Measures of analytic type and semicharacters

Hiroshi Yamaguchi

Abstract. Helson and Lowdenslager extended the classical F. and M. Riesz theorem as follows: Let G be a compact abelian group with ordered dual. Let μ be a bounded regular measure on G which is of analytic type. Then

- (I) μ_a and μ_s are of analytic type, and
- $\hat{\mathbf{II}}) \quad \hat{\mu}_s(0) = 0,$

where μ_a and μ_s are the absolutely continuous part of μ and the singular part of μ , respectively. Forelli gave a generalization of the result of Helson and Lowdenslager for a compact abelian group with ordered dual. As for (I), Doss, Yamaguchi and Hewitt-Koshi-Takahashi gave its extensions for locally compact abelian groups. In this paper, we extend a result of Forelli, which is related to (II), to locally compact abelian groups.

1. Introduction

Let G be a LCA group (locally compact abelian group) with the dual group \hat{G} . We denote by m_G the Haar measure of G. Let $L^1(G)$ and M(G) be the group algebra and the measure algebra, respectively. Let $M_a(G)$ be the set of all measures in M(G) which are absolutely continuous with respect to m_G . Then we can identify $M_a(G)$ with $L^1(G)$. Let $M_s(G)$ be the closed subspace of M(G) consisting of singular measures. We denote by $M^+(G)$ the subset of M(G) consisting of positive measures. For $\mu \in M(G)$, let μ_a and μ_s be the absolutely continuous part of μ and the singular part of μ , respectively. $\hat{\mu}$ denotes the Fourier-Stieltjes transform of μ , i.e., $\hat{\mu}(\gamma) = \int_G (-x, \gamma) \, d\,\mu(x)$ for $\gamma \in \hat{G}$. For a subset E of \hat{G} , let $M_E(G)$ be the space of measures in M(G) whose Fourier-Stieltjes transforms vanish off E.

Helson and Lowdenslager extended the classical F. and M. Riesz theorem as follows.

Theorem A ([17, 8.2.3 Theorem]). Let G be a compact abelian group with ordered dual. Let μ be a measure in M(G) such that $\hat{\mu}(\gamma) = 0$ for $\gamma < 0$. Then

²⁰¹⁰ Mathematics Subject Classification. Primary 43A05; Secondary 43A10, 43A25.. Key Words and Phrases. LCA group, ordered group, measure, analytic type, Fourier transform..

(I)
$$\hat{\mu}_a(\gamma) = \hat{\mu}_s(\gamma) = 0$$
 for $\gamma < 0$,

(II)
$$\hat{\mu}_s(0) = 0.$$

For a compact abelian group G with ordered dual, let $A = \{f \in C(G) : \hat{f}(\gamma) = 0 \text{ for } \gamma < 0\}$. Then A becomes a Dirichlet algebra. As for Theorem A (II), Forelli obtained the following.

Theorem B ([7, Theorem 2]). Let G be a compact abelian group with ordered dual. Let $\sigma \in M^+(G)$ be a representing measure for A. Let μ be a measure in $M_s(G)$ such that $\hat{\mu}(\gamma) = 0$ for $\gamma < 0$. Then $\mu * \sigma$ belongs to $M_s(G)$.

Our purpose is to extend Theorem B to LCA groups. In section 2, we state definitions and our result. We give the proof in section 3.

2. Notation and results

Let G be a LCA group and P a proper closed semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. We note that $\overset{\circ}{P}$ (the interior of P) is dense in P. Set $\Lambda = P \cap (-P)$. Let \overline{D} be the closed unit disc in the complex plane \mathbb{C} , i.e., $\overline{D} = \{z \in \mathbb{C} : |z| \leq 1\}$. A function $\zeta : P \to \overline{D}$ is called a semicharacter (on P) if $\zeta(\gamma_1 + \gamma_2) = \zeta(\gamma_1)\zeta(\gamma_2)$ for $\gamma_1, \gamma_2 \in P$. We denote by Δ the set of all nonzero continuous semicharacters. Define a subset Δ^+ of Δ as follows:

(2.1)
$$\Delta^{+} = \{ \zeta \in \Delta : 0 \le \zeta(\gamma) \le 1 \text{ for all } \gamma \in P \}.$$

For each $\zeta \in \Delta$, $|\zeta|$ belongs to Δ^+ . And, for $\rho \in \Delta^+$, we have $\rho(\gamma) = 1$ on Λ since Λ is a subgroup of \hat{G} . By [1, 3.1 Theorem], each $\zeta \in \Delta$ has a polar decomposition. That is, there exists $x \in G$ such that

$$(2.2) \zeta = |\zeta| x.$$

For each $\zeta \in \Delta$, it follows from [1, 4.7 Theorem and 4.8 Corollary] that there exists a unique probability measure $m_{\zeta} \in M^+(G)$ such that

(2.3)
$$\hat{m}_{\zeta}(\gamma) = \zeta(\gamma) \text{ for } \gamma \in P.$$

For $\zeta, \zeta' \in \Delta$, we have $m_{\zeta\zeta'} = m_{\zeta} * m_{\zeta'}$. Especially, (2.2) implies

$$(2.4) m_{\zeta} = m_{|\zeta|} * \delta_{-x},$$

where δ_{-x} is the point mass at -x.

Now we state our theorem.

THEOREM 2.1. For $\rho \in \Delta^+$ and $\mu \in M_P(G) \cap M_s(G)$, we have $\mu * m_\rho \in M_s(G)$.

By (2.4) and Theorem 2.1, we get the following corollary.

COROLLARY 2.2. For $\zeta \in \Delta$ and $\mu \in M_P(G) \cap M_s(G)$, we have $\mu * m_{\zeta} \in M_s(G)$.

- Remark 2.3. (i) Let G be a compact abelian group with ordered dual. Let $P = \{ \gamma \in \hat{G} : \gamma \geq 0 \}$ and $A = \{ f \in C(G) : \hat{f}(\gamma) = 0 \text{ for } \gamma < 0 \}$. Let $\sigma \in M^+(G)$ be a representaing measure for A. Then $\hat{\sigma}$ becomes a nonzero semicharacter on P, and $m_{\hat{\sigma}} = \sigma$. Hence Theorem B follows from Corollary 2.2.
- (ii) Let G be a compact abelian group, and suppose that there exists a nontrivial homomorphism ψ from \hat{G} into \mathbb{R} . Put $P = \{ \gamma \in \hat{G} : \psi(\gamma) \geq 0 \}$. Let $\phi : \mathbb{R} \to G$ be the dual homomorphism of ψ , i.e., $(\phi(t), \gamma) = \exp(i\psi(\gamma)t)$ for $\gamma \in \hat{G}$, $t \in \mathbb{R}$. Let $\mu \in M_P(G) \cap M_s(G)$ and $\lambda \in M(\mathbb{R})$. Then, by [4, Theorem 3.1 and Lemma 5.1], we have $\mu * \phi(\lambda) \in M_s(G)$, where $\phi(\lambda)$ is the continuous image of λ under ϕ .

3. Proof of Theorem

In this section we prove Theorem 2.1. First we state several lemmas. Let $\pi:\hat{G}\to\hat{G}/\Lambda$ be the natural homomorphism, and put $\tilde{P}=\pi(P)$. Then \tilde{P} is a closed semigroup in \hat{G}/Λ such that $\tilde{P}\cup(-\tilde{P})=\hat{G}/\Lambda$ and $\tilde{P}\cap(-\tilde{P})=\{0\}$. Thus \tilde{P} induces a totally linear order on \hat{G}/Λ . For $\rho\in\Delta^+$, let $L_\rho^+=\{\gamma\in P:\rho(\gamma)>0\}$ and $\Gamma_\rho=L_\rho^+-L_\rho^+$.

LEMMA 3.1. For $\rho \in \Delta^+$, the following hold.

- (i) Γ_{ρ} is an open subgroup of \hat{G} ;
- (ii) $\Lambda \subset L_{\rho}^+ \subset \Gamma_{\rho};$
- (iii) $P \cap \Gamma_{\rho} = L_{\rho}^+;$
- (iv) Let $\gamma \in P$ and $\xi \in \Gamma_{\rho}$. If $\pi(\gamma) \leq \pi(\xi)$, then $\gamma \in L_{\rho}^+$;
- (v) $\Gamma_{\rho} = L_{\rho}^+ \cup (-L_{\rho}^+).$

PROOF. (i): Set $V_{\rho} = \{ \gamma \in \overset{\circ}{P} : \rho(\gamma) > 0 \}$. Since $\overset{\circ}{P}$ is dense in P, V_{ρ} is nonempty, and V_{ρ} is an open semigroup in \hat{G} . Hence Γ_{ρ} is an open subgroup of \hat{G} since $V_{\rho} - V_{\rho}$

is included in Γ_{ρ} .

- (ii): This is trivial since $\rho(\gamma) = 1$ on Λ .
- (iii): For $\gamma \in P \cap \Gamma_{\rho}$, there exist $\xi_1, \xi_2 \in L_{\rho}^+$ such that $\gamma = \xi_1 \xi_2$. Then $\xi_1 = \gamma + \xi_2$, and so $0 \neq \rho(\xi_1) = \rho(\gamma)\rho(\gamma_2)$. Hence $\rho(\gamma) \neq 0$, which yields $\gamma \in L_{\rho}^+$. Hence $P \cap \Gamma_{\rho} \subset L_{\rho}^+$. The reverse inclusion relation is trivial.
- (iv): Since $0 \le \pi(\gamma) \le \pi(\xi)$, ξ belongs to P. Hence (iii) implies $\xi \in L_{\rho}^{+}$. On the other hand, since $\pi(\gamma) \le \pi(\xi)$, there exists $p \in P$ such that $\xi \gamma = p$. Hence $0 \ne \rho(\xi) = \rho(\gamma)\rho(p)$, which yields $\gamma \in L_{\rho}^{+}$.
- (v): We have $\Gamma_{\rho} = (P \cap \Gamma_{\rho}) \cup ((-P) \cap \dot{\Gamma}_{\rho}) = L_{\rho}^{+} \cup (-L_{\rho}^{+})$, by (iii). This complets the proof.

LEMMA 3.2. Let $\rho \in \Delta^+$, and put $\tilde{Q} = \{\pi(\gamma) \in \hat{G}/\Lambda : \pi(\gamma) \ge \pi(\gamma') \text{ for some } \gamma' \in \Gamma_{\rho}\}$. Then the following hold.

- (i) $\tilde{Q} \supset \tilde{P}$;
- (ii) \tilde{Q} is an open semigroup in \hat{G}/Λ such that $\tilde{Q} \cup (-\tilde{Q}) = \hat{G}/\Lambda$;
- (iii) $\tilde{Q} \cap (-\tilde{Q}) = \tilde{\Gamma}_{\rho}$, where $\tilde{\Gamma}_{\rho} = \pi(\Gamma_{\rho})$.

PROOF. (i): This is trivial since $\pi(p) \ge 0$ for all $p \in P$.

(ii): It is trivial that \tilde{Q} is a semigroup in \hat{G}/Λ such that $\tilde{Q} \cup (-\tilde{Q}) = \hat{G}/\Lambda$. Since $\tilde{Q} \supset \pi(\Gamma_{\rho})$ and $\pi(\Gamma_{\rho})$ is an open subgroup of \hat{G}/Λ , \tilde{Q} is an open semigroup in \hat{G}/Λ . (iii): Since $\tilde{Q} \supset \tilde{\Gamma}_{\rho}$, we may prove only $\tilde{Q} \cap (-\tilde{Q}) \subset \tilde{\Gamma}_{\rho}$. Let $\pi(\gamma) \in \tilde{Q} \cap (-\tilde{Q})$, where $\gamma \in \hat{G}$. We may assume $\gamma \in P$ because $P \cup (-P) = \hat{G}$. Since $\pi(\gamma) \in -\tilde{Q}$, $\pi(-\gamma)$ belongs to \tilde{Q} . Hence there exists $\xi \in \Gamma_{\rho}$ such that $\pi(-\gamma) \geq \pi(\xi)$. Then $\pi(\gamma) \leq \pi(-\xi)$ and $-\xi \in \Gamma_{\rho}$. It follows from Lemma 3.1 (iv) that $\gamma \in L_{\rho}^+$. Hence we have $\pi(\gamma) \in \pi(L_{\rho}^+) \subset \tilde{\Gamma}_{\rho}$. This completes the proof.

When G is a compact abelian group, the following lemma is obtained in [4, Theorem 3.1 and lemma 5.2]. We give its proof for completeness.

LEMMA 3.3. Let G be a LCA group and ψ a nontrivial continuous homomorphism from \hat{G} into \mathbb{R} . Let $\phi: \mathbb{R} \to G$ be the dual homomorphis of ψ . Let $\xi \in M(\mathbb{R})$, and let μ be a measure in $M_s(G)$ such that $\hat{\mu}$ vanishes on $\psi^{-1}((-\infty, 0))$. Then $\phi(\xi) * \mu$ belongs to $M_s(G)$.

PROOF. Since $\hat{\mu}$ vanishes on $\psi^{-1}((-\infty, 0))$, we note that $\lim_{s\to 0} \|\mu - \mu * \delta_{\phi(s)}\| = 0$ (cf. [8, Theorem 4]). Since μ is singular, there exists a Borel set E in G such that

 $m_G(E)=0$ and $|\mu|(E)=\|\mu\|$. Set $E_0=\bigcup_{r\in\mathbb{Q}}(\phi(r)+E),$ where \mathbb{Q} is the rational numbers. Then

$$(3.1)$$
 $m_G(E_0) = 0$, and

(3.2)
$$|\mu|(-\phi(r) + E_0) = ||\mu||$$
 for all $r \in \mathbb{Q}$.

Since $s \to |\mu|(-\phi(s) + E_0)$ is a continuous function on \mathbb{R} , (3.2) implies

$$|\mu|(-\phi(s) + E_0) = ||\mu||$$

for all $s \in \mathbb{R}$. Hence we get

$$\phi(|\xi|) * |\mu|(E_0) = \int_G |\mu|(-x + E_0)d\phi(|\xi|)(x)$$

$$= \int_{-\infty}^\infty |\mu|(-\phi(s) + E_0)d|\xi|(s)$$

$$= ||\mu|| ||\xi||$$

$$= \phi(|\xi|) * |\mu|(G).$$

This shows that $\phi(\xi) * \mu$ is concentrated on E_0 . Thus we get $\phi(\xi) * \mu \in M_s(G)$, by (3.1), and the proof is complete.

LEMMA 3.4. Let G, ψ and ϕ be as in the previous lemma. Let μ be a measure in $M_s(G)$ such that $\hat{\mu}$ vanishes on $\psi^{-1}((-\infty, 0))$. Let σ be a measure in M(G) such that $\hat{\sigma}(\gamma) = \exp(-|\psi(\gamma)|)$ for all $\gamma \in \hat{G}$. Then $\sigma * \mu \in M_s(G)$.

PROOF. Define $\xi \in L^1(\mathbb{R})$ by $d\xi(t) = \frac{1}{\pi} \cdot \frac{dt}{1+t^2}$. Then

$$\hat{\xi}(x) = \exp(-|x|)$$

for all $x \in \mathbb{R}$, where $\hat{\xi}(x) = \int_{-\infty}^{\infty} \xi(t)e^{-ixt}dt$. Hence we have $\sigma = \phi(\xi)$. In fact,

$$\begin{split} \phi(\xi)\hat{\ }(\gamma) &= \int_{-\infty}^{\infty} (-\phi(t),\gamma) \, d\xi(t) \\ &= \int_{-\infty}^{\infty} \exp(-i\psi(\gamma)t) d\xi(t) \\ &= \hat{\xi}(\psi(\gamma)) \end{split}$$

$$= \exp(-|\psi(\gamma)|)$$
$$= \hat{\sigma}(\gamma)$$

for all $\gamma \in \hat{G}$. Thus, by lemma 3.3, we get $\sigma * \mu = \phi(\xi) * \mu \in M_s(G)$.

The following lemma is due to [22].

LEMMA 3.5. (cf. [22, Lemma 1.2]). Let G be a LCA group, and let P be an open semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. Let H be the annihilator of $P \cap (-P)$. Let μ be a measure in $M_s(G) \cap M_P(G)$. Then $\mu * m_H$ belongs to $M_s(G)$.

The following lemma follows from [5, Theorem 1].

LEMMA 3.6. (cf. [21, Lemmas (B) and (C)]). Let G be a LCA group and F an open subgroup of \hat{G} . Let H be the annhilator of F, and let $\alpha: G \to G/H$ be the natural homomorphism. Then the following hold.

- (I) Let μ be a measure in $M_s(G)$ such that $supp(\hat{\mu}) \subset F$. Then $\alpha(\mu)$ belongs to $M_s(G/H)$.
- (II) Let ν be a measure in $M_s(G/H)$. Then there exists a measure $\mu \in M_s(G)$ such that $\hat{\mu}(\gamma) = \hat{\nu}(\gamma)$ on F and $\hat{\mu}(\gamma) = 0$ on $\hat{G} \setminus F$.

Now we prove Theorem 2.1. Put $\Lambda = P \cap (-P)$ and $G_{\rho} = \Gamma_{\rho}^{\perp}$. Let $\pi : \hat{G} \to \hat{G}/\Lambda$ be the natural homomorphism. Set $\tilde{P} = \pi(P)$ and $\tilde{\Gamma}_{\rho} = \pi(\Gamma_{\rho})$. It follows from Lemma 3.2 that there exists an open semigroup \tilde{Q} in \hat{G}/Λ such that

- (3.3) $\tilde{Q} \supset \tilde{P}$, and
- $(3.4) \qquad \tilde{Q} \cap (-\tilde{Q}) = \tilde{\Gamma}_{\rho}.$

Put $Q = \pi^{-1}(\tilde{Q})$. Then Q is an open semigroup in \hat{G} such that $Q \cup (-Q) = \hat{G}$. Moreover, since $\Gamma_{\rho} \supset \Lambda$, it follows from (3.3) and (3.4) that

- (3.5) $Q \supset P$, and
- $(3.6) Q \cap (-Q) = \Gamma_{\rho}.$

Since $\mu \in M_P(G) \cap M_s(G)$, we have $\mu \in M_Q(G) \cap M_s(G)$, by (3.5); hence (3.6) and Lemma 3.5 imply

(3.7)
$$\mu * m_{G_{\rho}} \in M_s(G)$$
.

Let $\pi_{G_{\rho}}: G \to G/G_{\rho}$ be the natural homomorphism. Since $(\mu * m_{G_{\rho}})^{\hat{}}(\gamma) = 0$ on $\hat{G}\backslash\Gamma_{\rho}$, it follows from (3.7) and Lemma 3.6 that

(3.8)
$$\pi_{G_o}(\mu * m_{G_o}) \in M_s(G/G_\rho).$$

Define $\tilde{\rho}: \Gamma_{\rho} \to \mathbb{R}^+ \setminus \{0\}$ by $\tilde{\rho}(\gamma_1 - \gamma_2) = \rho(\gamma_1) \rho(\gamma_2)^{-1}$ $(\gamma_1, \gamma_2 \in L_{\rho}^+)$, where \mathbb{R}^+ is the set of nonnegative real numbers. Then $\tilde{\rho}$ is continuous and $\tilde{\rho}(\gamma_1 + \gamma_2) = \tilde{\rho}(\gamma_1) \tilde{\rho}(\gamma_2)$ for $\gamma_1, \gamma_2 \in \Gamma_{\rho}$. Moreover, $\tilde{\rho}|_{P \cap \Gamma_{\rho}} = \rho|_{P \cap \Gamma_{\rho}}$. Now we define a continuous homomorhism $\psi: \Gamma_{\rho} \to \mathbb{R}$ by

(3.9)
$$\psi(\gamma) = -\log \tilde{\rho}(\gamma).$$

The fact that $\tilde{\rho}|_{P\cap\Gamma_{\rho}} = \rho|_{P\cap\Gamma_{\rho}}$ implies

$$(3.10) \quad \psi^{-1}([0, \infty)) \supset P \cap \Gamma_{\rho},$$

which combined with the fact that $\hat{\mu}(\gamma) = 0$ on P^c yields

(3.11)
$$\pi_{G_{\varrho}}(\mu * m_{G_{\varrho}})^{\hat{}}(\gamma) = 0 \text{ on } \psi^{-1}((-\infty, 0)).$$

On the other hand, since m_{ρ} is a positive measure and $\hat{m}_{\rho} = \rho(\gamma)$ for $\gamma \in P$, we have

$$\hat{m}_{\rho}(\gamma) = \begin{cases} \rho(\gamma) & \text{for } \gamma \in P \\ \rho(-\gamma) & \text{for } \gamma \in (-P) \backslash P. \end{cases}$$

Hence we get, by (3.9),

(3.12)
$$\hat{m}_{\rho}(\gamma) = \exp(-|\psi(\gamma)|)$$
 for $\gamma \in \Gamma_{\rho}$.

In fact, for $\gamma \in P \cap \Gamma_{\rho}$, we have

$$\hat{m}_{\rho}(\gamma) = \rho(\gamma) = \tilde{\rho}(\gamma) = \exp(\log \tilde{\rho}(\gamma))$$
$$= \exp(-|\log \tilde{\rho}(\gamma)|) = \exp(-|\psi(\gamma)|).$$

Let $\gamma \in \{(-P)\backslash P\} \cap \Gamma_{\rho}$. Then, since $-\gamma \in P \cap \Gamma_{\rho}$, we have

$$\hat{m}_{\rho}(\gamma) = \rho(-\gamma) = \exp(-|\psi(-\gamma)|)$$

$$= \exp(-|\psi(\gamma)|).$$

Thus (3.12) holds.

By (3.8), (3.11)-(3.12) and Lemma 3.4, we have

$$(3.13) \quad \pi_{G_{\rho}}(\mu * m_{G_{\rho}}) * \pi_{G_{\rho}}(m_{\rho}) \in M_{s}(G/G_{\rho}).$$

Define a map $S_{G_{\rho}}: M(G/G_{\rho}) \to M(G)$ by

$$S_{G_{\rho}}(\nu)\hat{\ }(\gamma) = \begin{cases} \hat{\nu}(\gamma) & \text{for } \gamma \in \Gamma_{\rho} \\ 0 & \text{for } \gamma \in \hat{G} \backslash \Gamma_{\rho}. \end{cases}$$

It follows from (3.13) and Lemma 3.6 that

$$(3.14) S_{G_{\rho}}(\pi_{G_{\rho}}(\mu * m_{G_{\rho}}) * \pi_{G_{\rho}}(m_{\rho})) \in M_{s}(G).$$

On the other hand, since $supp(\hat{m}_{\rho}) \subset \Gamma_{\rho}$ and $\hat{m}_{G_{\rho}} = 1$ on Γ_{ρ} , we have

$$S_{G_{\rho}}(\pi_{G_{\rho}}(\mu * m_{G_{\rho}}) * \pi_{G_{\rho}}(m_{\rho})) = S_{G_{\rho}}(\pi_{G_{\rho}}(\mu * m_{G_{\rho}} * m_{\rho}))$$

= $\mu * m_{\rho}$.

Hence we have $\mu * m_{\rho} \in M_s(G)$, by (3.14), and the proof is complete.

References

- R. Arens and I. M. Singer, Generalized analytic functions, Trans. Amer. Math. Soc. 81 (1956), 379-393.
- [2] C. Berg, J.P.R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1982.
- [3] S. Bochner, Boundary values of analytic functions in several variables and of almost periodic functions, Ann. of Math. 45 (1944), 708-722.
- [4] K. DeLeeuw and I. Glicksberg, Quasi-invariance and analyticity of measures on compact groups, Acta Math. 109 (1963), 179-205.
- [5] R. Doss, On the transform of a singular or absolutely continuous measure, Proc. Amer. Math. Soc. 19 (1968), 361-363.
- [6] R. Doss, On measures with small transforms, Pacific J. Math. 26 (1968), 257-263.
- [7] F. Forelli, Analytic measures, Pacific J. Math. 13 (1963), 571-578.
- [8] F. Forelli, Analytic and quasi-invariant measures, Acta Math. 118 (1967), 33-57.
- [9] T. Gamelin, Uniform Algebras, Printice-Hall, Englewood Cliffs, N.J., 1969.
- [10] I. Glicksberg, The strong conclusion of the F. and M. Riesz theorem on groups, Trans. Amer. Math. Soc. 285 (1984), 235-240.
- [11] H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables, Acta Math. 99 (1958), 165-202.

- [12] E. Hewitt and S. Koshi, Ordering in locally compact Abelian groups and the theorem of F. and M. Riesz, Math. Proc. Camb. Phil. Soc. 93 (1983), 441-457.
- [13] E. Hewitt, S. Koshi and Y. Takahashi, The F. and M. Riesz theorem revisited, Math. Scand. 60 (1987), 63-76.
- [14] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Vol. I and II, Springer-Verlag, New York-Heidelberg-Berlin, 1963 and 1970.
- [15] K. Hoffman, Boundary behavior of generalized analytic functions, Trans. Amer. Math. Soc. 87 (1958), 447-466.
- [16] G.M. Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman and Company, Glenview, 1970.
- [17] W. Rudin, Fourier Analysis on Groups, New York, Interscience, 1962.
- [18] S. Saeki, The F. and M. Riesz theorem and singular measures, Proc. Amer. Math. Soc. 90 (1984), 391-396.
- [19] Y. Takahashi, On a theorem of S. Saeki, Hokkaido Math. J. 15 (1986), 157-161.
- [20] T.V. Tonev, Big-Planes, Boundaries and Function Algebras, North-Holland, Amsterdam-London-New York-Tokyo, 1992.
- [21] H. Yamaguchi, Some multipliers on the space consisting of measures of analytic type, Hokkaido. Math. J. 11 (1982), 173-200.
- [22] H. Yamaguchi, Some multipliers on the space consisting of measures of analytic type, II, Hokkaido. Math. J. 12 (1983), 244-255.
- [23] H. Yamaguchi, A property of some Fourier-Stieltjes transforms, Pacific J. Math. 108 (1983), 243-256.
- [24] H. Yamaguchi, On a result of Saeki-Takahashi and a theorem of Bochner, Hokkaido Math. J. 38 (2009), 497-510.
- [25] H. Yamaguchi, Quasi-invariance of measures of analytic type on locally compact abelian groups, Hokkaido Math. J. 43 (2014), 51-64.

Hiroshi Yamaguchi

Department of Mathematics, Faculty of Science, Josai University Keyakidai 1-1, Sakado, Sakado, 350-0295, Japan

E-mail: hyama@josai.ac.jp