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Two aspects of the theta divisor associated with the

autonomous Garnier system of type 9/2

Akane NAKAMURA

Abstract. In a previous paper [16], we considered the 40 types of

autonomous 4-dimensional Painlevé-type equations and studied the degenera-
tions of their spectral curves. In this paper, we treat the autonomous Garnier
system of type 9

2
, one of the most degenerated systems, as an example to illus-

trate another important curve (or union of curves) associated with the system:

the Painlevé divisor [2]. These curves can be considered as the theta divisor
of the Liouville tori, which in turn is the Jacobian of these curves. Some of
the possible applications are construction of 2 × 2 Lax pair using separation

of variables [24], and making identification or distiction with other systems.

1. Introduction

The Painlevé equations are 8 types of second-order nonlinear equations with the

Painlevé property: the positions of multi-valued singularities of any of the solutions

are independent of the initial conditions. They were discovered by Painlevé and

Gambier around the year 1900. The Painlevé equations are now recognized to

define useful special functions called the Painlevé transcendents. One way to think

about these functions is they are non-autonomous generalization of the elliptic

functions. These 8 equations constitute a family linked by degeneration process

and the sixth Painlevé equation is the source equation of all the others.

Various generalization of the Painlevé equations have been proposed. The most

classical generalization is the ones called the Garnier systems. They are derived

by Garnier as a generalization of the sixth Painlevé equation to higher orders

from isomonodromic point of view, in a modern terminology. For the fourth order

Garnier system, the degenerations from the Garnier’s original system were studied

by Kimira [12] and Kawamuko [11] and there are 16 systems in their list.

There are other generalizations of the Painlevé equations to higher dimensions

as well. For instance, Noumi and Yamada [18] proposed generalizations form

representations of affine Weyl group of type A
(1)
n . Many generalizations have been

derived by reductions of different soliton hierarchies. However, the overall situation

or the relation between systems of different origins were not clear until recently.
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193



194 A. NAKAMURA

The situation has improved for the 4-dimensional case thanks to the develop-

ment of the classification theory of linear equations. Let us call the isomonodromic

equations as the Painlevé-type equations. Oshima [20] classified the Fuchsian linear

equation with 4 accessory parameters up to Katz operations. Sakai [21] derived the

Hamiltonians of the isomonodromic systems for Oshima’s list and he gave all the

4-dimensional generalizations of the sixth Painlevé equation. Degenerations to un-

ramified non-Fuchsian cases are computed by Kawakami, Nakamura and Sakai [10],

and ramified cases are studied by Kawakami [9]. In total, there are 40 types of

4-dimensional Painlevé-type equations. Some of the 4-dimensional generalizations

of the Painlevé equations such as the Noumi-Yamada system of type A
(1)
4 and A

(1)
5 ,

can now be understood in the framework of degeneration scheme.

Despite the recent developments, we still do not know the relations between

some of the alleged 4-dimensional generalizations of the Painlevé equations and

those in the degeneration scheme. When such systems have corresponding Lax

pairs, it is helpful to study their spectral types of the linear equations in order

to identify with the systems in the degeneration scheme. However, the systems

in Cosgrove’s list [5], for example, are not a priori given their Lax pairs. This

situation is one of the background of our work.

In a previous paper [16], we derived 40 types of integrable systems as the

autonomous (isospectral) limit of the 4-dimensional Painlevé-type equations and

studied the degenerations of their spectral curves, which are curves of genus two. In

this paper, we take the autonomous Garnier system of type 9
2 as an example to il-

lustrate another important curve associated with the integrable system. These two

types of curves, the spectral curve and (irreducible components of ) the Painlevé

divisor, are two incarnation of the theta divisor of the Liouville torus, which is an

abelian surface. We take coordinates to derive explicit equations of these isomor-

phic curves. The reason why we dare to compute such abstractly trivial result is

the following. If integrable systems can be characterized by the degeneration of

their spectral curves, as we hope, and when the integrable system in consideration

is of dimension 4, we can utilize the isomorphic curves, (irreducible components

of) the Painlevé divisor, to identify the system with known ones by studying their

degenerations.

2. Preliminaries

In this section, we summarize the background of the computations in the fol-

lowing sections. The main reference for this section is a thorough exposition on

algebraically integrable systems by Adler, van Moerbeke and Vanhaecke [2].

2.1. Algebraically completely integrable systems

We often consider integrable systems with complex variables and those satisfy-

ing integrability in a stronger sense than Liouville integrability as in the following
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definition.

Definition 2.1 ([1]). Let (M, {·, ·} ,H) be a complex integrable system,

where (M, {·, ·}) is an affine nonsingular Poisson variety of rank 2r and H =

(H1, . . . , Hn) are n(= dimM − r) functions in involution. We say (M, {·, ·} ,H) is

an algebraically completely integrable, or a.c.i. system for short, if for generic

h ∈ Cn the fiber Hh = H−1(h) is an affine part of an Abelian variety and

if the Hamiltonian vector fields XHi are translation invariant, when restricted

to the fibers. In the particular case when M is an affine space Cn+r, we call

(Cn+r, {·, ·} ,H) a polynomial a.c.i. system.

The phase space of an a.c.i. system admits, locally on the base space, a partial

compactification, and that the integrable vector fields extend holomorphically to

this partial compactification [2].

Definition 2.2 ([2]). Let D be the analytic hypersurface adjoined in the par-

tial compactification of the phase space of a polynomial a.c.i system H : Cn+r → Cn.

The restriction Dh of D to generic fiber Hh for h ∈ Cn is called the Painlevé divisor

at h.

2.2. Weight-homogeneous system

We will restrict our attention to weight-homogeneous systems, which is defined

as follows.

Definition 2.3 ([2]). Let ν = (ν1, . . . , νn) be a weight vector comprised of

positive integers without a common divisor and denote νi = ϖ(xi). A polynomial

f ∈ C[x1, . . . , xn] is weight-homogeneous of weight k with respect to ν = (ν1, . . . , νn)

if

f(tν1x1, . . . , t
νnxn) = tkf(x1, . . . , xn).

A polynomial vector V field on Cn

ẋ1 =f1(x1, . . . , xn),

...

ẋn =fn(x1, . . . , xn),

is called a weight-homogeneous vector field of weight k with respect to ν if each of

the polynomial f1, . . . , fn is weight-homogeneous with respect to ν = (ν1, . . . , νn)

and if ϖ(fi) = νi + k, where ϖ(f) stands for the weight of f .

Proposition 2.4 ([2]). Suppose that V is a weight-homogeneous vector field
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on Cn, given by

ẋi = fi(x1, . . . , xn), (i = 1, . . . , n),

and suppose that

xi(t) =
∞∑
k=0

x
(k)
i t−νi+k, (i = 1, . . . , n)

is a weight-homogeneous Laurent solution for this vector field. Then the leading

coefficients x
(0)
i satisfy the non-linear algebraic equations

ν1x
(0)
1 +f1(x

(0)
1 , . . . , x(0)

n ) = 0,

... (1)

νnx
(0)
n +fn(x

(0)
1 , . . . , x(0)

n ) = 0.

The subsequent terms x
(k)
i of the Laurent solution satisfy

(k Idn −K(x(0)))x(k) = R(k),

where

x(k) =



x
(k)
1
...

x
(k)
n


 , R(k) =



R

(k)
1
...

R
(k)
n


 ,

and each R
(k)
i is a polynomial of x

(l)
1 , . . . , x

(l)
n with 1 ≤ l ≤ k − 1. The (i, j)-th

entry of the (n× n)-matrix K is the regular function on Cn defined by

Ki,j =
∂fi
∂xj

+ νiδi,j . (2)

Definition 2.5 ([2]). The set of equations (1) for x
(0)
i ’s is called the indicial

equation of V. Its solution set, which is an algebraic set in Cn, is called the indicial

locus, and is denoted by I. Then matrix K defined in (2) is called the Kowalevski

matrix. For any m ∈ I, the eigenvalues of K evaluated for x = m are called the

Kovalevski exponents for m.

When a nonnegative integer k is one of the Kowalevski exponents, x(k) is not

determined by the coefficients of the previous terms and x(k) has at least one new

free parameter. The Laurent solutions are organized in families, each family de-

pending on a certain number of independent parameters. Each of these irreducible
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families of formal Laurent solutions is called a balance.

Proposition 2.6 ([2]). Let V be a weight-homogeneous vector field on Cn.

The set of all weight-homogeneous Laurent solutions to V is parametrized by a

finite number of affine varieties Γ(i). For any one of these affine varieties Γ(i)

the coefficients that appear in the corresponding weight-homogeneous balance are

regular functions on Γ(i).

Definition 2.7 ([2]). Let V be a weight-homogeneous vector field on Cn.

The weight-homogeneous balance that corresponds to the affine variety Γ(i), as in

proposition 2.6, is denoted by x(t; Γ(i)). For m ∈ I the balance specializes to a

Laurent series that will be denoted by x(t;m). Each of the affine varieties Γ(i) that

corresponds to a principal balance, i.e., depends on n − 1 parameters, is called an

abstract Painleve wall of V.

2.3. Embedding and separation of varialbes

The Liouville tori of a 4-dimensional algebraically completely integrable system

is an affine part of an abelian surface, that is, a complex 2-dimensional torus that

can be embedded in a projective space. We use explicit embedding of the Kummer

surface of the Jacobian to P3 in order to find a suitable coordinate for separation of

variables. In this section, we introduce notations necessary to compute separation

of variables following Vanhaecke [24].

Let ν = (ν1, . . . , νn) be a weight vector. We define for k ∈ N,

F (k) := {F ∈ C [x1, . . . , xn] | ϖ(F ) = k},

where ϖ(F ) stands for the weighted-degree of F . Note that the dimension of F (k)

has the following generating function when ϖ(xi) = νi;

n∏
i=1

1

1− tνi
=

∞∑
k=0

(
dimF (k)

)
tk.

Let us define

H = {F ∈ C [x1, . . . , xn] |Ḟ = 0},

where we have written Ḟ for V(F ) for F ∈ C[x1, . . . , xn]. The algebra of constants

of motion H is graded by weighted degree, H = ⊕j∈NH(j), where

H(j) := {F ∈ C [x1, . . . , xn] | Ḟ = 0 and ϖ(F ) = j}.
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The following generating function computes the dimension dimH(j)

n∏
j=1

1

1− tϖ(Hj)
=

∞∑
k=0

(
dimH(k)

)
tk,

where H1, . . . , Hn are weight-homogeneous constant of motion of V which generate

H as an algebra.

Let x(t; Γ(1)), . . . , x(t; Γ(d))) denote the weight-homogeneous principal balances

of weight-homogeneous vector field V on Cn. Let ρ = (ρ1, . . . , ρd) be a pole vector

with ρi ≥ 0 for i = 1, . . . , d. We introduce the vector space of polynomials in

x1, . . . , xn with no harder pole than ρi when evaluated on x(t; Γ(i)), where 1 ≤ i ≤
d. Let us define

Zρ : = {F ∈ C[x1, . . . , xn]|ordt=0F (x(t; Γ(i))) ≥ −ρi for 1 ≤ i ≤ d}.

Zρ is an H-module. We denote Z(k)
ρ : = Zρ ∩F (k). The number ζl of independent

elements of
⊕l

k=0 Z
(k)
ρ that are added at level l is given by:

ζl := dim

(
Z(l)

ρ /
l−1⊕
k=0

H(l−k)Z(k)
ρ

)

=dimZ(l)
ρ −

l−1∑
k=0

ζk dimH(l−k).

Let Tr be an abelian variety and (x1, . . . , xr) be its linear coordinate induced

from Cr. The quotient K = Tr/(−1) of Tn by the involution (−1) : (x1, . . . , xr) →
(−x1, . . . ,−xr), is called the Kummer variety. When Γ is a curve of genus two

in T2, sections of linear system |2Γ| embeds the Kummer surface of T2 in P3.

The Kummer surface can be expressed by a quartic equation. As Vanhaecke [25]

showed, we can carry out separation of variables using a special basis of |2Γ|.

Theorem 2.8 ([25]). Suppose we are given an affine part of a generic Abelian

surface equipped with a holomorphic vector field ẋ = {H,x} and principally po-

larised by one of the irreducible components of the divisor at infinity Γ. A base

{1, z1, z2, z3} of |2Γ| can be chosen so as the equation of the Kummer surface

Jac Γ/(−1) in P3 takes the form

(z21 − 4z0z2)z
2
3 + r3(z0, z1, z2)z3 + r4(z0, z1, z2) = 0,

where r3 and r4 are polynomials of degree 3 and 4 respectively. Let µ1, µ2 be the

roots of the quadratic equation z0x
2 + z1x + z2 = 0. Using these variables, the
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vector field {H, ·} is expressed in the Jacobi form

µ̇1√
g(µ1)

+
µ̇2√
g(µ2)

= α1,
µ1µ̇1√
g(µ1)

+
µ2µ̇2√
g(µ2)

= α2,

for some constants α1 and α2 and some equation y2 = g(x) for the curve Γ. There-

for, the roots of the polynomial z0x
2+z1x+z2 are variables under which the vector

field linearizes.

3. The Painlevé Divisor

In the following sections, we consider the autonomous Garnier system of type 9
2

as an example. The Garnier system of type 9
2 is also known as the second member

of the first Painlevé hierarchy [13, 23].

3.1. The degeneration of the Painlevé divisor of the autonomous

Garnier system of type 9/2

We first consider the Painlevé divisor of the Liouville torus. The autonomous

Garnier system of type 9/2 is a Hamiltonian system with the Hamiltonians

H
9/2
Gar,s1

(q1, p1, q2, p2) =p41 + 3p21p2 + p1q
2
2 − 2q1q2 − p1s1 + p2s2 + p22,

H
9/2
Gar,s2

(q1, p1, q2, p2) =p21q
2
2 − 2p1q1q2 + p2q

2
2 + p31s2 + p1s

2
2 + p2p1s2 + p2s1 − p2p

3
1

− 2p22p1 − q22s2 + q21 ,

where s1, s2 are constants in this autonomous setting [16]. The Hamiltonians are

weight-homogeneous of weights

(ϖ(Hs1), ϖ(Hs2)) = (8, 10)

with respect to the weights

(ϖ(q1), ϖ(p1), ϖ(q2), ϖ(p2)) = (5, 2, 3, 4) =: (ν1, ν2, ν3, ν4),

(ϖ(s1), ϖ(s2)) = (6, 4).

The Hamiltonian system is given as follows:

dq1
dt1

=
∂Hs1

∂p1
= 4p31 + 6p2p1 + q22 − s1,

dp1
dt1

= −∂Hs1

∂q1
= 2q2,

dq2
dt1

=
∂Hs1

∂p2
= 3p21 + 2p2 + s2,

dp2
dt1

= −∂Hs1

∂q2
= 2 (q1 − p1q2) .
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Let us write the canonical variables by xi

x1 = q1, x2 = p1, x3 = q2, x4 = p2,

and denote the vector field by fi’s

dxi

dt1
= fi(x1, x2, x3, x4),

where

f1 =4x3
2 + 6x4x2 + x2

3 − s1, f2 = 2x3,

f3 =3x2
2 + 2x4 + s2, f4 = 2(x1 − x2x3).

Let us denote t = t1 for the brevity. We compute the Laurent series solutions of

the following form

xi(t) =
1

tνi

∞∑
j=0

xi,jt
j .

The initial terms (x1,0, x2,0, x3,0, x4,0) are one of the followings:

m1 = (0, 0, 0, 0), m2 = (−1, 1,−1, 0), m3 = (9, 3,−3,−9).

The Kowalevski matrix is given by

K =




5 12x2
2 + 6x4 2x3 6x2

0 2 2 0

0 6x2 3 2

2 −2x3 −2x2 4


 .

The Kowalevski exponents for each indicial locus is as follows.

indicial locus Kowalevski exponents

m1 = (0, 0, 0, 0) (2, 3, 4, 5)

m2 = (−1, 1,−1, 0) (−1, 2, 5, 8)

m3 = (9, 3,−3,−9) (−1,−3, 8, 10)

We first consider the balance corresponding to the initial term m1 = (0, 0, 0, 0):

x1(t;m1) =α+ βt+ γt2 + δt3 +
1

12
t4

(
−20α3 + 20αγ + 5β2 − 12αs2 + 4s1

)
+O

(
t5
)
,

x2(t;m1) =

(
3δ

4
− 2αβ

)
+ t

(
−5α3 + αγ − 3β2

4
− 3αs2 + s1

)

+
1

2
t2

(
−15α2β + 3αδ − 2βγ − 3βs2

)
+O

(
t3
)
,
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x3(t;m1) =
1

2

(
−α2 + γ − s2

)
+ t

(
3δ

2
− αβ

)
+ t2

(
−5α3 + 4αγ +

3β2

4
− 3αs2 + s1

)

+ t3
(
−5α2β + 4αδ +

7βγ

3
− βs2

)
+O

(
t4
)
,

x4(t;m1) =
β

2
+ γt+

3δt2

2
+

1

6
t3

(
−20α3 + 20αγ + 5β2 − 12αs2 + 4s1

)
+O

(
t4
)
.

These are Taylor series with 4 parameters α, β, γ, and δ. Now let us consider the
affine part of the fiber of the momentum map corresponding to the balance m1:

Hs1(x1(t;m1), x2(t;m1), x3(t;m1), x4(t;m1)) =h1,

Hs2(x1(t;m1), x2(t;m1), x3(t;m1), x4(t;m1)) =h2,

which is equivalent to

1

4

(
5α4 − 5αβ2 + 3βδ − γ2 + 6α2s2 − 4αs1 + s22

)
= h1,

1

16

(
−48α5 + 40α3γ + 30α2β2 − 36αβδ − 8αγ2 + 2β2γ

+9δ2 − 6s2
(
8α3 − 4αγ + β2

)
+ 8s1

(
3α2 − γ + s2

))
= h2.

The balance starting from the initial term m1 = (0, 0, 0, 0) corresponds to the affine

part of the Liouville tori, which is an abelian surface.

Next we consider the principal balance starting from m2 = (−1, 1,−1, 0).

x1(t;m2) =− 1

t5
+

α

t3
+ β + t

(
−α3

2
− 9αs2

35
+

s1
7

)
− 15

2
t2(αβ) + γt3

+ t4
(
18βs2

7
− 15α2β

2

)
+O

(
t5
)
,

x2(t;m2) =
1

t2
+

α

2
+ t2

(
−3α2

4
− 3s2

5

)
− 4βt3 +

1

28
t4
(
−35α3 − 24αs2 + 4s1

)
+O

(
t5
)
,

x3(t;m2) =− 1

t3
+ t

(
−3α2

4
− 3s2

5

)
− 6βt2 +

1

14
t3
(
−35α3 − 24αs2 + 4s1

)
− 15

2
t4(αβ)

+O
(
t5
)
,

x4(t;m2) =− 3α

2t2
+

(
3α2

2
+ s2

)
+ 6βt+ t2

(
9α3

8
+

9αs2
10

)

+
3t4

(
1925α4 + 1680γ − 120α2s2 − 400αs1 − 1008s22

)
12320

+O
(
t5
)
,

where α, β, γ are parameters. The level set of the moment map is

Hs1(x1(t;m2), x2(t;m2), x3(t;m2), x4(t;m2)) =h1,

Hs2(x1(t;m2), x2(t;m2), x3(t;m2), x4(t;m2)) =h2.
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These are equivalent to the followings

405α4

32
+

81γ

22
+

648α2s2
77

− 150αs1
77

− 23s22
110

= h1,

s1

(
s2 −

207α2

308

)
+

81
(
35

(
99α5 + 48αγ + 704β2

)
+ 760α3s2 − 1008αs22

)
24640

= h2.

From the first equation, γ can be expressed in terms of α:

γ = −55α4

16
+

22h1

81
− 16α2s2

7
+

100αs1
189

+
23s22
405

.

Substituting this expression of γ in the second equation, we obtain

−243α5

32
+ 81β2 +

3αh1

2
− 81α3s2

8
+ s1

(
9α2

4
+ s2

)
− 3αs22 = h2.

By replacing α = 2
3x, β = 1

9y, the equation reads

y2 = x5 + 3s2x
3 − s1x

2 + (2s22 − h1)x+ h2 − s1s2.

Let us consider the affine equation around h1 = ∞ by introducing h̃1 = 1/h2
1,

ỹ = y/h5
1, x̃ = x/h1:

ỹ2 = x̃5 + 3h̃4
1s2x̃

3 + h̃6
1s1x

2 + (2h̃8
1s

2
2 + h̃7

1)x̃+ h̃10
1 (s1s2 + h2).

The degenerations of genus two curves can be studied using Liu’s algorighm [15]. At

h̃1 = 0, the curve has the degeneration of type VII∗ in Namikawa-Ueno’s notation

with the following dual graph.

VII∗ : H
9
2

Gar,s1

��������1 ��������2B ��������5 ��������8

��������4

��������7 ��������6 ��������5 ��������4 ��������3 ��������2 ��������1




0 −1−1 0

−1 1 0 −1

1 −1−1 0

0 1 0 0




The numbers in circles indicate the multiplicities of components in the reducible

fibers. All curves are (-2)-curves except the one expressed as “B”, which has −3

as its self-intersection number. The matrix expresses the monodromy. For more
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details, see Namikawa and Ueno [17].

Similarly, we can consider the degeneration of the Painlevé divisor with respect

to the other Hamiltonian “h2”. After replacing x̃ = x/h2
2, ỹ = y/h5

2, h̃2 = 1/h2 in

the above example, we obtain an affine equation around h2 = ∞;

ỹ2 = x̃5 + 3h̃4
2s2x̃

3 + h̃6
2s1x̃

2 + 2h̃8
2s

2
2x̃+ h̃10

2 s1s2 + h1h̃
8
2x̃+ h̃9

2.

From Liu’s algorithm, the fiber at h2 = ∞ is of type VIII− 4 in Namikawa-Ueno’s

notation with the following dual graph and monodromy matrix.

VIII− 4: H
9
2

Gar,s2

��������2B ��������6 ��������10

��������5

��������9 ��������8 ��������7 ��������6 ��������5 ��������4 ��������3 ��������2 ��������1




1 0−1 0

0 0 0 −1

1 0 0 1

−1 1 1 0




Now let us consider the lowest balance, which starts with the initial term m3 =

(9, 3,−3,−9):

x1(t;m3) =
9

t5
+

s1t

21
+ αt3 + βt5 +

(
−138αs2

455
− 54

15925
s32 −

10

17199
s21

)
t7

+

(
−55αs1

3213
− 11βs2

238
− 4s1s

2
2

12495

)
t9 +O

(
t10

)
,

x2(t;m3) =
3

t2
− 3s2t

2

35
− s1t

4

63
+ t6

(
α

3
+

6s22
1225

)
+ t8

(
β

24
+

s1s2
2940

)
+O

(
t10

)
,

x3(t;m3) =− 3

t3
− 3s2t

35
− 2s1t

3

63
+ t5

(
α+

18s22
1225

)
+ t7

(
β

6
+

s1s2
735

)

+ t9
(
−11αs2

273
− 57s32

111475
+

5s21
154791

)
+O

(
t10

)
,

x4(t;m3) =− 9

t4
+

8s2
35

+
2s1t

2

21
+ t4

(
−α

2
− 9s22

490

)
+ t6

(
5β

24
− s1s2

420

)

+ t8
(
−3αs2

130
− 27s32

222950
− 5s21

17199

)
+O

(
t10

)
.

If we substitute these Laurent series solutions with parameters α and β into the
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equality

Hs1(x1(t;m3), x2(t;m3), x3(t;m3), x4(t;m3)) =h1,

Hs2(x1(t;m3), x2(t;m3), x3(t;m3), x4(t;m3)) =h2,

we obtain the following equations:

297α

2
+

29s22
350

= h1, 1287β +
214s1s2
245

= h2.

Therefore, the balance starting from m3 corresponds to a point

(α, β) =

(
350h1 − 29s22

51975
,
245h2 − 214s1s2

315315

)

in the fiber of the momentum map.

Remark 3.1. If we consider other integrable systems such as other types of

autonomous Painlevé-type equations, they are usually equipped with symmetries of

the Bäcklund transformations and the symmetries are reflected in the components

of the Painlevé divisors. The genus of the Painlevé divisor is not necessary two for

the 4-dimensional a.c.i., as we can observe in the case of matrix Painlevé equations.

3.2. A remark for the 2-dimensional case

We explain the 2-dimensional case to aid an understanding of the 4-dimensional

case. Geometrical treatment of the autonomous 2-dimensional Painlevé-type equa-

tions from different perspective can be found in Sakai [22] or [16]. Let us consider

the autonomous HI given by the Hamiltonian

HI(q, p) = p2 − q3 − sq.

The Hamiltonian system is thus

q̇ =2p,

ṗ =3q2 + s.

This is a weight-homogeneous system with the weight

(ϖ(q), ϖ(p)) = (2, 3), (ϖ(H), ϖ(s)) = (6, 4).

The balance associated to m1 = (0, 0) is a Taylor series

q(t;m1) =α+ βt+ t2
(
3α2 + s

)
+ 2αβt3 + t4

(
3α3 +

β2

2
+ αs

)
+O

(
t5
)
,

p(t;m1) =
β

2
+ t

(
3α2 + s

)
+ 3αβt2 + t3

(
6α3 + β2 + 2αs

)
+O

(
t4
)
.
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Since the Kowalevski exponents are 2, 3, the balance contains two free parameters

α and β. The level set of the momentum map is

H(q(t;m1), p(t;m2)) = −sα− α3 +
β2

4
= h.

If we write α = x, β = 2y, the equation is

y2 = x3 + sx+ h.

The degeneration of the affine Liouville tori (elliptic curve, in this case) at

h = ∞ can be studied in the following manner. The affine equation around h = ∞
is derived by transforming to h = 1/h̃, y = ỹ/h̃3, x = x̃/h̃2:

ỹ2 = x̃3 + sh̃4x̃+ h̃5.

The discriminant and the j-invariant of the cubic are

∆ =4(sh̃4)3 + 27(h̃5)2 = h̃10(4s3h̃2 + 27),

j =
4(sh̃4)3

∆
=

4s4h̃2

4s3h̃2 + 27
.

At h̃ = 0, using Tate’s algorithm, we can see that the elliptic curve has the degen-

eration of Kodaira-type II∗ or E8 in Dynkin’s notation.

��������2 ��������4 ��������6

��������3

��������5 ��������4 ��������3 ��������2 ��������1

Compare this result with two other derivations of the elliptic surface treated

in[16]. While we used the spectral curve or the explicit form of the Hamiltonian

in [16], we used the Taylor series solution in this paper.

Now let us consider the principal balance associated with m2 = (1,−1). The

Kowalevski exponents are−1, 6, and the principal balance contains a free parameter

α:

q(t;m2) =
1

t2
− s

5
t2 + αt4 +

s2

75
t6 − 3sα

55
t8 +O

(
t10

)
,

p(t;m2) = − 1

t3
− s

5
t+ 2αt3 +

s2

25
t5 − 12sα

55
t7 +O

(
t9
)
.

The level set of the momentum map is

H(q(t;m2), p(t;m2)) = −7α = h.
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Therefore, the principal balance starting from m2 corresponds to a point given by

α = −h

7
.

4. The Spectral Curve

Algebraically completely integrable systems are often endowed with Lax pairs

dA(x)

dt
+ [A(x), B(x)] = 0, A(x), B(x) ∈ gl(N)�x�

with spectral parameter x. The flow is linearized on the Jacobian of the spectral

curve, defined by the characteristic polynomial of A(x).

4.1. The spectral curve of the autonomous Garnier system

of type 9
2

Let us recall the result on the degeneration of the spectral curve of the au-

tonomous Garnier system of type 9
2 [16]. The linear equations of the Garnier

system of type 9
2 is written in Kimura [12], and Kawakami [9]. Using Kawakami’s

result, the Lax equation for the autonomous equation is expressed as

dA(x)

dti
+ [A(x), Bi(x)] = 0, i = 1, 2

for

A(x) =A0x
3 +A1x

2 +A2x+A3,

B1(x) =A0x
2 +A1x+B10 =

A(x)

x
+ C1 −

A3

x
,

B2(x) =−A0x+B20,

where

A0 =

(
0 1

0 0

)
, A1 =

(
0 p1
1 0

)
, A2 =

(
q2 p21 + p2 + 2s1
−p1 −q2

)
,

A3 =

(
q1 − p1q2 p31 + 2p1p2 − q22 + s1p1 − s2
−p2 + s1 −q1 + p1q2

)
,

B10 =

(
q2 p21 + 2p2 + s1
−p1 −q2

)
, B20 =

(
0 −2p2
−1 0

)
,

C1 =

(
0 p2 − s1
0 0

)
.
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The characteristic polynomial of a Lax equation of the Garnier system of type 9
2 is

expressed as

y2 = x5 + 3s2x
3 − s1x

2 + (2s22 − h1)x+ h2 − s1s2.

The equation for the spectral curve is exactly the same equation as that of the

Painlevé divisor. Therefore, the degeneration type at h1 = ∞ and h2 = ∞ are the

same.

4.2. Genus of the spectral curve

In the classification of the 4-dimensional Painlevé-type equations [21], Sakai

started from the linear equations with 4 accessory parameters classified by Os-

hima [20]. Therefore, the autonomous systems considered in [16] always have

spectral curves of geneus two. See also Hiroe [7] for the genus of the spectral

curves.

However, integrable systems often come equipped with Lax pairs with higher

genus than the half the dimension of the phase space. One famous example is the

Lax pair for the Kowalevski top given in [3].

We note an example for people interested in the Painlevé-type equations. Noumi

and Yamada [19] gave a Lax pair for the sixth Painlevé equation associated with

ŝo(8). While the system is 2-dimensional and the autonomous case can be solved

by an elliptic function, the spectral curve has genus two. The Lax pair with a

parameter δ is

∂A(x)

∂t
− δ

∂B(x)

∂x
= [B(x), A(x)],

where

A(x) =
A0

x
+A1, B(x) =

B0

x
+B1,

A0 =




ϵ1 1 0 0 0 0 0 0

0 ϵ2 −p −1 −1 0 0 0

0 0 ϵ3 q − 1 q 0 0 0

0 0 0 ϵ4 0 −q 1 0

0 0 0 0 −ϵ4 1− q 1 0

0 0 0 0 0 −ϵ3 p 0

0 0 0 0 0 0 −ϵ2 −1

0 0 0 0 0 0 0 −ϵ1,




A1 =E8,3 − E6,1 + (q − t)(E8,2 − E7,1),
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B0 =




u1 x1 y1 0 0 0 0 0

0 u2 x2 −y3 −y4 0 0 0

0 0 u3 x3 x4 0 0 0

0 0 0 u4 0 −x4 y4 0

0 0 0 0 −u4 −x3 y3 0

0 0 0 0 0 −u3 −x2 −y1
0 0 0 0 0 0 −u2 −x1

0 0 0 0 0 0 0 −u1




,

B1 =E8,2 − E7,1,

Ei,j =(δi,aδj,b)
8
a,b=1.

We consider the isospectral case δ = 0 and t in the Lax pair being a constant s.

The spectral curve C is defined by the characteristic polynomial for A(x)

C : det(yI8 −A(x)) = 0.

This is equivalent to

y8 − y6
(
ϵ21 + ϵ22 + ϵ23 + ϵ24

)
+ y4

(
4sx− 2x+ ϵ21ϵ

2
2 + ϵ23ϵ

2
2 + ϵ24ϵ

2
2 + ϵ21ϵ

2
3 + ϵ21ϵ

2
4 + ϵ23ϵ

2
4

)

+ xy2 (4h(s− 1)s+ 4s(ϵ1ϵ2 − ϵ1ϵ3 − ϵ2ϵ3) + 2(−ϵ1ϵ2 + ϵ3ϵ2 + ϵ4ϵ2 + ϵ1ϵ3 + ϵ1ϵ4 − ϵ3ϵ4))

− y2
(
ϵ21ϵ

2
2ϵ

2
3 + ϵ21ϵ

2
4ϵ

2
3 + ϵ22ϵ

2
4ϵ

2
3 + ϵ21ϵ

2
2ϵ

2
4

)
+ x2 − 2xϵ1ϵ2ϵ3ϵ4 + ϵ21ϵ

2
2ϵ

2
3ϵ

2
4 = 0,

where h is the Hamiltonian of the autonomous sixth Painlevé equation

h =
1

s(s− 1)

(
p2q(q − 1)(q − s)− p(α0q(q − 1) + α3q(q − s) + α4(q − 1)(q − s))

+ α2(α1 + α2)(q − s)
)
,

with s being a constant and

α0 = −ϵ1 − ϵ2, α1 = ϵ1 − ϵ2, α2 = −ϵ1 − ϵ2, α3 = ϵ3 − ϵ4, α4 = −ϵ3 + ϵ4.

Let us consider the following change of variables

x1 =y,

y1 =x+ ((2s− 1)y4 + (2s(s− 1)h+ (2s− 1)(ϵ1ϵ2 − ϵ3ϵ2 − ϵ1ϵ3)

+ ϵ1ϵ4 + ϵ2ϵ4 − ϵ3ϵ4)y
2 − ϵ1ϵ2ϵ3ϵ4).

Then the curve C is expressed as

y21 = a0(h)x
8
1 + a1(h)x

6
1 + a2(h)x

4
1 + a3(h)x

2
1,
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where

a0(h) =4s(s− 1),

a1(h) =8hs3 + (−12h+ 8(ϵ1ϵ2 − ϵ1ϵ3 − ϵ2ϵ3))s
2

+ 4(h+ 2(−ϵ1ϵ2 + ϵ1ϵ3 + ϵ2ϵ3) + ϵ4(ϵ1 + ϵ2 − ϵ3))s+ (ϵ1 + ϵ2 − ϵ3 − ϵ4)
2,

a2(h) =4h2s4 + 8(−h2 + h(ϵ1ϵ2 − ϵ1ϵ3 − ϵ2ϵ3))s
3 + 4(h2 + h(3(−ϵ1ϵ2 + ϵ3ϵ2 + ϵ1ϵ3)

+ (ϵ1 + ϵ2 − ϵ3) ϵ4) + ϵ21ϵ
2
2 + ϵ21ϵ

2
3 + ϵ22ϵ

2
3 − 2ϵ1ϵ2 (ϵ1 + ϵ2 − ϵ3) ϵ3)t

2

+ 4(h(ϵ1ϵ2 − ϵ3ϵ2 − ϵ4ϵ2 − ϵ1ϵ3 − ϵ1ϵ4 + ϵ3ϵ4)− ϵ21ϵ
2
2 − ϵ23ϵ

2
2

+ 2ϵ1(ϵ1 + ϵ2 − ϵ3)ϵ3ϵ2 − 4ϵ1ϵ3ϵ4ϵ2 − ϵ21ϵ
2
3

+ (ϵ2ϵ
2
1 − ϵ3ϵ

2
1 + ϵ22ϵ1 + ϵ23ϵ1 + ϵ2ϵ

2
3 − ϵ22ϵ3)ϵ4)s

+ 2(2ϵ1ϵ2ϵ3ϵ4 + ϵ3(ϵ
2
1 − ϵ3ϵ1 − ϵ4ϵ1 + ϵ22 − ϵ2ϵ3 − ϵ2ϵ4)ϵ4

− ϵ1ϵ2(ϵ1 + ϵ2 − ϵ3 − ϵ4)(ϵ3 + ϵ4),

a3(h) =4ϵ1ϵ2ϵ3ϵ4s(h(1− s)− ϵ1ϵ2 + ϵ2ϵ3 + ϵ1ϵ3).

If we blowup the singular point (0, 0) by introducing

Y = x1y1, X = x1,

the curve turns into a smooth hyperelliptic curve of genus 2 in the Weierstrass form

C : Y 2 = a0(h)X
6 + a1(h)X

4 + a2(h)X
2 + a3(h).

The curve C has an involution σ : (x, y) �→ (−x, y), other than the hyperelliptic

involution ι : (x, y) �→ (x,−y), Let us denote π : C → E = C/σ, then

E : y2 = a0(h)x
3 + a1(h)x

2 + a2(h)x+ a3(h).

We write the cubic f(x) = a0(h)x
3 + a1(h)x

2 + a2(h)x + a3(h). In order to write

an affine equation around ∞, we introduce the following variables

ỹ =
y

h3
, x̃ =

x

h2
, h̃ =

1

h
.

We obtain

ỹ2 = ã0(h̃)x̃
3 + ã1(h̃)x̃

2 + ã2(h̃)x̃
2 + ã3(h̃)x̃+ ã4(h̃), ãi(h̃) = h̃2iai(1/h̃).

The discriminant and the j-invarinat are

∆ =s(s− 1)h̃6 +O(h̃7)

j =
256(s2 − s+ 1)3

s2(s− 1)2
+O(h̃).
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At h̃ = 0, the order of ∆ and j are

ord(∆) = 6, ord(j) = 0.

Therefore, using Tate’s algorithm, we can tell that E has degeneration type I∗0 (or

D
(1)
4 in Dynkin’s notation) over h̃ = 0. The other 6 zeros of the discriminant are

generically simple zeros. This can be checked by computing the discriminant of the

polynomial ∆ in h. Therefore, type of the rational elliptic surface associated with

E is I∗0 + 6I1 in Kodaira’s notation, as expected.

5. Separation of varibles and construction of a Lax pair

5.1. Separation of variables

In this section, we consider separation of the variables following Vanhaecke [24].

Let us return to the case of autonomous Garnier system of type 9
2 . Recall that

the canonical variables q1, p1, q2, p2 have weights 5, 2, 3, 4, respectively. The number

of independent polynomials of weight k, dim(F (k)), are computed from

∞∑
k=0

(
dimF (k)

)
tk =

1

(1− t2)(1− t3)(1− t4)(1− t5)

=1 + t2 + t3 + 2t4 + 2t5 + 3t6 + 3t7 + 5t8 + 5t9 + 7t10 +O(t11).

Since the two functionally independent constants of motion H1, H2 have weights

8, 10 respectively, the number of constants of motion of weight k, dim(H(k)), are

the coefficients of the following series

∞∑
k=0

(
dimH(k)

)
tk =

1

(1− t8)(1− t10)

=1 + t8 + t10 + t16 + t18 + t20 +O(t24).

Let ρ be 2. The number of linearly independent polynomials which have a double

pole at most when the principal balance x(t;m2) is substituted in them, dim(Z(k)
ρ ),

can be computed from direct computations. Let us introduce other notations in

the following table. ♯dependent denotes the number of elements in Z(k)
ρ that are

dependent of the previous ones over H. This can be computed from the previous

data by the formula
∑i−1

j=0 ζj dimH(i−j). The number of independent elements that

are added at degree k is denoted by ζk. Our situation can be summarized as in the

following table.

The basis of |2Γ| is

z0 = 1, z1 = x2, z2 = −x4 + s2, z3 = x3
2 − x2

3 + x2x4.
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k dimF (k) dimH(k) dimZ(k)
ρ ♯dependent ζk independent functions

0 1 1 1 0 1 z0 = 1

1 0 0 0 0 0 −
2 1 0 1 0 1 z1 = x2

3 1 0 0 0 0 −
4 1 0 1 0 1 z2 = −x4 + s2
5 2 0 0 0 0 0

6 2 0 1 0 1 z3 = x3
2 − x2

3 + x2x4

7 3 0 0 0 0 −
8 5 1 1 1 0 −
9 5 0 0 0 0 −
10 7 1 1 1 0 −

Table 1. The polynomials of weighted-degree less than 10 which have
a double pole at most when x(t;m2) is substituted in them.

Let us consider the Kodaira map ϕ|2Γ| : Jac(Γ) \ Γ defined by

ϕ|2Γ|(P ) = (z0(P ) : z1(P ) : z2(P ) : z3(P )).

for any P = (x1, x2, x3, x4) ∈ Jac(Γ) \ Γ. The Kummer surface of the Jacobian

Jac(Γ) can be expressed in the form

(z21 − 4z2)z
2
3 + r3(z1, z2)z3 + r4(z1, z2) = 0,

where r3 and r4 are polynomials of degree 3 and 4 respectively.

r3(z1, z2) =− 2h1z1 + 4h2 + 4s2z
3
1 − 2s1z

2
1 + 4s22z1 − 10s2z2z1 + 4s1z2

− 4s1s2 + 2z22z1,

r4(z1, z2) =z42 + 4s22z
4
1 + 4s2z

2
1z

2
2 − 4h2z

3
1 − 6s2z

3
2 + 4h1z

2
1z2 − 12s22z

2
1z2 + 2s1z1z

2
2

− 4h1s2z
2
1 + 8s32z

2
1 + s21z

2
1 − 2h1z

2
2 + 13s22z

2
2 + 4h2z1z2 − 2s1s2z1z2

− 4h2s2z1 + 6h1s2z2 − 12s32z2 + 2h1s1z1 − 4h1s
2
2 + h2

1 + 4s42.

A system of linearizing variables µ1, µ2 is given by the roots of the quadratic equa-

tion z0x
2 + z1x+ z2 = 0, that is,

µ1 + µ2 = −z1, µ1µ2 = z2,

since z0 = 1. We also have (µ1 − 1)(µ2 − 1) = z1 + z2 + 1. Differentiating these
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equation with respect to the vector field Xh1 , we have

µ̇1

µ1
+

µ̇2

µ2
=

ż2
z2

,

µ̇1

µ1 − 1
+

µ̇2

µ2 − 1
=

ż1 + ż2
z1 + z2 + 1

.

These equations further give

µ̇2
i = − 4g(µi)

(µ1 − µ2)2
, (i = 1, 2)

where

g(x) = x5 + 3s2x
3 + s1x

2 + (2s22 − h1)x− h2 + s1s2.

It follows that in terms of the coordinates µ1, µ2, the differential equation reduces

to the Jacobi form

µ̇1√
g(µ1)

+
µ̇2√
g(µ2)

= 0,
µ1µ̇1√
g(µ1)

+
µ2µ̇2√
g(µ2)

= 1.

The Jacobi inversion problem can be solved using genus two ℘ function associated

with the Jacobian of the hyperelliptic curve Γ: y2 = g(x) as in [4].

5.2. Construction of a Lax pair

According to Mumford’s description of hyperelliptic Jacobian [14], the affine

part Jac(Γ) \ Γ of Jacobian of genus two curve Γ: y2 = g(x) is isomorphic to the

space of polynomials (u(x), v(x)) such that u(x) is monic of degree 2, v(x) has

degree less than 2 and g(x)− v(x)2 is divisible by u(x).

u(x) = = (x− µ1)(x− µ2) = x2 + u1x+ u2,

v(x) =

√
g(µ2)

µ2 − µ1
(x− µ1) +

√
g(µ1)

µ2 − µ1
(x− µ2),

w(x) =
g(x)− v(x)2

u(x)
= x3 + (µ1 + µ2)x

2 + (µ2
1 + µ1µ2 + µ2

2 + 3s2)x+ w3,

where

w3 =− 1

(µ1 − µ2)2
(
(µ1µ2(µ

3
1 + µ3

2 + 3s2(µ1 + µ2) + 2s1)

− (h1 − 2s22)(µ1 + µ2)− 2h2 + 2s1s2 +
√
g(µ1)g(µ2)

)
.
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Let us set

A(x) =

(
v(x) u(x)

w(x)−v(x)

)
.

The Poisson bracket can be defined and the Hamiltonian H is determined by the

coefficient of u(x)w(x)+v(x)2. The flow Ȧ(x) = {H,A(x)} is expressed in the Lax

form

Ȧ(x) = [A(x), B(x)], B(x) =

(
A(x)

x2

)

+

−
(
0 0

u1 0

)
.

In this way, a 2 × 2 Lax expression can be constructed without knowing one in

advance. Construction of 2×2 Lax representations for the Weierstrass algebraically

completely integrable systems is also treated in [6]. For the first Painlevé hierarchy

including the Garnier system of type 9/2, such Lax form is treated by Takasaki [23].

6. Comments

In this paper, we have seen two genus two curves, the Painlevé divisor and the

spectral curve, associated with the autonomous Garnier system of type 9
2 with the

following equation

y2 =x5 + 3s2x
3 − s1x

2 + (2s22 − h1)x+ h2 − s1s2.

These are just translates of the theta divisor of the Liouville torus. One prac-

tical benefit of having explicit expressions of these curves is one might be able

to distinguish the integrable systems by studying the degeneration of (irreducible

components of) the Painlevé divisor. When an integrable system is not equipped

with its Lax pair in advance, such comparisons might be meaningful.
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Appl. Math., 116, 2006, 4, pp.321–413.
[6] D. Fairbanks, Lax equation representation of certain completely integrable systems, Com-

positio Math., 68, 1988, 1, pp.31–40.
[7] K. Hiroe, Ramified irregular singularities of meromorphic connections and plane curve sin-

gularities, in this volume.
[8] K. Hiroe, T. Oshima, A classification of roots of symmetric Kac-Moody root systems and

its application, Symmetries, integrable systems and representations, Springer Proc. Math.
Stat., 40, pp.195–241, 2013.
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