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Asymptotic behavior of regularized estimator

under multiple and mixed-rates asymptotics

Yusuke Shimizu

Abstract. Masuda and Shimizu (2017) consider the uniform
tail-probability estimate of a class of scaled regularized estimators under

multiple and mixed-rates asymptotics in the sense of Radchenko (2008),
where the associated statistical random fields may be non-differentiable
and may fail to be partially locally asymptotically quadratic so that

the conventional approach through the polynomial type large devia-
tion inequality (PLDI) developed by Yoshida (2011) does not work
directly. In this paper, we generalize the form of regularization terms
considered in Masuda and Shimizu (2017), and derive the asymptotic

behaviors including the moment convergence of estimator. Our setting
includes sparsely regularized M -estimation such that sparse-bridge, the
smoothly clipped absolute deviation and Seamless-L0 regularization.

1. Introduction

Suppose that we observe data Xn, the distribution of which is indexed by

a finite-dimensional parameter θ ∈ Θ ⊂ Rp. In order to estimate θ based on

Xn, we usually introduce an appropriate (quasi-)likelihood or contrast function

Hn : Ω × Θ → R, and estimate an optimal parameter value θ0 by any point

θ̂n ∈ argminHn. For assessing asymptotic performance of θ̂n quantitatively, we

look at the statistical random fields

Mn(u; θ0) = Hn(θ0 +An(θ0)u)−Hn(θ0),(1)

where An(θ0) denotes the rate matrix such that |An(θ0)| → 0 as n → ∞ and

the components may decrease at different rates; estimation with multiple-rates

of convergence has appeared in the literature of, for example, econometrics [3].

Throughout this paper, we use the notation |A|2 = tr(AA⊤) for a matrix A with

⊤ denoting the transpose. As is well-known, the weak convergence of Mn to some

M0 over compact sets, the identifiability condition on M0, and the tightness of the

2010 Mathematics Subject Classification. Primary 62E20; Secondary 62F12.
Key Words and Phrases. regularized estimation; moment convergence; large deviation inequal-
ity; sparse estimation; stochastic differential equation; mixed-rates asymptotics.



4 Y. Shimizu

scaled estimator ûn := An(θ0)
−1(θ̂n−θ0) make the “argmin” functional continuous

for Mn: ûn ∈ argminMn
L−→ argminM0. See e.g., [21, Section 5]. Further, when

concerned with moments of ûn-dependent statistics, such as the mean squared

error, more than the weak convergence is required. Then the polynomial type

large deviation inequality (PLDI) of [22], which estimates the tail of L(ûn) in such

a way that

sup
r>0

sup
n>0

rLP (|ûn| ≥ r) < ∞(2)

for a given L > 0, plays an important role: we set û0 ∈ argminM0 for a random

variable û0. The moment convergence

E[|ûn|q] → E[|û0|q](3)

for some q > 0 holds if there exists a q′ > q such that supn>0 E[|ûn|q
′
] < ∞. Let

us assume that the PLDI (2) holds for some L > q′. Then we obtain

sup
n>0

E[|ûn|q
′
] = sup

n>0

∫ ∞

0

P (|ûn|q
′
> s)ds < ∞.

It has been known that the PLDI can be proved under modest conditions when

Mn admit a locally asymptotically quadratic (LAQ) structure, which is satisfied for

many situations including asymptotically mixed-normal type models under multi-

scaling. Here, in the multi-scaling case where the random vector θ̂n converges at

different rates, the LAQ structure at “first” step takes the form∗

Mn(u, τ ; θ0) = ∆n(τ ; θ0)[u] +
1

2
Γ0(τ ; θ0)[u, u] + rn(u, τ ; θ0),(4)

where we are required to verify, among others, the following conditions which are

to hold uniformly in “the second- and the subsequent-step” parameter τ , which

is regarded as a nuisance parameter in the first step: sufficient integrability of

the random linear form ∆n(τ ; θ0); the non-degeneracy of the possibly random bi-

linear form Γ0(τ ; θ0); and a kind of “non-explosiveness” of the scaled remainder

term (1 + |u|2)−1rn(u, τ ; θ0), where the u-pointwise limit of rn(u, τ ; θ0), whenever

exists, typically equals zero. For notational convenience, here and in the sequel

we write A[b1, . . . , bm] =
∑

i1,...,im
Ai1...imb1i1 . . . bmim for multilinear forms A =

{Ai1...im}i1,...,im and bj = {bjik}ik ; sometimes bj themselves may be tensors, hence

∗The sign in front of the quadratic term (1/2)Γ0(τ ; θ0)[u, u] is different from the original LAQ
of [22] since we consider minimization of (1).
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the resulting form is also a multilinear form, e.g. A[B,C] = {
∑

i,j AijBikCjl}k,l for
A = {Aij}, B = {Bik}, and C = {Cjl}. See [22, Section 5] for the detailed account

of the above-mentioned multistep procedures. In many standard statistical models,

the form (1) is enough to find the asymptotic distribution of all the components of

θ̂n.

In principle, any M -estimation procedure, typically producing an asymptoti-

cally mixed-normally distributed estimator, may have its “regularized” counter-

part; we refer to [4] for some general backgrounds of statistical regularization. We

are concerned here with extending the random-field structure to deal with pos-

sibly dependent data and a broader class of regularized M -estimation under the

“mixed-rates” asymptotics. In particular, we will show how the PLDI of [22] can

carry over to the mixed-rates M -estimation where the target statistical random

fields may have components converging at different rates; we refer to [12] and [17]

for details in case of linear regression with general regularization term. We will

adopt the very general theoretical framework developed by [15, Sections 2 and 3].

It will be shown that the PLDI criterion of [22] can apply to some mixed-rates cases

while it may require some modification when the key LAQ structure of the original

statistical random field fails to hold; it may even happen that rn(u, τ ; θ0) diverges

in probability. Indeed, most of the existing sparse estimation procedures may fall

into this type of asymptotics. Consequently, with a true parameter being fixed, our

moment-convergence result provides yet another theoretical insight about the reg-

ularized estimation, the well-established methodology especially in variable and/or

model selection.† The logic of the sparse and more generally shrinkage estimation

would be best and most clearly described by the context of multiple linear regres-

sion, with many deep theoretical interpretation such as geometrical (projection)

characterization, variable selection, stabilized prediction performance, etc. See e.g.

[10, Chapter 3].

There exist a lot of previous works on moment convergence of estimators. It

serves as a fundamental tool when analyzing asymptotic behavior of the expecta-

tions of statistics depending on the estimator such as asymptotic bias and mean

squared prediction error; to mention just a few, we refer to [5], [8], [11], [13],

[16], [17], [18], [19], as well as [22]. Also, the convergence of moments of regular-

ized sparse maximum-likelihood estimator of generalized linear model was deduced

in [20] to verify the AIC type variable-selection. Further, [1] recently discussed

†It should be noted that the sparse estimation has received mixed reception from a kind of

estimation singularity similar to that of the classical Hodge’s super efficient estimator. The
unpleasant feature of the sparse-type estimator essentially stems from non-uniformity in weak
convergence with respect to the true value of parameters, see [13] for details.
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optimal selection of random and k-fold cross-validation estimators, the theoreti-

cal backbone of which involves some moment bounds of the estimators used; the

related paper [2] studied the uniform integrability of the ordinary least-squares

estimator in the linear regression setting.

The goal of this paper is to generalize the form of regularization terms consid-

ered in [12], which derives the uniform tail-probability estimate of a class of scaled

regularized estimators under multiple and mixed-rates asymptotics in the sense of

[15], where the associated statistical random fields may be non-differentiable and

may fail to be partially LAQ structure so that the conventional approach through

the PLDI developed by [22] does not work directly.

Section 2 describes our model setup which includes sparsely regularized M -

estimation such that the Seamless-L0 regularization [6], the smoothly clipped ab-

solute deviation [7] and the sparse-bridge [14]. Under the model descridbed in

Section 2, we give a series of basic asymptotic statements in Section 3, where, in

particular, the polynomial type large deviation estimate of the underlying statisti-

cal random fields will play a crucial role for the uniform tail-probability estimate

concerning the scaled M -estimator; although the asymptotics is classical, in the lit-

erature there seems to exist no unified tools that can handle general M -estimation

of multiple-rates and possibly mixed-rates type, and importantly, of possibly non-

differentiable and non-convex type. The claims in Section 3 are the same as in [12,

Section 3], although, note again that, the setting described in Section 2 generalizes

that of [12].

2. Setup

Let us begin with description of the basic model setup for Section 3. Through-

out we are given an underlying probability space (Ω,F , P ). For the purpose of

accelerating estimation performance, we consider M -estimation of an additive reg-

ularization type. We will focus on the case of two-scaling, where the target statisti-

cal parameter θ ∈ Θ is divided into two parts, say θ = (α, β); an extension to cases

of more-than-two scaling is a trivial matter while making notation messy. We set

α ∈ Rp and β ∈ Rq, and Θ = Θα ×Θβ to be a bounded convex domain in Rp+q.

We are given a function Mn : Ω×Θ → R, and regularization (possibly random)

functions R
a

n(α) and R
b

n(β). We then consider contrast functions Hn : Ω×Θ → R
of the form

Hn(θ) = Hn(α, β) = Mn(α, β) +R
a

n(α) +R
b

n(β).(5)
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The associated regularized M -estimator is defined to be any element (for brevity,

implicitly assumed to exist)

θ̂n ∈ argmin
θ∈Θ

Hn(θ).

We quantitatively distinguish zero parameters from non-zero ones. We denote by

θ0 = (α0, β0) the value we want to estimate (typically the true value of θ) and

assume that it takes the form α0 = (α◦
0, α

∗
0) = ((α◦

0,k′)k′ , (α∗
0,k′′)k′′) and β0 =

(β◦
0 , β

∗
0) = ((β◦

0,l′)l′ , (β
∗
0,l′′)l′′) with

α◦
0,k′ = 0, β◦

0,l′ = 0, α∗
0,k′′ ̸= 0, β∗

0,l′′ ̸= 0.

We set α◦
0 ∈ Rp◦

, β◦
0 ∈ Rq◦ , α∗

0 ∈ Rp∗
and β∗

0 ∈ Rq∗ with p◦, q◦, p∗, q∗ ∈ N;
then, p = p◦ + p∗ and q = q◦ + q∗. Correspondingly, we write θ = (θ◦, θ∗)

with θ◦ = (α◦, β◦) and θ∗ = (α∗, β∗) in the obvious manner. We also write

θ̂n = (α̂n, β̂n) = (α̂◦
n, α̂

∗
n, β̂

◦
n, β̂

∗
n) with θ̂◦n = (α̂◦

n, β̂
◦
n) and θ̂∗n = (α̂∗

n, β̂
∗
n). In this

paper, we focus on the following regularization terms:

R
a

n(α) =

p∑
k=1

pan,k(αk), R
b

n(β) =

q∑
l=1

pbn,l(βl),(6)

where pan,k(·) and pbn,l(·) are random and non-negative functions such that pan,k(0) =

pbn,l(0) = 0 a.s. for any k ∈ {1, . . . , p} and l ∈ {1, . . . , q}. Note that this type of

regularization terms generalize that of [12], and subsume many of the existing

types, e.g., [6], [7], [9], [14] and [23] for linear regression model. For convenience of

reference in the regularity conditions given later, we write

R
a

n(α) = R
a◦
n (α◦) +R

a∗
n (α∗) =

p◦∑
k′=1

pa◦n,k′(α◦
k′) +

p∗∑
k′′=1

pa∗n,k′′(α∗
k′′),(7)

R
b

n(β) = R
b◦
n (β◦) +R

b∗
n (β∗) =

q◦∑
l′=1

pb◦n.l′(β
◦
l′) +

q∗∑
l′′=1

pb∗n,l′′(β
∗
l′′).(8)

Conditions on the ingredient of Mn, p
a
n,· and pbn,· will be imposed later on.

We will deal with a situation where the non-zero part of the first component α

can be estimated faster than that of the second component β; more specifically, we

will suppose that the sequence

(
s−1
n (α̂∗

n − α∗
0), t

−1
n (β̂∗

n − β∗
0)
)
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has a non-trivial asymptotic distribution for some possibly different positive se-

quence (sn) and (tn), both tending to zero and satisfying that sn = o(tn). Al-

though not explicitly mentioned, we presuppose that the “principal” part Mn(θ)

reasonably makes sense even without regularization terms R
a

n(α) + R
b

n(β); most

typically, the un-regularized case, where Hn(θ) = Mn(θ), corresponds to a negative

of a (quasi) log-likelihood.

3. Asymptotics

Under the setting described in Section 2, we state results analogous to Theorems

3.4, 3.8, 3.12, 3.15, and 3.21 in [12]. Note that the type of regularization terms (6)

generalize that of [12] (see [12, section 2] for details). First, we cite an assumption

from [12]:

Assumption 3.1 (Assumption 3.1 in [12]).

1. (sn) and (tn) are positive nonrandom sequences such that max(sn, tn) → 0

and that sn = o(tn).

2. There exist continuous random functions M
a

0 : Ω×Θα → R and M
b

0 : Ω×Θ →
R such that:

(a) sup
α

∣∣∣s2n {Mn(α, β0)−Mn(α0, β0)} −M
a

0(α)
∣∣∣

+sup
θ

∣∣∣t2n {Mn(α, β)−Mn(α, β0)} −M
b

0(θ)
∣∣∣ p−→ 0;

(b) argmin
α

M
a

0(α) = {α0} a.s. and argmin
β

M
b

0(α0, β) = {β0} a.s.

3. sup
α

∣∣∣s2nRa

n(α)
∣∣∣+ sup

β

∣∣∣t2nRb

n(β)
∣∣∣ p−→ 0.

Under the Assumption 3.1, [12, Theorem 3.4], which describes the consistency of

θ̂n = (θ̂◦n, θ̂
∗
n):

θ̂n
p−→ θ0,

holds as it is (see [12] for details).

For [12, Theorem 3.8], which derives (ûn, v̂n) = Op(1) where

ûn := s−1
n (α̂n − α0), v̂n := t−1

n (β̂n − β0),(9)

we set the following additional assumption:
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Assumption 3.2 (modified Assumption 3.6 in [12]).

1. Mn ∈ C3(Θ) a.s., and it holds that:

(a) sup
β

|sn∂αMn(α0, β)|+ |tn∂βMn(θ0)| = Op(1);

(b) sup
α

|sntn∂α∂βMn(α, β0)| = Op(1);

(c) sup
θ

��s2n∂ζ∂2
αMn(θ)

��+ sup
θ

��t2n∂ζ∂2
βMn(θ)

�� = Op(1) for ζ = α, β;

(d) There exist symmetric random functions Γα
0 : Ω × Θα → Rp ⊗ Rp and

Γβ
0 : Ω×Θ → Rq ⊗ Rq such that

��s2n∂2
αMn(θ0)− Γα

0 (α0)
��+

���t2n∂2
βMn(θ0)− Γβ

0 (θ0)
��� p−→ 0,

with λmin

(
Γα
0 (α0)

)
∧ λmin

(
Γβ
0 (θ0)

)
> 0 a.s.

2. For all a0, b0 ̸= 0 and m > 0,

sup
k′′,l′′

sup
(a′,b′):|a′|∨|b′|≤m

sn

���pa∗n,k′′(a′)− pa∗n,k′′(a0)
���+ tn

���pb∗n,l′′(b′)− pb∗n,l′′(b0)
���

|a′ − a0|+ |b′ − b0|
= Op(1).

Then, the following corollary is derived from [12, Theorem 3.8].

Corollary 3.3. We have (ûn, v̂n) = Op(1) under Assumptions 3.1 and 3.2.

For the sparse consistency P (θ̂◦n = 0) → 1, we add the following assumption:

Assumption 3.4 (modified Assumption 3.11 in [12]). There exist con-

stants ak′ , bl′ ∈ (0, 1/2) such that

P

(
s2n∂α◦

k′Mn(0, . . . , 0, α̂
◦
n,k′ , . . . , α̂◦

n,p◦ , α̂∗
n, β̂n)α̂

◦
n,k′

+ s2np
a◦
n,k′(α̂◦

n,k′) ≥ −ak′λmin

(
Γα◦

0 (α0)
)
|α̂◦

n,k′ |2
)

→ 1,

P

(
t2n∂β◦

l′
Mn(α̂n, 0, . . . , 0, β̂

◦
n,l′ , . . . , β̂

◦
n,q◦ , β̂

∗
n)β̂

◦
n,l′

+ t2np
b◦
n,l′(β̂

◦
n,l′) ≥ −bl′λmin

(
Γβ◦

0 (θ0)
)
|β̂◦

n,l′ |2
)

→ 1

for each k′ ∈ {1, . . . , p◦} and l′ ∈ {1, . . . , q◦}.
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Then, it is straightforward to prove the following corollary by making use of [12,

Theorem 3.12].

Corollary 3.5. We have P (θ̂◦n = 0) → 1 under Assumptions 3.1, 3.2 and

3.4.

The Asymptotic non-degenerate distribution of (û∗
n, v̂

∗
n) = (s−1

n (α̂∗
n−α∗

0), t
−1
n (β̂∗

n

−β∗
0)) can be also derived with modifications. We define some notations:

∆n(θ0) := Dn∂θ∗Mn(θ0), Γn(θ0) := Dn∂
2
θ∗Mn(θ0)Dn,

∆R
a∗
n (u∗) := R

a∗
n (α∗

0 + snu
∗)−R

a∗
n (α∗

0), ∆R
b∗
n (v∗) := R

b∗
n (β∗

0 + tnv
∗)−R

b∗
n (β∗

0),

where Dn := diag(snIp∗ , tnIq∗) and, Ip∗ and Iq∗ are p∗ × p∗ and q∗ × q∗ identity

matrix, respectively. Then, we cite an assumption from [12]:

Assumption 3.6 (Assumption 3.14 in [12]). There exist random variables

∆0 and Γ0, and random functions ∆R
a∗
0 (u∗) and ∆R

b∗
0 (v∗) such that

(
∆n(θ0), Γn(θ0), ∆R

a∗
n (·), ∆R

b∗
n (·)

)
L−→

(
∆0, Γ0, ∆R

a∗
0 (·), ∆R

b∗
0 (·)

)

in C(K0 × K1) for every compact K0 × K1 ⊂ Rp∗ × Rq∗ , and that the random

function

M0(u
∗, v∗) := ∆0[w

∗] +
1

2
Γ0[w

∗, w∗] + ∆R
a∗
0 (u∗) + ∆R

b∗
0 (v∗)

has an a.s. unique minimum at (u∗, v∗) = (û∗
0, v̂

∗
0).

As a variant of [12, Theorem 3.15], we get the following corollary.

Corollary 3.7. We have (û∗
n, v̂

∗
n)

L−→ (û∗
0, v̂

∗
0) under Assumptions 3.1, 3.2,

3.4 and 3.6.

Remark 3.8. We can derive the asymptotically mixed normality of θ̂∗n with

slight modifications (see [12, Corollary 3.17] for details).

Finally as for [12, Theorem 3.20]:

sup
r>0

sup
n>0

rLP (|(ûn, v̂n)| ≥ r) < ∞,(10)

which gives us the tail probability estimates of (ûn, v̂n), we set the following as-
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sumptions:

Assumption 3.9 (Assumption 3.18 in [12]).

1. There exist nonrandom functions �Ma
0 : Θα → R and �M b

0 : Θβ → R, and

positive constants δa1 , δ
b
1, χ

a and χb such that for all K > 0,

• sup
n>0

E

[
sup
θ∈Θ

���s−2δa1
n

{
s2n

(
Mn(α, β)−Mn(α0, β)

)
− �Ma

0 (α)
}���

K
]
< ∞.

• sup
n>0

E

[
sup
β∈Θβ

���t−2δb1
n

{
t2n
(
Mn(α0, β)−Mn(α0, β0)

)
− �M b

0(β)
}���

K
]
< ∞.

• �Ma
0 (α) ≥ χa|α− α0|2, �M b

0(β) ≥ χb|β − β0|2.

2. There exist nonrandom matrices C0(β) and C0 > 0, and constants δa2 , δb2 ∈
(0, 1/2] such that for all K > 0,

• inf
β

λmin(C0(β)) > 0.

• sup
n>0

E

[
sup
β∈Θβ

(
s
−2δa2
n

��s2n∂2
αMn (α0, β)− C0(β)

��)K
]
< ∞.

• sup
n>0

E

[(
t
−2δb2
n

��t2n∂2
βMn (α0, β0)− C0

��)K
]
< ∞.

• sup
n>0

E

[
sup
α∈Θα

���snt2(1−δb2)
n ∂α∂

2
βMn(α, β0)

���
K
]
< ∞.

3. For all K > 0,

• sup
n>0

E

[
sup
β∈Θβ

|sn∂αMn(α0, β)|K
]
< ∞, sup

n>0
E
[
|tn∂βMn(α0, β0)|K

]
< ∞.

• sup
n>0

E

[
sup
θ∈Θ

��s2n∂3
αMn(θ)

��K
]
< ∞, sup

n>0
E

[
sup
θ∈Θ

��t2n∂3
βMn(θ)

��K
]
< ∞.

• sup
n>0

E

[
sup
α∈Θα

|sntn∂α∂βMn(α, β0)|K
]
< ∞.

Assumption 3.10 (Assumption 3.19.1 in [12]). There exist constants

νa, νb ∈ (0, 1/2) such that for any K > 0,

sup
n>0

E

[
sup
α∈Θα

(
s1+2νa

n R
a

n(α)
)K

]
< ∞, sup

n>0
E

[
sup
β∈Θβ

(
t1+2νb

n R
b

n(β)
)K

]
< ∞.
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Assumption 3.11 (modified Assumption 3.19.2. in [12]). There exist

κa, κb ∈ (0, 2), and for any u ̸= 0 there exist random variables zau, zbu > 0 a.s.

such that for any v ∈ R:

• lim sup
n→∞

��pa∗n,k′′(u+ snv)− pa∗n,k′′(u)
�� ≤ zau|v|κ

a

a.s. for all k′′ ∈ {1, . . . , p∗}

• lim sup
n→∞

��pb∗n,l′′(u+ tnv)− pb∗n,l′′(u)
�� ≤ zbu|v|κ

b

a.s. for all l′′ ∈ {1, . . . , q∗}

• E[|zau|K ] < ∞, E[|zbu|K ] < ∞ for every K > 0.

Assumption 3.9 is borrowed from [22, Theorem 3(c)], hence we should note that

the assumed differentiability of Mn is not essential and could be relaxed; see also

Remark 3.14 below. Then, we obtain the following claim.

Corollary 3.12. For any L > 0, (10) holds under Assumptions 3.9–3.11.

Additionally if we have the weak convergence (û◦
n, û

∗
n, v̂

◦
n, v̂

∗
n)

L−→ (û◦
0, û

∗
0, v̂

◦
0 , v̂

∗
0) for

some random vector (û◦
0, û

∗
0, v̂

◦
0 , v̂

∗
0), then the moment convergence

E[f(ûn, v̂n)] → E[f(û◦
0, û

∗
0, v̂

◦
0 , v̂

∗
0)]

holds for all continuous f : Rp+q → R of at most polynomial growth.

Remark 3.13. The proof of Corollary 3.12 remains unchanged from that of

[12, Theorem 3.20] except for

sup
n>0

E

[
sup

u∈Ua
n(r)

(
1

1 + |u|2
���Ra∗

n (α∗
0 + snu

∗)−R
a∗
n (α∗

0)
���
)d

]

≲ sup
n>0

E


 sup
u∈Ua

n(r)


 1

1 + |u|2
p∗∑

k′′=1

��pa∗n,k′′(α∗
0 + snu

∗)− pa∗n,k′′(α∗
0)
��



d



≲ E

[
sup

u∈Ua
n(r)

(
|u∗|κa

1 + |u|2

)d
]
≲ r−(κa−2)d.

Here, we used Assumption 3.11. See [12] for details.

Remark 3.14. Trivially, it is not essential for the discussions so far that the

LAQ part Mn is twice continuously differentiable. All the assertions presented in

this section can also go for possibly non-differential Mn as long as statistical random

fields associated with Mn is of LAQ: Mn(θ0+Anu)−Mn(θ0) = ∆n[u]+
1
2Γ0[u, u]+
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rn(u) with (quasi-)score sequence ∆n, asymptotic (quasi-)information matrix Γ0,

and remainder term rn(u) = op(1) (locally uniformly in u). The resulting set of

conditions becomes somewhat less concise.
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