · (n ≥ m), and the Puiseux charac-

teristic (m;β1, . . . , βg).

1. For a curve germ g(x, y) ̸= f(x, y), the intersection number I(f, g) is equal

to the order of g(tm, ϕ(t)).
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2. The Milnor number of f is

µ =

g∑
i=1

(ei−1 − ei)(βi − 1).

Lemma 1.11 (see COROLLARY 7.16 and THEOREM 7.18 in [14] for

example). Let f(x, y) be an irreducible curve germ with n = I(f, x) and m =

I(f, y). Then we have

µ = I

(
f,

∂f

∂x

)
−m+ 1, µ = I

(
f,

∂f

∂y

)
− n+ 1.

2. Formal meromorphic connections on a disk

In this section we recall basic definitions and facts of formal meromorphic con-

nections on a disk.

Definition 2.1. Let V be a finite dimensional vector space over K((x)). A

connection on V is a K-linear map ∇ : V → V satisfying the Leibniz rule

∇(fv) = f∇(v) +
df

dx
∇(v)

for f ∈ K((x)) and v ∈ V . We call the pair (V,∇) the K((x))-connection shortly.

Sometimes we write (V,∇x) to emphasize the variable x.

The rank of (V,∇) is the dimension of V as the K((x))-vector space. We say

that (V,∇) is irreducible if V has no proper nontrivial K((x))-subspace W such that

∇(W ) ⊂ W . Morphisms between connections (V1,∇1) and (V2,∇2) are K((x))-

linear maps ϕ : V1 → V2 satisfying ϕ∇1 = ∇2ϕ.

2.1. Indecomposable decompositions of connections

Let us give a quick review of indecomposable decompositions of connections

based on the works of Hukuhara, Turrittin, Levelt, Balser-Jurkat-Lutz, Babbitt-

Varadarajan and so on, [16, 28, 19, 5, 3]. We adopt the descriptions in [13, 25].

For a positive integer q and f ∈ K((x− 1
q )), let us define Ef,q = (V,∇), a

connection over K((x)), as follows. Regard V = K((x
1
q )) as a K((x))-vector space

and define ∇(v) = ( d
dx +x−1f)v for v ∈ V . The irreducibility and isomorphic class

of Ef,q are determined as follows (see the section 3 in [25] for example). If Ef,q

and Eg,q are isomorphic, then there exists an integer 0 ≤ r ≤ q − 1 such that

f(x
1
q )− g(ζrqx

1
q ) ∈ Rq(x) = K((x

1
q ))/

(
x

1
q K[[x

1
q ]] +

1

q
Z
)

Also the converse is true. Let us define Ro
q(x) as the set of f ∈ Rq(x) that cannot
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be represented by elements of K((x
1
r )) for any 0 < r < q. Then the connection Ef,q

is irreducible if and only if the image of f in Ro
q .

Proposition 2.2 (Hukuhara-Turrittin-Levelt decomposition). Ev-

ery (V,∇) decomposes as

(V,∇) ∼=
⊕
i

(Efi,qi ⊗ Jmi)

where fi ∈ Ro
qi(x) and Jm = (C((x))⊕m, d

dx + x−1Nm) with the nilpotent Jordan

block Nm of size m.

2.2. Local Fourier transforms

The local Fourier transform is introduced by Laumon, Bloch-Esnault and Garćıa

López [18, 7, 12] to analyze formal local structures of the Fourier transform of

meromorphic connections on P1. In this paper, we consider the local Fourier trans-

form only for Ef,q following Proposition 3.7, 3.9 and 3.12 in [7] and refer to original

papers for general definitions and properties.

Definition 2.3. Let z, ẑ be indeterminates and set ζ = 1
z , ζ̂ = 1

ẑ .

1. Let f ∈ Ro
q(z) and f ̸= 0. Set Ef,q = (V,∇z). The connection F (0,∞)(Ef,q) =

(V, ∇̂ζ̂) over K((ζ̂)) is defined by K-linear operators on V ,

ζ̂ = −∇−1
z : V → V, ∇̂ζ̂ = −ζ̂−2z : V → V.

2. Let f ∈ Ro
q(ζ), ord(f) = −p/q, f ̸= 0. Set Ef,q = (V,∇ζ) and suppose that

p < q. Then the connection F (∞,0)(Ef,g) = (V, ∇̂ẑ) over K((ẑ)) is obtained

by K-linear operators on V ,

ẑ = ζ2∇ζ : V → V, ∇̂ẑ = −ζ−1 : V → V.

3. Let f ∈ Ro
q(ζ), ord(f) = −p/q, f ̸= 0. Set Ef,q = (V,∇ζ) and suppose that

p > q. Then the connection F (∞,∞)(Ef,g) = (V, ∇̂ζ̂) over K((ζ̂)) is obtained

by K-linear operators on V ,

ẑ = ζ2∇ζ : V → V, ζ̂2∇̂ζ̂ = −ζ−1 : V → V.

The following theorem for the explicit structures of local Fourier transforms

F (∗,∗)(Ef,q) is due to Fang and Sabbah. We adopt the formulation given by

Graham-Squire in [13] who gave a simple proof of the theorem.

Theorem 2.4 (J. Fang [11] and C. Sabbah [25]). 1. Let f ∈ Ro
q(z),
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ord(f) = −p/q and f ̸= 0. Then

F (0,∞)(Ef,q) ∼= Eg,p+q,

where g ∈ Ro
p+q(ζ̂) is determined by

f = −zẑ, g = f +
p

2(p+ q)
.

2. Let f ∈ Ro
q(ζ), ord(f) = −p/q and f ̸= 0. Suppose that p < q. Then

F (∞,0)(Ef,q) ∼= Eg,q−p,

where g ∈ Ro
q−p(ẑ) is determined by

f = zẑ, g = −f +
p

2(q − p)
.

3. Let f ∈ Ro
q(ζ), ord(f) = −p/q and f ̸= 0. Suppose that p > q. Then

F (∞,∞)(Ef,q) ∼= Eg,p−q,

where g ∈ Ro
p−q(ζ̂) is determined by

f = zẑ, g = −f +
p

2(p− q)
.

By the above theorem, we can define the inversion of local Fourier transforms

as follows. Let g ∈ Ro
q(ζ̂), ord(g) = −p/q and g ̸= 0. Suppose that p < q. Then

we define
(
F (0,∞)

)−1
(Eg,q) as Ef,q−p where f ∈ Ro

q−p(z) is determined by

g − p

2q
= −zẑ, g = f +

p

2q
.

Then we have

F (0,∞)

((
F (0,∞)

)−1

(Eg,q)

)
∼= Eg,q,

(
F (0,∞)

)−1 (
F (0,∞)(Ef,q)

)
∼= Ef,q.

Similarly we can define (F (∞,0))−1(Eg,q). If p > q, then (F (∞,∞))−1(Eg,q) is

defined as well.

2.3. Irregularity

For a K((x))-connection (V,∇), let us fix a basis and identify V ∼= K((x))⊕n.

Then we can write ∇ = d
dx + A(x) with A(x) ∈ M(n,K((x))). Moreover we can

choose a suitable basis so that A(x) ∈ M(n,K[x−1]), see [5] for example. We call

A(x) ∈ M(n,K[x−1]) the normalized matrix of (V,∇).
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Let us take K as the field of complex numbers C and C({x}) denote the field

of meromorphic functions near 0. The irregularity defined below measures the

difference between formal and convergent solutions of d
dx +A(x).

Definition 2.5 (see H. Komatsu [17] and B. Malgrange [21]). Let

(V,∇) be a C((x))-connection. The irregularity of (V,∇) is

Irr(V,∇) = χ

(
d

dx
+A(x), C((x))⊕n

)
− χ

(
d

dx
+A(x), C({x})⊕n

)
.

Here χ(Φ, V ) is the index of the C-linear map Φ: V → V , i.e.,

χ(Φ, V ) = dimC KerΦ− dimC CokerΦ.

It is known that Irr(V,∇) is independent from choices of normalized matrices

A(x). Moreover if we decompose

(V,∇) ∼=
⊕
i

(Efi,qi ⊗ Jmi)

as Proposition 2.2, the irregularity can be written by

Irr((V,∇)) = −
∑
i

ord(fi).

Thus not only for C but also general K, we can define the irregularity by the above

formula.

3. Formal meromorphic connections and associated curves

In this section we shall define curve germs associated to irreducible formal

meromorphic connections. Then intersection numbers and Milnor numbers of these

curves will be written by the irregularities of the connections. Next we shall see the

relationship between the local Fourier transforms of connections and the blowing

up of the curve germs. Finally we shall determine a necessary and sufficient condi-

tion for an irreducible formal connection to have a resolution of ramified irregular

singularities via local Fourier transforms.

3.1. Associated curves

Let us take f ∈ K((x
1
q )) so that the image is in Ro

q\{0}. Then the curve germ

associated to the irreducible Ef,q is defined as follows.

Definition 3.1. The associated curve germ of an irreducible K((x))-
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connection Ef,q is

Cf,q(x, y) =

q∏
i=1

(
y − 1

fi(x
1
q )

)
,

where fi(x
1
q ) = f(ζiqx

1
q ).

To the above Ef,q, we associate a sequence of integers as an analogy of the

Puiseux characteristic of curves. Let us write f(x
1
q ) = anx

n
q + an+1x

n+1
q + · · · .

Define

−β1 = min{i | ai ̸= 0, q ̸ |i}, e1 = gcd(q, β1).

Also define

−βk = min{i | ai ̸= 0, ek−1 ̸ |i}, ek = gcd(ek−1, βk),

inductively till we reach g with eg = 1.

Definition 3.2. Let Ef,q be as above with−p/q = ord(f). Then the sequence

of the integers

(q, p;β1, . . . , βg)

is called the dual Puiseux characteristic of Ef,q.

Let us compare the dual Puiseux characteristic of Ef,q with the Puiseux char-

acteristic of Cf,q.

Proposition 3.3. Let Ef,q and Cf,q be as above and

(q, p;β1, . . . , βg)

the dual Puiseux characteristic of Ef,q. Then the Puiseux characteristic of Cf,q is

(q; 2p− β1, . . . , 2p− βg), if p ≥ q,

(p; p+ q − β1, . . . , p+ q − βg), if p < q.

To prove this proposition, we need some preparations. Let S ⊂ Z≥0 be an

additive semigroup including 0 and S0 a subset of S such that if s = s′ + s′′ with

s ∈ S0 and s′, s′′ ∈ S then either s′ = 0 or s′′ = 0. Write OS for the set of power

series
∑

r art
r such that ar = 0 for all r /∈ S and O∗

S for the subset satisfying the

further condition ar ̸= 0 for all r ∈ S0.
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Lemma 3.4 (cf. Lemma 3.5.4 in [29]).

1. Let (tα(t))m = tmγ(t) with m ∈ Z, α(t), γ(t) ∈ K[[t]], α(0) ̸= 0. Then α ∈ OS

if and only if γ ∈ OS, and α ∈ O∗
S if and only if γ ∈ O∗

S

2. Let α ∈ K[[t]] with α(0) ̸= 0 and let β ∈ K[[t]] be such that t = uβ(u) solves

u = tα(t). Then α ∈ OS if and only if β ∈ OS and α ∈ O∗
S if and only if

β ∈ O∗
S.

Proof. If we replace the condition m ∈ Z in (1) with m ∈ N, then this is nothing

but Lemma 3.4.5 in Wall’s book [29]. Thus we show only the case m = −1 in (1).

Although this follows from the same argument of the lemma in the Wall’s book,

we give a proof for the completeness of the paper. Write α(t) =
∑∞

r=0 artr with

a0 ̸= 0 and γ(t) =
∑∞

r=0 γrt
r. Then

∞∑
r=0

γrt
r =

( ∞∑
r=0

artr

)−1

.

We may assume that a0 = 1. Then

γ0 = 1,

γ1 + a1γ0 = 0,

· · ·
γk + a1γk−1 + · · ·+ akγ0 = 0,

· · · .

Thus γr are linear combinations of ar1 · · · arm with r = r1+· · ·+rm. If γr ̸= 0, then

there exist r1, . . . , rm such that r1 + · · ·+ rm = r and ar1 · · · arm ̸= 0. Equivalently

r1, . . . , rm ∈ S. Since S is a semigroup, this means r ∈ S. Conversely, suppose

γ ∈ OS and that for each r < k with r /∈ S we have ar = 0. If k /∈ S, γk = nak with

a nonzero integer n. Thus ak = 0 and it follows by induction on k that α ∈ OS . If

further p ∈ S0, then p can not decompose by elements in S. Thus γp = nap with

a nonzero integer n. Thus indeed γp ̸= 0 if and only if ap ̸= 0. □

Proof of Proposition 3.3. We trace the argument of Theorem 3.5.5 in [29]. Set

x = tq and f(x
1
q ) = t−pα(t) with α(t) ∈ K[[t]], α(0) ̸= 0. Then the associated

curve Cf,q has a good parametrization x = tq, y = tpα(t)−1. Let

S = {r ∈ Z | for some q ≥ 1, r ≥ p− βq and eq|r},

and S0 = {p−βq | q ≥ 1}. Then from the hypothesis, we have α ∈ O∗
S which shows

α−1 ∈ O∗
S by Lemma 3.4. This shows the proposition in the case p ≥ q. If p < q, we
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can put y = tpα(t)−1 = (tβ(t))p with β ∈ O∗
S by Lemma 3.4. Set u = tβ(t), so that

y = up. We can write t = uγ(u) with γ ∈ O∗
S . Thus x = tq = (uγ(u))q = uq(δ(u))

with δ(u) ∈ O∗
S which completes the proof. □

3.2. Irregularity of connections and curve invariants

Let us see that the irregularity of connections relates some curve invariants,

intersection numbers and Milnor numbers, of associated curve germs.

Theorem 3.5. Let Ef,q = (V,∇), Eg,q′ = (W,∇′) be irreducible K((x))-

connections. Set −p/q = ord(f), −p′/q′ = ord(g). If Ef,q ̸∼= Eg,q′ , then

I (Cf,q, Cg,q′) = pq′ + p′q − Irr(HomK((x))(V,W )).

Here HomK((x))(V,W ) can be naturally seen as a K((x))-connection through the

actions of ∇ and ∇′. Namely the connection ∇′′
on HomK((x))(V,W ) is defined by

∇
′′
(ϕ)(v) = ∇′(ϕ(v))− ϕ(∇(v))

for ϕ ∈ HomK((x))(V,W ) and v ∈ V . Similarly we have

I

(
Cf,q,

∂

∂y
Cf,q

)
= 2p(q − 1)− Irr(EndK((x))(V )).

Proof. The associated curve germ Cf,q has a good parametrization, x = tq, y =

α(t) = 1

f(x
1
q )
. Thus

I (Cf,q, Cg,q′) = ordtCg,q′(t
q, α(t))

= ordt

q′∏
i=1

(
α(t)− 1

gi(t
q
q′ )

)

= q · ordx
q′∏
i=1

(
1

f(x
1
q )

− 1

g(x
1
q′ )

)

= q · ordx
q′∏
i=1

(
gi − f

fgi

)

= pq′ + p′q + q · ordx
q′∏
i=1

(gi − f).

Let us note that the intersection number does not depend on good parametrizations,
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x = tq, y = 1/fj , j = 0, . . . , q − 1. Thus

ordx

q′∏
i=1

(gi − fj) = ordx

q′∏
i=1

(gi − fj′)

for 1 ≤ j, j′ ≤ q. On the other hand, we have

Irr(HomK((x))(V,W )) = −ordx

q′∏
i=1

q∏
j=1

(gi − fj).

Combining these equations, we have the required one.

Let us see the second assertion. Since Cf,q =
∏q

i=1(y−1/fi), we have
∂
∂yCf,q =∑q

i=1

∏
j ̸=i(y − 1/fj). Thus we can show

I

(
Cf,q,

∂

∂y
Cf,q

)
= ordx

∏
1≤i,j≤q

i̸=j

(
1

fi
− 1

fj

)
,

as above. Also recall

Irr(EndK((x))(V )) = − ordx
∏

1≤i,j≤q
i̸=j

(fi − fj).

These equations show the required one as above. □

Theorem 3.6. Let Ef,q be an irreducible K((x))-connection with ord(f) =

−p/q. Then the Milnor number µ of the associated curve Cf,q is

µ = (2p− 1)(q − 1)− Irr(EndK((x))(V )).

Proof. This follows from Lemma 1.11 and Proposition 3.5. □

We end this subsection with the following proposition which relates the irregu-

larity and dual Puiseux characteristics.

Proposition 3.7. Let Ef,q be an irreducible K((x))-connection with the dual

Puiseux characteristic (q, p;β1, . . . , βg). Then we have

Irr(EndK((x))(Ef,q)) =

g∑
i=1

(ei−1 − ei)βi.

Proof. If p ≥ q, this follows from Lemma 1.10, Proposition 3.3 and Theorem 3.6.

However Proposition 4.13 in [29] leads us to the following direct proof. Let us
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consider

ordx

q−1∏
i=1

(f − fi).

Here fi(x
1
q ) = f(ζiqx

1
q ). Since iβ1

q is an integer if and only if i is divisible by q
e1
,

we have ordx(f − fi) = −β1/q for i such that q
e1

̸ |i and this happens q− e1 times.

Similarly, we can see that ordx(f − fi) = −βj/q if and only if i is divisible by q
ej−1

but not by q
ej

and this happens ej−1 − ej times. Hence we have

ordx

q−1∏
i=1

(f − fi) = −1

q

g∑
i=1

(ei−1 − ei)βi

which induces the required formula. □

3.3. Local Fourier transforms and birational transforms

In [11] and [25], Fang and Sabbah computed explicit structures of local Fourier

transforms of Ef,q as we saw in Theorem 2.4. Whereas Fang’s computation is rel-

atively direct algebraic calculation, Sabbah’s is based on the blowing up technique

of plane curve singularities. The proposition below may connect these two different

approaches. Roughly to say, F (0,∞) and F (∞,0) can be seen as the blowing up of

associated curves and F (∞,∞) corresponds to the birational transform

σ3 : x �→ x−1
1 y1

y �→ y1.

More precisely, let us consider an irreducible curve germ C(x, y) with the good

parametrization

x = tmα(t), α(0) ̸= 0,

y = tn

and assume m ≤ n. Then define an irreducible curve germ σ∗
3(C(x, y))(x1, y1) so

that the good parametrization of this curve is

x1 = tn−mα(t)−1,

y1 = tn.

Proposition 3.8. Let us take f ∈ K((x
1
q )) so that the image is in Ro

q(x)\{0}
and ord(f) = −p/q.
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1. Suppose that p < q. Let us take g ∈ K((x
1

q−p

1 )) so that

F (∞,0)(Ef,q) ∼= Eġ,q−p,

as in Theorem 2.4 where ġ = g + p
2(q−p) . Then we have

Cg,q−p(x1,−y1) = σ∗
2(Cf,q(x, y)).

2. Let us take g ∈ K((x
1

p+q

1 )) so that

F (0,∞)(Ef,q) ∼= Eġ,p+q,

as in Theorem 2.4 where ġ = g + p
2(p+q) . Then we have

Cf,q(−x, y) = σ∗
2(Cg,p+q(x1, y1)).

3. Suppose that p > q. Let us take g ∈ K((x
1

p−q

1 )) so that

F (∞,∞)(Ef,q) ∼= Eġ,p−q,

as in Theorem 2.4 where ġ = g + p
2(p−q) . Then we have

Cg,p−q(x1,−y1) = σ∗
3(Cf,q(x, y)).

Proof. It may suffices to show (1), since the others are similar. The curve germs

Cf,q and Cg̃,q−p have good parametrizations x = tq, y = α(t) = 1/f(x
1
q ) and

x1 = uq−p, y1 = β(u) = 1/g(x
1

q−p

1 ) respectively. By Theorem 2.4, we have

x1 = xf(x
1
q ), y1 = β(u) =

1

g(x
1

q−p

1 )
= − 1

f(x
1
q )

,

that is,

x1y1 = −x, y1 =− y.

Since each irreducible curve germ is determined by a good parametrization, we are

done. □

3.4. Resolution of ramified irregular singularities

In the previous section, we saw that local Fourier transforms could be regarded

as the birational transforms of associated curve germs. As is well known, singu-

larities of plane curve germs have a resolution via blowing up. We shall seek an

analogy of the resolution of singularities for irreducible connections via local Fourier

transforms.
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First, let us see how the local Fourier transforms change dual Puiseux charac-

teristics of connections.

Proposition 3.9. Suppose that an irreducible Ef,q has the dual Puiseux char-

acteristic (q, p;β1, . . . , βg).

1. If p < q, then the dual Puiseux characteristic of F (∞,0)(Ef,q) is

(q − p, β1;β2, . . . , βg) if (q − p)|β1,

(q − p, β1;β1, . . . , βg) otherwise.

Here we note that p = β1 under the assumption p < q.

2. The dual Puiseux characteristic of F (0,∞)(Ef,q) is

(p+ q, β1;β1, . . . , βg) if p = β1,

(p+ q, p; p, β1, . . . , βg) otherwise.

3. If p > q, then the dual Puiseux characteristic of F (∞,∞)(Ef,q) is

(p− q, β1;β2, . . . , βg) if p = β1 and (p− q)|β1,

(p− q, p;β1, . . . , βg) otherwise.

Proof. We use the same notation in the proof of Proposition 3.3. First we note

that Eh,r and Eh+α,r with h ∈ Ro
r and α ∈ K have the same dual Puiseux charac-

teristic. Thus it is enough to know the Puiseux characteristic of Cg,∗ in Proposition

3.8. Let x = tq, y = tpα(t), α ∈ O∗
S , α(0) ̸= 0 be a good parametrization of Cf,q.

As we see in the proof of Proposition 3.3, we have another good parametrization

x = uqδ(u), y = up, δ ∈ O∗
S , δ(0) ̸= 0. Then by Proposition 3.8, Cg,q−p has a good

parametrization x1 = −uq−pδ(u), y1 = −up. Solving x1 = sq−p, we have another

good parametrization x1 = sq−p, y1 = spγ(s), γ ∈ O∗
S , γ(0) ̸= 0. Thus we have

(1). We can show (2) in the similar way as (1).

Let us see (3). We have a good parametrization x = tq, y = tpα(t), α ∈
O∗

S , α(0) ̸= 0 of Cf,q. By solving up = tpα(t), we have another good parametriza-

tion x = uqδ(u), y = up as above. Then by Proposition 3.8, Cg,p−q has a good

parametrization ξ1 = −uq−pδ(u), y1 = up. Here ξ1 = 1/x1. Lemma 3.4 allows us

to find ϵ(u) ∈ O∗
S , ϵ(0) ̸= 0 such that x1 = up−qϵ(u). Finally solving x1 = sp−q,

we have another good parametrization x1 = sp−q, y1 = spγ(s), γ ∈ O∗
S , γ(0) ̸= 0.

Thus we have (3). □

We can obtain Ef+ax−n,q from Ef,q by the tensor product

Ef,q ⊗
(
C((x)),

d

dx
+ ax−n−1

)
∼= Ef+ax−n,q,



180 K. Hiroe

and call this process the addition. Suppose that Ef,q is irreducible and has the

dual Puiseux characteristic (q, p;β1, . . . , βg) with p ̸= β1. Then applying the addi-

tion repeatedly, we can obtain a connection with the dual Puiseux characteristic

(q, β1;β1, . . . , βg).

The following theorem determines a necessary and sufficient condition for an ir-

reducible Ef,q to have a resolution of ramified irregular singularity via local Fourier

transforms.

Theorem 3.10. Suppose that an irreducible Ef,q has the dual Puiseux char-

acteristic (q, p;β1, . . . , βg). Then we can reduce Ef,q to a rank 1 connection by a

finite iteration of local Fourier transforms and additions if and only if we have

ei−1 ≡ ±ei (modβi)

for all i = 1, . . . , g. Here e0 = q.

Proof. First we assume that ei−1 ≡ ±ei (modβi) for all i = 1, . . . , g. Ap-

plying additions, we may suppose that Ef,q has the dual Puiseux characteristic

(q, β1;β1, . . . , βg). If q = e0 ≡ e1 (modβ1), then q ≥ β1 and Proposition 3.9

shows that we can reduce the connection to one with the dual Puiseux character-

istic (e1, β1;β2, . . . , βg) by a finite iteration of F (∞,0). If q = e0 ≡ −e1 (modβ1),

then Proposition 3.9 shows that we can reduce the connection to one with the

dual Puiseux characteristic (β1 − e1, β1;β1, . . . , βg) by a finite iteration of F (∞,0).

Applying F (∞,∞) to this connection, we have one with (e1, β1;β2, . . . , βg). Thus

in both cases, we moreover apply the addition and obtain a connection with

(e1, β2;β2, . . . , βg). We can repeat this process to reduce the connection to a rank

1 connection with (eg = 1, βg; ) by our hypothesis.

Conversely, we assume that Ef,q can be reduced to a rank 1 connection by

local Fourier transforms and additions. Namely Ef,q is constructed from a rank 1

connection by the inversion of local Fourier transforms.

Step 1. Let us start from a rank 1 connection with the dual Puiseux charac-

teristic (1, p; ), p > 1. Then possible inverse transformations are (F (∞,0))−1 and

(F (∞,∞))−1.

(1-i) Let us apply (F (∞,0,))−1. Then we have the dual Puiseux charac-

teristic (1 + p, p; p). After applying possible inverse local Fourier transforms,

(F (∞,0,))−1 and (F (0,∞))−1, we obtain the dual Puiseux characteristic (q, p; p)

where q ≡ 1 (mod p) or go back to (1, p; ).

(1-ii) Let us apply (F (∞,∞))−1. Then the resulting dual Puiseux character-

istic is (p − 1, p; p). After applying possible inverse local Fourier transforms,

(F (∞,∞))−1 and (F (∞,0))−1, we obtain the dual Puiseux characteristic (q, p; p)

where q ≡ −1 (mod p) or go back to (1, p; ).

Step 2. Next let us start from the dual Puiseux characteristic (q, p; p) with q ≡
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±1 (mod p) and apply an addition. Then we have the dual Puiseux characteristic

(q, p1; p) with p1 > p. Set e1 = gcd(q, p1). Now possible inverse transformations

are (F (∞,0))−1 and (F (∞,∞))−1.

(2-i) Applying (F (∞,0))−1, we obtain (q+ p1, p1; p1, p). After applying possible

inverse local Fourier transforms, (F (0,∞))−1 and (F (∞,0,))−1, we obtain the dual

Puiseux characteristic (q1, p1; p1, p) with q1 ≡ e1 (mod p1) or go back to (q, p1; p).

(2-ii) Applying (F (∞,∞))−1, we obtain (p1−q, p1; p1, p). After applying possible

inverse local Fourier transforms, (F (∞,∞))−1 and (F (0,∞))−1, we obtain the dual

Puiseux characteristic (q1, p1; p1, p) with q1 ≡ −e1 (mod p1) or go back to (q, p1; p).

Our possible transformations are the iteration of these process. Thus the ob-

tained dual Puiseux characteristic (p, q;β1, . . . , βg) satisfies the required conditions.

□

4. Sequences of total orders and Stokes structures

In this section we restrict the field K to the field of complex number field C. We

denote the ring of convergent power series, the field of meromorphic functions near

0 and the ring of convergent power series of x and y by C{x}, C({x}) and C{x, y}
respectively. Let us define k-th root x

1
k of x so that it takes a real value when x

is real and positive. Let us consider f ∈ C((x
1
q )) whose image is in Ro

q(x)\{0} and

suppose that Ef,q has the dual Puiseux characteristic (q, p;β1, . . . , βs). Then we

define

f̃(x
1
q ) =

g∑
i=1

aβix
− βi

q

and f̃i(x
1
q ) = f̃(ζiqx

1
q ) for i = 1, . . . , q, where we write f(x

1
q ) = apx

− p
q +

ap−1x
− p−1

q + · · · . If x moves in a small circle Sη = {z ∈ C | |z| = η}, the or-

der of sizes of Re(f̃i(x
1
q )) for i = 0, . . . , q − 1 change according to the argument of

x. This is one of the reasons of the Stokes phenomenon. Thus to understand the

Stokes phenomenon of the connections over C({x}) formally isomorphic to Ef,q, we

study the closed curve

St =
{
(x, y)

���x ∈ Sη, y = Re(f̃(x
1
q ))

}

in this subsection. This curve can be seen as the projection of the closed curve

K =

{
(x, y)

�����x ∈ Sη, y =
1

f̃(x
1
q )

}

by y �→ Re(1/y). The closed curve K is obtained by restricting x ∈ Sη in the

associated curve germ Cf̃ ,q(x, y) ∈ C{x, y} and it is well known that K can be seen
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as an iterated torus knot.

4.1. Braids and Plane curve germs

Let us recall the well known theorem by Brauner that irreducible plane curve

germs describe iterated torus knots around the singular point . The detail can

be found in standard references ([10] for instance). Let C(x, y) ∈ C{x, y} be

an irreducible plane curve germ with the Puiseux characteristic (m;β1, . . . , βg).

Exchanging x and y if necessary, we may assume that f has a good parametrization

x = tm, y =
∑

i≥n ait
i ∈ C{t}, (an ̸= 0), with n ≥ m. If we let x run around a

sufficiently small circle ,then

K =


(x, y)

������
x ∈ Sη, y =

∑
i≥n

aix
i
m




describes a knot in a solid torus

Sη ×Dδ =
{
(ηe

√
−1s, ϵe

√
−1t) | s, t ∈ R, 0 ≤ ϵ ≤ δ

}

with a suitable δ > 0.

Theorem 4.1 (K. Brauner [9]). The above K is an iterated torus knot of

order g and type (m/e1, β1/e1), (e1/e2, β2/e2), . . . , (eg−1/eg, βg/eg).

Now let us recall the construction the iterated torus knot from the good

parametrization. First we decompose y(x) as y(x) =
∑g

k=1 aβk
x

βk
m + r(x) where

r(x) is the term of small oscillations which may be ignored. Thus we focus only on

ỹ(x) =
∑g

k=1 aβk
x

βk
m . Let us first look at ỹ(1) = aβ1x

β1
m . Then

K1 = {(x, ỹ(1)(x)) | x ∈ Sη}

is the torus knot of type (m/e1, β1/e1) which can be seen as the closed braid of the

geometric braid B1 with the m/e1 strings

ỹ
(1)
l (t) = aβ1η

β1
m e

√
−1

β1
m (t+l) (0 ≤ t ≤ 2π),

for l = 1, . . . ,m/e1. Here we note that there exists a permutation τ1 ∈ Sm/e1 such

that

ỹ
(1)
l (t+ 2π) = ỹ

(1)
τ1(l)

(t)

for l = 1, . . . ,m/e1. Here Sn denotes the symmetric group of n symbols.

Then next, ỹ(2) = aβ1x
β1
m + aβ2x

β2
m improves the approximation and

K2 = {(x, ỹ(2)(x)) | x ∈ Sη}
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is the iterated torus knot of order 2 and type (m/e1, β1/e1), (e1/e2, β2/e2). Indeed,

for each l1 = 1, . . . ,m/e1, one has e1/e2 points

ỹ
(2)
l1,l2

(t) = aβ1η
β1
m e

√
−1

β1
m (t+l1) + aβ2η

β2
m e

√
−1

β2
m (t+l2) (l2 = 1, . . . , e1/e2)

in the circle of radius |aβ2 |η
β2
m around the point ỹ

(1)
l1

(t). Thus for each l1, we have

the set B̂l1 of the strings ỹ
(2)
l1,l2

(t) for l2 = 1, . . . , e1/e2. As we noted above, we

can identify B̂l1 and B̂τ1(l1) by substituting t + 2π for t. Thus it suffices to see

B̂l1 for one l1 ∈ {1, . . . , n/e1}. Then B̂l1 defines a geometric braid B2 if t runs in

the interval [0, (m/e1)2π] and we have the torus knot of type (e1/e2, β2/e2) as the

closed braid of B2.

Then one can repeat this process to refine the approximation and obtain the

iterated torus knot of the plane curve C(x, y).

4.2. Representations of sequences of total orders and local moduli

of differential equations

For a connection (V̂ , ∇̂) over C({x}), i.e., the pair of finite dimensional C({x})-
vector space V̂ and the C-linear connection ∇̂, the formalization (V,∇) is the

connection over C((x)) defined by V = C((x))⊗C({x}) V̂ and ∇(f ⊗ v̂) = d
dxf ⊗ v̂ +

f ⊗∇̂(v̂) for f ∈ C((x)) and v̂ ∈ V̂ . Let us fix a connection (V0,∇0) over C((x)) and
consider a C({x})-connection (V̂ , ∇̂) whose formalization is isomorphic to (V0,∇0).

Let us fix an isomorphism ξ : (V,∇) → (V0,∇0) and call ((V̂ , ∇̂), ξ) a marked

pair formally isomorphic to (V0,∇0). We say that marked pairs ((V̂ , ∇̂), ξ) and

((V̂ ′, ∇̂′), ξ′) are isomorphic if there exists an isomorphism û : (V̂ , ∇̂) → (V̂ ′, ∇̂′)

as C({x})-connections such that ξ = ξ′ ◦ u where u is the isomorphism between

the formalizations of them induced by û. The isomorphism class of marked pairs

formally isomorphic to (V0,∇0) is denoted byM((V0,∇0)). This local moduli space

M((V0,∇0)) is studied by many authors (see for instance [4] and its references) and

it is known that there exists a one to one correspondence from a space of certain

unipotent matrices, so called Stokes matrices, to M((V0,∇0)) (see Theorem 4.5 for

example).

In this subsection we see first that the structure of the space of Stokes matrices,

i.e., the local moduli space M((V0,∇0)) is determined by a sequence of total orders

of a finite set. Next we focus on the moduli of Ef,q and show a structure theorem

of the sequence of total orders by using the iterated torus knot of the associated

curve.
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4.2.1 Representations of sequences of total orders

Let I be a finite set and <0, <1, . . . , <h (h ≥ 1) a sequence of total orders of I. We

shortly denote the pair of I and the sequence by

I = (I, (<i)i=0,...,h).

Let us define a representation of I. For ν = 1, . . . , h, define subsets of I × I by

ρν = {(j, k) ∈ I × I | j ̸= k, k <ν−1 j, j <ν k}.

Here we note that ρν is anti-symmetric, i.e., (j, k) ∈ ρν contradicts (k, j) ∈ ρν and

transitive, i.e., (j, k) ∈ ρν and (k, l) ∈ ρν implies (j, l) ∈ ρν . For each k ∈ I, take a

finite dimensional C-vector space Vk. Then representations of I are elements in

Rep(I, (Vk)k∈I) =
h⊕

ν=1

⊕
(j,k)∈ρν

HomC(Vk, Vj).

We call (dimC(Vk))k∈I ∈ (Z≥0)
I the dimension vector of Rep(I, (Vk)k∈I). For a

vector α = (αi) ∈ (Z≥0)
I , we write

Rep(I, α) = Rep(I, (Cαk)k∈I).

4.2.2 Sequence of total orders and that of permutations

Let us fix a sequence of total orders I = (I, (<i)i=0,...,h). For each i = 0, . . . , h let

us arrange the elements in I,

t
(i)
1 <i t

(i)
2 <i · · · <i t

(i)
n ,

and define the bijection

ϕi : I −→{1, . . . , n}
t
(i)
k �−→ k

.

Here n is the cardinality #I of I. Then we have a sequence of permutations of

{1, . . . , n},

rν = ϕν ◦ ϕ−1
ν−1 for ν = 1, . . . , h.

Conversely if we fix a bijection ϕ0 from I to {1, . . . , n} and a sequence of permu-

tations of {1, . . . , n},

r1, . . . , rh,
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then we can define a sequence of total orders as follows. Let us define bijections

ϕν : I → {1, . . . , n} by ϕν = rν ◦ ϕν−1 for ν = 1, . . . , h. For each i = 0, . . . , h define

the total ordering <i of I as the pull back of the natural ordering of {1, . . . , n} by

ϕi. Thus we have the following.

Proposition 4.2. Let I be a finite set of the cardinality n. Then there exists

a one to one correspondence between sequences of total orders of I and the pairs of

a bijection ϕ0 : I → {1, . . . , n} and a sequence of elements in Sn.

The identity element id ∈ Sn may be included in the sequence of permutations

r1, . . . , rh corresponding to (I, (<i)i=0,...,h). It is equivalent to the existence of

i ∈ {1, . . . , h} such that <i and <i+1 define the same order. Thus we may omit id ∈
Sn in the sequence of permutations and call the consequent sequence r′1, . . . , r

′
h′

without id ∈ Sn the reduced sequence of permutations.

Definition 4.3. Two sequences of total orders I and I ′ are said to be conju-

gate if the corresponding reduced sequences of permutations are conjugate. Namely,

let r1, . . . , rh and r′1, . . . , r
′
h′ be reduced sequences of permutations corresponding to

I and I ′ respectively. Then h = h′ and there exists ω ∈ Sn such that rν = ω−1r′νω

for all ν = 1, . . . , h.

4.2.3 Local moduli space and representations of sequences of total or-

ders

We shall construct a sequence of total orders from the Stokes structure of connec-

tions.

Let us consider a C((x))-connection (V,∇) with a normalized matrix A(x) ∈
M(n,C[x−1]). Then it is known that there exists F ∈ GL(n,C((x 1

r ))) with r ∈ Z>0

such that

FA(x)F−1 +

(
d

dx
F

)
F−1 =




q1Im1

q2Im2

. . .

qsIms


 t−1 +




L1

L2

. . .

Ls


 t−1

where t = x
1
r , qi ∈ t−1C[t−1] (qi ̸= qj if i ̸= j) and Li ∈ M(mi,C). For the finite

set

QA = {q1, q2, . . . , qs},
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we define a sequence of total orders as follows. For d ∈ R, we write

j <d k if Re(a0e
−
√
−1l0d) < 0

where qj − qk = a0x
−l0 + a1x

−l1 + · · ·+ atx
−lt with l0 > l1 > · · · > lt, a0 ̸= 0 and

say d is a Stokes direction if there exist two distinct integers 1 ≤ j, k ≤ s such that

these are incomparable by <d. Thus we note that if d is not a Stokes direction, <d

defines a total order on QA.

Let 0 ≤ d1 < d2 < · · · < dh < 2π be the collection of all Stokes directions

in [0, 2π), so called basic Stokes directions (see [6]). Let us choose ε > 0 so that

d̃i = di + ε < di+1 and for i = 0, . . . , h, where d0 is the maximum of Stokes

directions d < 0 and we formally set dh+1 = 2π. Then we have the sequence of

total orders

IA = (QA, (<d̃i
)i=0,...,h).

Remark 4.4. In the above setting, we see only the basic Stokes directions di
because there exists σ ∈ Ss such that

qσ(i)(e
2π

√
−1x) = qi(x)

for all i = 1, . . . , s and we have

j <d k if and only if σ(j) <d+2π σ(k)

for d ∈ R.

Let us associate the representations of IA with the space of certain unipotent

matrices, i.e., so called Stokes matrices. For each ν = 1, . . . , h, define

Stodν (A) =
(Xi,j)1≤i,j≤s ∈

⊕
1≤i,j,≤s

HomC(Cmj ,Cmi)

������
Xi,j =

{
idCmi if i = j

0 if (i, j) /∈ ρν


 .

Then we have the isomorphism

Rep(IA, (mi)i=1,...,s) ∼=
h⊕

ν=1

Stodν (A)

as C-vector spaces.
The following is the direct consequence of Theorem VII and its Remark 2 of [6]

(see also [4, 20]).
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Theorem 4.5. We have a one to one correspondence

Rep(IA, (mi)i=1,...,s) ∼=
h⊕

ν=1

Stodν (A) ∼= M((V,∇)).

4.2.4 Sequences of total orders of irreducible connections and iterated

torus knots of plane curves

Let us return to our irreducible connection Ef,q with the dual Puiseux characteristic

(q, p;β1, . . . , βg). Then we set QEf,q
= {f̃1, . . . , f̃q} and define the sequence of total

orders IEf,q
= (QEf,q

, (<d̃i
)i=0,...,h) as in the previous subsection. Recalling that

f̃i(ζqx
1
q ) = f̃i+1(x

1
q )

for i = 1, . . . , q where we set f̃q+1 = f̃1, we see that the substitution x
1
q �→ ζqx

1
q

defines the action of Z/qZ on QEf,q
.

For the latter use, we introduce the product of sequences of total orders I1 =

(I1, (<
(1)
i )i=0,...,h(1)), I2 = (I2, (<

(2)
i )i=0,...,h(2)) with #I1 = #I2. First suppose

that I1 = I2 and <
(1)

h(1)=<
(2)
0 , then the product

(I, (�<i)i=0,...,h(1)+h(2)) = I1 ∗ I2

is defined by

�<i =

{
<

(1)
i if 0 ≤ i ≤ h(1),

<
(2)

i−h(1) if h(1) + 1 ≤ i ≤ h(1) + h(2).

For general cases, find the bijection ϕ : I1 → I2 such that

u <
(1)

h(1) v if and only if ϕ(u) <
(2)
0 ϕ(v)

in I1 and define ϕ∗(I2) = (I1, (<
ϕ
i )i=0,...,h(2)) so that

u <ϕ
k v if ϕ(u) <

(2)
k ϕ(v)

in I1. Then the product of I1 and I2 is defined by I1 ∗ I2 = I1 ∗ ϕ∗(I2).
For k ∈ Z>0 we write f̃i ∼k f̃j if deg

x
− 1

q
(f̃i − f̃j) < k. Let us note that each

∼k preserves orders <d for d ∈ R, i.e., if f̃i1 ∼k f̃i2 , f̃j1 ∼k f̃j2 , f̃i1 ̸∼k f̃j1 and

f̃i1 <d f̃j1 , then we have f̃iϵ1 <d f̃jϵ2 for all ϵ1, ϵ2 ∈ {1, 2}. Thus we can consider

I(k) = IEf,q
/ ∼k= (QEf,q

/ ∼k, (<i)i=0,...,h).
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Since I(k) define the same sequences for βi ≥ k > βi+1, it suffices to consider

I(βi), i = 1, . . . , g.

We write I(βi) = QEf,q
/ ∼βi for short. Let us note that I(βi) has the cardinality

q/ei and the action of Z/(q/ei)Z induced from the Z/qZ action on QEf,q
.

The natural projections

IEf,q
= I(βg)

πg−→ I(βg−1)
πg−1−−−→ · · · π2−→ I(β1),

give decompositions

I(βi) =
⊔

a∈I(βi−1)

I(βi)
a ,

where I(βi)
a = (π−1

i (a), (<i)i=0,...,h) for a ∈ I(βi−1) and i = 2, . . . , g. This de-

composition induces a decomposition of representations of IEf,q
as follows. The

decomposition below is well known as the decomposition of Stokes matrices (see

Theorem 8 in [22] or Proposition I.5.5 in [20] for example).

Proposition 4.6. We have a decomposition

Rep(IEf,q
, (1)i=1,...,q) ∼=

Rep(I(β1), (e1)i=1,...,q/e1)⊕
g⊕

j=2

⊕

a∈I(βj−1)

Rep(I(βj)
a , (ej)i=1,...,ej−1/ej ).

Proof. This follows from the decomposition of M(q,C) as below. For each k =

1, . . . , g, define

M(q,C)(βi) =
{
(ai,j)1≤i,j≤q ∈ M(q,C)

��� ai,j = 0 if deg
x
− 1

q
(f̃i − f̃j) ̸= βk

}
.

Then we have a decomposition

M(q,C) = {diag(a1, . . . , aq) | ai ∈ C} ⊕
g⊕

i=1

M(q,C)(βi)

as a C-vector space. □

For each i = 2, . . . , g let us fix o ∈ I(βi−1) as the image of f̃1 ∈ QEf,q
and define

a product of I(βi)
a for a ∈ I(βi−1) by

�I(βi) = (�I(βi), (�<j)j=0,...,hi) = I(βi)
o ∗ I(βi)

e(o) ∗ I
(βi)
e2(o) ∗ · · · ∗ I

(βi)

eq/ei−1−1(o)
,
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and for i = 1 set �I(β1) = I(β1). Here e ∈ Z/(q/ei−1)Z is the image of 1 ∈ Z. Let

us note that there exists the natural isomorphism

Rep(�I(βj), (ej)i=1,...,ej−1/ej )
∼−→

⊕

a∈I(βj−1)

Rep(I(βj)
a , (ej)i=1,...,ej−1/ej )

as C-vector spaces for each j = 2, . . . , g. Thus by Proposition 4.6 we have

Rep(IEf,q
, (1)i=1,...,q) ∼=

g⊕
j=1

Rep(�I(βj), (ej)i=1,...,ej−1/ej ).

Namely the structure of Rep(IEf,q
, (1)i=1,...,q) ∼= M(Ef,q) is determined by �I(βj),

j = 1, . . . , g.

The following is the main theorem of this subsection which shows that the

structure of IEf,q
is determined by the dual Puiseux characteristic. This can be

seen as an analogy of plane curve germs for which Puiseux characteristics are

topological invariants of knot structures, namely, if two curve germs have the same

Puiseux characteristic, then the knots of them are isotopic.

Theorem 4.7. For each i = 1, . . . , g, the reduced sequence of permutations

attached to �I(βi) is conjugate with

(s1s2 · · · sei−1/ei−1)
βi/ei

where sj ∈ Sei−1/ei are transpositions (j, j + 1).

Proof. Let us proceed as the argument in the subsection 4.1. We write f̃(x
1
q ) =∑g

k=1 aβk
x− βk

q . Let us first look at f̃ (1)(x) = aβ1x
− β1

q . If x moves in Sη for a

sufficiently small η > 0, then f̃ (1)(x) moves along a small circle centered at ∞.

The geometric braid B1 with the q/e1 strings

f̃
(1)
l (t) = aβ1η

− β1
q e−

√
−1

β1
q (t+l) (0 ≤ t ≤ 2π)

for l = 1, . . . , q/e1 define the torus knot of type (q/e1, β1/e1) as the closed braid of

B1. As is well known, if we number the strings in B1 suitably, we have the braid

words

(σ1σ2 · · ·σq/e1−1)
β1/e1 ,

where σi are standard generators of the braid group Bq/e1 on q/e1 strings. On the

other hand, let us consider the finite set

I(β1) = {Re(f̃ (1)
1 (t)), . . . ,Re(f̃

(1)
q/e1

(t))}.
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Here if t moves from 0 to 2π then I(β1) defines a sequence of total orders which is

nothing but I(β1) by a suitable identification I(β1) ∼= I(β1). Since this can be seen

as the projection of B1 by f̃
(1)
l (t) �→ Re(f̃

(1)
l (t)), thus the sequence of total orders

defines the sequence of permutations

(s1s2 · · · sq/e1−1)
β1/e1

as required.

Next let us fix j ∈ {2, . . . , g} and consider

f̃ (j)(x) =

j∑
k=1

aβk
x− βk

q .

For 1 ≤ k ≤ j and 1 ≤ lk ≤ ek−1/ek let us define

f̃
(k)
l1,...,lk

(t) =

k∑
i=1

aβiη
− βi

q e−
√
−1

βi
q (t+li).

Then as we see in the subsection 4.1, for a fixed (l1, . . . , lj−1) and lj =

1, . . . , ej−1/ej , one has the ej−1/ej points f
(j)
l1,...,lj

(t) in the circle around the point

f̃
(j−1)
l1,...,lj−1

(t). Moreover the strings

f̃ (j)(t)l1,...,lj−1,lj (t) (t ∈ [0, (q/ej−1)2π])

for lj = 1, . . . , ej−1/ej define a geometric braid Bj and we have a torus knot of

type (ej−1/ej , βj/ej) as the closed braid of Bj . Thus Bj defines the braid words

(σ1σ2 · · ·σej−1/ej−1)
βj/ej .

By the same argument as above, if t moves form 0 to (q/ej−1)2π then

Jβ1

l1,...,lj−1
=

{
Re(f̃

(j)
l1,...,lj−1,1

(t)), . . . ,Re(f̃
(j)
l1,...,lj−1,ej−1/ej

(t))
}

defines a sequence of total orders which induces the sequence of permutations

(s1s2 · · · sej−1/ej−1)
βj/ej .

Meanwhile this sequence of total orders can be identified with �I(βj) by a suitable

identification J
(βj)
l1,...,lj−1

∼= �I(βj). Thus we are done.

□

Thus if we fix a dual Puiseux characteristic (q, p;β1, . . . , βg), then the conjugacy

classes of �I(βi), i = 1, . . . , g, are determined.
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Corollary 4.8. Let Ef,q and Ef ′,q be irreducible C((x))-connections with the

same dual Puiseux characteristic (q, p;β1, . . . , βg) and set I = IEf,q
, I ′ = IEf′,q .

Then the sequences of total orders Ĩ(βi) and Ĩ ′(βi)
defined as above are conjugate

for each i = 1, . . . , g.
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[12] R. Garćıa López, Microlocalization and stationary phase, Asian J. Math. 8 (2004), no. 4,

747–768.

[13] A. Graham-Squire, Calculation of local formal Fourier transforms, Ark. Mat. 51 (2013),
no. 1, 71–84.

[14] A. Hefez, Irreducible plane curve singularities in Real and complex singularities, 1–120,
Lecture Notes in Pure and Appl. Math., 232, Dekker, 2003.

[15] M. Hien and C. Sabbah, The local Laplace transform of an elementary irregular meromor-
phic connection, preprint, arXiv:1405.5310 (2014).

[16] M. Hukuhara, Sur les points singuliers des équation différentielles linéaires. III., Mem. Fac.
Sci. Kyusyu Imp. Univ. A. 2 (1942), 125–137.

[17] H. Komatsu, On the index of ordinary differential operators, J. Fac. Sci. Univ. Tokyo Sect.
IA Math. 18 (1971), 379–398.

[18] Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de
Weil, Inst. Hautes Études Sci. Publ. Math. No. 65 (1987), 131–210.

[19] A. Levelt, Jordan decomposition for a class of singular differential operators, Ark. Math.
13 (1975), 1–27.

[20] M. Loday-Richaud, Stokes phenomenon, multisummability and differential Galois groups,
Ann. Inst. Fourier (Grenoble) 44 (1994), no. 3, 849–906.
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