Josai Mathematical Monographs
Vol. 11 (2018) pp. 37-45

A survey of a property of random walks on a cycle graph

Yasunari FUKAI

Abstract.  This is a survey of a property of random walks on a
cycle graph. We explain the Hunter vs. Rabbit game using the random
walk framework. We consider a probability that the hunter catches
the rabbit. By assuming the behavior of the characteristic function of
rabbit’s random walk near zero, we obtain a upper and lower bound of
this probability.

1. Introduction

This is a survey of a property of random walks on a cycle graph and is based
on [2].

We consider the Hunter vs. Rabbit game. A graph is given. This game is
played by two players: the hunter and the rabbit. Each player occupies a vertex of
the graph. At each unit time, the hunter can move an adjacent vertex or stay, and
the rabbit can move a vertex of the graph. The hunter catches the rabbit when
both of them occupy the same vertex at same time.

The Hunter vs. Rabbit game is a model of ad hoc network. Ad hoc network
is the following. We can use a cellular phone, if there is a base station in the
neighborhood, and a base station receives radio waves from a cellular phone. By
this mechanism, it is necessary to install many base stations. To install many
stations, it takes huge time and a lot of money. The idea of ad hoc network is to
use a cellular phone or a mobile computer as the role of the base station. The place
a radio wave occurs can move. An installed base station can not move. In the case
of ad hoc network, a base station can move.

We consider the following problem. When a big accident happened and many
basic stations broke down, how should a basic station car be operated?

We explain the setting of the hunter vs. rabbit game. Let X3, X5, -+ be in-
dependent, identically distributed random variables defined on a probability space
(Q, F, P) taking values in the integer lattice Z. A one-dimensional random walk
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{8,152 is defined by

Sn = ZX]

Jj=1

Let Y7,Y5, -+ be independent, identically distributed random variables defined
on a probability space (g, Frr, Pr) taking values in the integer lattice Z with

Pr({n| <1} =1.

Let NV € N be fixed. We consider a cycle graph with N vertices as given graph.
We denote by X(()N) a random variable defined on a probability space (Qn, Fn, 1)
taking values in Viy :={0,1,2,--- | N — 1} with

un (X = 1)) =+ (€ V),

For b € Z, we denote by (b mod N) the remainder of b divided by N.
A rabbit’s strategy {R%N)};’LO:O is defined by

RéN) = X(()N) and RgLN) = (X(()N) +5,, mod N) .

R;N) indicates the position of the rabbit at time n on V. Hunter’s strategy
{H,(ZN)}ZOZO is defined by

HY =0 and HM = |3 mod N
j=1
HT(LN) indicates the position of the hunter at time n on Vy. Put
PN =y x P and P = py x PV

We discuss the probability that the hunter catches the rabbit by time NV on Vi,
that is,

N
P (U{Hr(LN) = R;N)}> )

n=1

We investigate the asymptotic estimate of this probability as N — oc.
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2. Statements of results

DEFINITION 2.1.  We define conditions (A1),(A2) and (A3) as follows

(A1) The random walk {S,}22, is strongly aperiodic, i.e. for eachy € Z, the

smallest subgroup containing the set
{y+keZ| P{X; =k} >0}

15 2.
(A2) P{X, =k} =P{X,=—-k} (keZ).
(A3) There exist B € (0,2],¢. > 0 and & > 0 such that

$(0) ==Y e"P{Xy =k} =1 —c.|0]” + O(10]7*7).

keZ

The next remark indicates a relation between the condition (A3) (the behavior
of the characteristic function ¢ near zero) and the tail of distribution of Xj.

Remark 2.2.  For § € (0,2), let

- % 220:1 kﬁ1+f (k = 0)

with a constant a satisfying a > Y p (1/kPTY). Then ¢(0) in (A3) is

P{Xlzk}:{%kllf*“ (k € Z\ {0})

7T 1017

¢(0) =1 - 24 T(B + 1) sin(B7/2)

+0 (|9|/3+(2—/3)/2) ,

where I' is the gamma function.
If X1 satisfies

E[X1] =0, E[|X1*"] < 0o for some ¢ € (0,1),
then

6(60) =1~ SEIXT61 + O(0).

THEOREM 2.3.  Assume that X satisfies (A1) — (AS3).
If B € (0,1), then there exists a constant c; > 0 such that for N € N\ {1} and
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Y1,Y2, YN € Z with |yp — Yny1| <1 (n=1,2,--- ,N = 1),

1 < PI(%N) (CJ {RSLN) = (y, mod N)}) .

n=1

If B =1, then there exist constants ca > 0 and c3 > 0 such that for N € N\ {1}
and y1,y2,+ - YN € Z with [yn — yna| <1 (n=1,2,--- N —1),

N
C2 (N) (N) _ C3
—=_ <P = N < .
logN — (U {R” (g mod )}> ~ logN

n=1

If B € (1,2], then there exists a constant cq4 > 0 such that for N € N\ {1} and
Y1,Y2, YN € Z with |yp — Yny1| <1 (n=1,2,--- ,N = 1),

N
C
@ No—o75 S Pi (U (R = (g mod zv>}> <1
n=1

The following bounds are obtained as a corollary of Theorem 2.3.

COROLLARY 2.4. Assume that Xy satisfies (A1) — (A3).
(I) If B € (0,1), then there exists a constant ¢1 > 0 such that for N € N\ {1},

N
1 < POV (U {HTSN) :RS{V)}) <1.

n=1

(II) If B = 1, then there exist constants co > 0 and cg > 0 such that for
N e N\ {1},

N
C2 P(N N N €3
2 < pWN) HW) — pN) < )
) logN — (U{ " " } ~ log N

n=1

(III) If B € (1, 2], then there exists a constant cq > 0 such that for N € N\ {1},

N
s <20 (U (i = o} <.

n=1

Remark 2.5.  Adler et al. considered P(N) (ngl {HT(LN) =R }) in the case



Survey of a property of random walks 41
of

1
P{X, = k} = { 20FFDTRT2) (k€ Z\{0})
3 (k=0).
In this case, X1 satisfies (A1), (A2) and

6(6) =1 - 2161+ 0(l6*"?)

((A3) with 8 = 1), and we have (2) in Corollary 2.4 which coincides with the result
of Lemma 3 in [1].

The inequality (1) seems to be sharp, because the powers of upper and lower
bound appearing in (1) can not be improved. Indeed, we have the following esti-
mates.

PROPOSITION 2.6.  Assume that X1 satisfies (A1) — (A3).
If B € (1,2], then there exist constants cs,cg,cr > 0 such that for N € N\ {1},

N
cs (N) (N) _ __%
(3) N5 = Tr <g1{Rn = 0}) S NGO
N
(4) 7 < PI(QN) (U {R&N) = (n mod N)}) )
n=1

3. Proof of Proposition 2.6(4)

In this section we prove Proposition 2.6(4) and the other proofs are given in [2,
Theorem 1, Corollary 1 and Proposition 1(6)].

To prove Proposition 2.6(4), we introduce the following Lemma.

LEMMA 3.1.  Assume (Al),(A2) and (A3). If B € (1,2], then there exists a
constant cg > 0 such that

(5) 1+ 3PS € lln)) < es,
=1
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where
v ={y+kN | ke Z}.
PrOOF. There exist C, and r € (0,7/2) such that for || < r,
19(0) — (1 — c.|0]P)] < C.]0)°F¢

by (A3). We can choose 7. € (0, 7] small enough so that
1 1
C.rs < 50* and c*rf < 3

Then for |0] < ry,

(6) 1 6(6)] < Se.ll’ <

[N

A strongly aperiodic random walk (A1) has the property that |¢(0)| = 1 only
when 6 is a multiple of 27 (see §7 Proposition 8 of [3]). By the definition of ¢(6),
|p(6)] is a continuous function on the bounded closed set [—m, —r.] U [ry, 7], and
|p(8)] < 1 (8 € [—m,7]). Hence, there exists a p. < 1, depending on 7, € (0, 7],
such that

(7) max |¢(60)] < p..

r <|0|<7

To show (5), we use the following relation (which is given in Proposition 5 of
[2]): for I € {1,2,--- ,N — 1},

Psicll =gty 5 o (BT )eos (BE) 4 axiin,

1<G<(N-1)/2

where

JIn(l, 1)

{ (1/N)¢! () cos(nl)  (if N is even)
0 (if N is odd).

Form this relation and (7), we obtain that for [ € {1,2,--- N — 1},

1 2 2_]71' 2]71' 1
PUS e ) < =+ 2 ¢ () (z) s
N N Zzw))N N N

1<5<(re/(
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Therefore

® e P@Sel<itE Y G+

1=1 1<j<(ra/(27))N 1=

where

r= 5 ()= ()

Because of (A42), ¢(#) takes a real number. Then (6) and (A1) mean that

2)
) :
and for j € [1, (r./(27))N] NN,

[ (2 o]

=0

<o0) =1o0) <1 (0 € (=r.0)U(0,7.))

_a ¢N(2”))( (2”)008(%)).

N ‘1 _ ) e—2]7rz/N’

N

To estimate |®(j, N)|, we use the last inequality of (9) and (6) which imply that
for j € [1, (r«/(2m))N] NN,

(15 () - ) ()
s () e () =0 (4)

where ¢g = (27)7 (3¢, +r277). Here we note that 3 < 2.

The inequality sind > 20/7 (0 € [0,7/2]) and the first inequality of (9) show

that for j € [1, (r./(27))N] NN,
() ) = ()"

’1 — <27]\;T> o—2imi/N
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Thus

2 . Co .3—2
(10) N Z |®(5, N)| < ONB—T Z J .

1< <(r«/(2m))N 1<j<(rs/(2m))N
By noticing that 5 € (1, 2], it is easy to see that

(11)
(re/(2m)N 1 -1
D +/ P2 de < (14 —— (L) NP1,
1 /8 — ]. 27T

1<G<(r«/(2m)N
Put the pieces ((8),(10),(11)) together, we have (5). O

To complete the proof of Proposition 2.6(4), we use the following inequality
(which is given in Corollary 3 of [2]): for N € N\ {1},

1 (M) § (N) — (n mo
1+zﬁ11P<{szemN}>§PR (U{R” ( dN)}>'

n=1

By combining the above inequality with (5), we obtain Proposition 2.6(4).

4. Conclusion

We notice that the upper and lower bound which is appearing in Corol-
lary 2.4 (I)((II)) have the same asymptotic behavior. Corollary 2.4 and
Proposition 2.6(4) imply that for every § € (0,2], the asymptotic behavior of

PI({N) (Ugil {R%N) = (n mod N)}) is same as that of the upper bound appearing

in Corollary 2.4. This means that g =n (n=1,2,---,N) is a better strategy
of the hunter. Corollary 2.4 and Proposition 2.6(3) imply that for every 8 € (0, 2],

the asymptotic behavior of P}(%N) (UN {RSLN ) = 0}) is same as that of the lower

n=1
bound appearing in Corollary 2.4. This means that H,(LN) =0(n=1,2,---,N)is
a worse strategy of the hunter.

We apply our result to practical use of a base station car. There is a area where
towns are on a cycle. We assume that a big accident happened and many basic
stations broke down in this area. It is a better use to make the base station car go
around by uniform velocity along the cycle, and it is a worse use to park the base
station car at a starting point.



Survey of a property of random walks 45

References

[1] M. Adler, H. Récke, N. Sivadasan, C. Sohler and B. Vocking, Randomized Pursuit-Evasion
in Graphs, Combin. Probab. Comput., 12, (2003), 225-244.

[2] Y. Ikeda, Y. Fukai, Y. Mizoguchi, A property of random walks on a cycle graph, Pac. J.
Math. Ind., 7:3, (2015).

[3] F. Spitzer, Principles of Random Walk, Springer-Verlag, 1976.

Yasunari FUKAI

Section of Primary Dental Education, Kyushu Dental University
Manazuru 2-6-1, Kokurakita-ku, Kitakyushu, 803-8580, Japan
E-mail: r15fukai@fa.kyu-dent.ac.jp





