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A survey of a property of random walks on a cycle graph

Yasunari Fukai

Abstract. This is a survey of a property of random walks on a
cycle graph. We explain the Hunter vs. Rabbit game using the random

walk framework. We consider a probability that the hunter catches
the rabbit. By assuming the behavior of the characteristic function of
rabbit’s random walk near zero, we obtain a upper and lower bound of
this probability.

1. Introduction

This is a survey of a property of random walks on a cycle graph and is based

on [2].

We consider the Hunter vs. Rabbit game. A graph is given. This game is

played by two players: the hunter and the rabbit. Each player occupies a vertex of

the graph. At each unit time, the hunter can move an adjacent vertex or stay, and

the rabbit can move a vertex of the graph. The hunter catches the rabbit when

both of them occupy the same vertex at same time.

The Hunter vs. Rabbit game is a model of ad hoc network. Ad hoc network

is the following. We can use a cellular phone, if there is a base station in the

neighborhood, and a base station receives radio waves from a cellular phone. By

this mechanism, it is necessary to install many base stations. To install many

stations, it takes huge time and a lot of money. The idea of ad hoc network is to

use a cellular phone or a mobile computer as the role of the base station. The place

a radio wave occurs can move. An installed base station can not move. In the case

of ad hoc network, a base station can move.

We consider the following problem. When a big accident happened and many

basic stations broke down, how should a basic station car be operated?

We explain the setting of the hunter vs. rabbit game. Let X1, X2, · · · be in-

dependent, identically distributed random variables defined on a probability space

(Ω,F , P ) taking values in the integer lattice Z. A one-dimensional random walk
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{Sn}∞n=1 is defined by

Sn =
n∑

j=1

Xj .

Let Y1, Y2, · · · be independent, identically distributed random variables defined

on a probability space (ΩH ,FH , PH) taking values in the integer lattice Z with

PH({|Y1| ≤ 1}) = 1.

Let N ∈ N be fixed. We consider a cycle graph with N vertices as given graph.

We denote by X
(N)
0 a random variable defined on a probability space (ΩN ,FN , µN )

taking values in VN := {0, 1, 2, · · · , N − 1} with

µN ({X(N)
0 = l}) = 1

N
(l ∈ VN ).

For b ∈ Z, we denote by (b mod N) the remainder of b divided by N .

A rabbit’s strategy {R(N)
n }∞n=0 is defined by

R
(N)
0 = X

(N)
0 and R(N)

n =
(
X

(N)
0 + Sn mod N

)
.

R
(N)
n indicates the position of the rabbit at time n on VN . Hunter’s strategy

{H(N)
n }∞n=0 is defined by

H
(N)
0 = 0 and H(N)

n =




n∑
j=1

Yj mod N


 .

H
(N)
n indicates the position of the hunter at time n on VN . Put

P
(N)
R = µN × P and P̃ (N) = PH × P

(N)
R .

We discuss the probability that the hunter catches the rabbit by time N on VN ,

that is,

P̃ (N)

(
N∪

n=1

{H(N)
n = R(N)

n }

)
.

We investigate the asymptotic estimate of this probability as N → ∞.
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2. Statements of results

Definition 2.1. We define conditions (A1),(A2) and (A3) as follows

(A1) The random walk {Sn}∞n=1 is strongly aperiodic, i.e. for each y ∈ Z, the
　　 smallest subgroup containing the set

{y + k ∈ Z | P{X1 = k} > 0}

　　 is Z.
(A2) P{X1 = k} = P{X1 = −k} (k ∈ Z).
(A3) There exist β ∈ (0, 2], c∗ > 0 and ε > 0 such that

ϕ(θ) :=
∑
k∈Z

eiθkP{X1 = k} = 1− c∗|θ|β +O(|θ|β+ε).

The next remark indicates a relation between the condition (A3) (the behavior

of the characteristic function ϕ near zero) and the tail of distribution of X1.

Remark 2.2. For β ∈ (0, 2), let

P{X1 = k} =

{
1

2a|k|β+1 (k ∈ Z \ {0})
1− 1

a

∑∞
k=1

1
kβ+1 (k = 0)

with a constant a satisfying a >
∑∞

k=1(1/k
β+1). Then ϕ(θ) in (A3) is

ϕ(θ) = 1− π

2a

|θ|β

Γ(β + 1) sin(βπ/2)
+O

(
|θ|β+(2−β)/2

)
,

where Γ is the gamma function.

If X1 satisfies

E[X1] = 0, E[|X1|2+ε] < ∞ for some ε ∈ (0, 1),

then

ϕ(θ) = 1− 1

2
E[X2

1 ]|θ|2 +O(|θ|2+ε).

Theorem 2.3. Assume that X1 satisfies (A1) – (A3).

If β ∈ (0, 1), then there exists a constant c1 > 0 such that for N ∈ N \ {1} and
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y1, y2, · · · , yN ∈ Z with |yn − yn+1| ≤ 1 (n = 1, 2, · · · , N − 1),

c1 ≤ P
(N)
R

(
N∪

n=1

{
R(N)

n = (yn mod N)
})

.

If β = 1, then there exist constants c2 > 0 and c3 > 0 such that for N ∈ N\{1}
and y1, y2, · · · , yN ∈ Z with |yn − yn+1| ≤ 1 (n = 1, 2, · · · , N − 1),

c2
logN

≤ P
(N)
R

(
N∪

n=1

{
R(N)

n = (yn mod N)
})

≤ c3
logN

.

If β ∈ (1, 2], then there exists a constant c4 > 0 such that for N ∈ N \ {1} and

y1, y2, · · · , yN ∈ Z with |yn − yn+1| ≤ 1 (n = 1, 2, · · · , N − 1),

c4
N (β−1)/β

≤ P
(N)
R

(
N∪

n=1

{
R(N)

n = (yn mod N)
})

≤ 1.(1)

The following bounds are obtained as a corollary of Theorem 2.3.

Corollary 2.4. Assume that X1 satisfies (A1) – (A3).

(I) If β ∈ (0, 1), then there exists a constant c1 > 0 such that for N ∈ N \ {1},

c1 ≤ P̃ (N)

(
N∪

n=1

{
H(N)

n = R(N)
n

})
≤ 1.

(II) If β = 1, then there exist constants c2 > 0 and c3 > 0 such that for

N ∈ N \ {1},

c2
logN

≤ P̃ (N)

(
N∪

n=1

{
H(N)

n = R(N)
n

})
≤ c3

logN
.(2)

(III) If β ∈ (1, 2], then there exists a constant c4 > 0 such that for N ∈ N\{1},

c4
N (β−1)/β

≤ P̃ (N)

(
N∪

n=1

{
H(N)

n = R(N)
n

})
≤ 1.

Remark 2.5. Adler et al. considered P̃ (N)
(∪N

n=1

{
H

(N)
n = R

(N)
n

})
in the case
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of

P{X1 = k} =

{
1

2(|k|+1)(|k|+2) (k ∈ Z \ {0})
1
2 (k = 0).

In this case, X1 satisfies (A1), (A2) and

ϕ(θ) = 1− π

2
|θ|+ 0(|θ|3/2)

((A3) with β = 1), and we have (2) in Corollary 2.4 which coincides with the result

of Lemma 3 in [1].

The inequality (1) seems to be sharp, because the powers of upper and lower

bound appearing in (1) can not be improved. Indeed, we have the following esti-

mates.

Proposition 2.6. Assume that X1 satisfies (A1) – (A3).

If β ∈ (1, 2], then there exist constants c5, c6, c7 > 0 such that for N ∈ N \ {1},

c5
N (β−1)/β

≤ P
(N)
R

(
N∪

n=1

{
R(N)

n = 0
})

≤ c6
N (β−1)/β

,(3)

c7 ≤ P
(N)
R

(
N∪

n=1

{
R(N)

n = (n mod N)
})

.(4)

3. Proof of Proposition 2.6(4)

In this section we prove Proposition 2.6(4) and the other proofs are given in [2,

Theorem 1, Corollary 1 and Proposition 1(6)].

To prove Proposition 2.6(4), we introduce the following Lemma.

Lemma 3.1. Assume (A1), (A2) and (A3). If β ∈ (1, 2], then there exists a

constant c8 > 0 such that

1 +
N−1∑
l=1

P ({Sl ∈ [l]N}) ≤ c8,(5)
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where

[y]N = {y + kN | k ∈ Z}.

Proof. There exist C∗ and r ∈ (0, π/2) such that for |θ| < r,

|ϕ(θ)− (1− c∗|θ|β)| ≤ C∗|θ|β+ε

by (A3). We can choose r∗ ∈ (0, r] small enough so that

C∗r
ε
∗ ≤ 1

2
c∗ and c∗r

β
∗ ≤ 1

3
.

Then for |θ| ≤ r∗,

|1− ϕ(θ)| ≤ 3

2
c∗|θ|β ≤ 1

2
.(6)

A strongly aperiodic random walk (A1) has the property that |ϕ(θ)| = 1 only

when θ is a multiple of 2π (see §7 Proposition 8 of [3]). By the definition of ϕ(θ),

|ϕ(θ)| is a continuous function on the bounded closed set [−π,−r∗] ∪ [r∗, π], and

|ϕ(θ)| ≤ 1 (θ ∈ [−π, π]). Hence, there exists a ρ∗ < 1, depending on r∗ ∈ (0, π],

such that

max
r∗≤|θ|≤π

|ϕ(θ)| ≤ ρ∗.(7)

To show (5), we use the following relation (which is given in Proposition 5 of

[2]): for l ∈ {1, 2, · · · , N − 1},

P ({Sl ∈ [l]N}) = 1

N
+

2

N

∑
1≤j≤(N−1)/2

ϕl

(
2jπ

N

)
cos

(
2jπ

N
l

)
+ JN (l, l),

where

JN (l, l) =

{
(1/N)ϕl(π) cos(πl) (if N is even)

0 (if N is odd).

Form this relation and (7), we obtain that for l ∈ {1, 2, · · · , N − 1},

P ({Sl ∈ [l]N}) ≤ 1

N
+

2

N

∑
1≤j≤(r∗/(2π))N

ϕl

(
2jπ

N

)
cos

(
2jπ

N
l

)
+ ρl∗.
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Therefore

1 +

N−1∑
l=1

P ({Sl ∈ [l]N}) ≤ 1 +
2

N

∑
1≤j≤(r∗/(2π))N

|Φ(j,N)|+ 1

1− ρ∗
,(8)

where

Φ(j,N) =

N−1∑
l=0

ϕl

(
2jπ

N

)
cos

(
2jπ

N
l

)
.

Because of (A2), ϕ(θ) takes a real number. Then (6) and (A1) mean that

1

2
≤ ϕ(θ) = |ϕ(θ)| < 1 (θ ∈ (−r∗, 0) ∪ (0, r∗))(9)

and for j ∈ [1, (r∗/(2π))N ] ∩ N,

Φ(j,N) = ℜ

[
N−1∑
l=0

ϕl

(
2jπ

N

)
(e−2jπi/N )l

]

=

(
1− ϕN

(
2jπ
N

)) (
1− ϕ

(
2jπ
N

)
cos

(
2jπ
N

))
��1− ϕ

(
2jπ
N

)
e−2jπi/N

��2 .

To estimate |Φ(j,N)|, we use the last inequality of (9) and (6) which imply that

for j ∈ [1, (r∗/(2π))N ] ∩ N,
����
(
1− ϕN

(
2jπ

N

))(
1− ϕ

(
2jπ

N

)
cos

(
2jπ

N

))����

≤ 2

(����1− ϕ

(
2jπ

N

)����+
����1− cos

(
2jπ

N

)����
)

≤ c9

(
j

N

)β

,

where c9 = (2π)β(3c∗ + r2−β
∗ ). Here we note that β ≤ 2.

The inequality sin θ ≥ 2θ/π (θ ∈ [0, π/2]) and the first inequality of (9) show

that for j ∈ [1, (r∗/(2π))N ] ∩ N,
����1− ϕ

(
2jπ

N

)
e−2jπi/N

����
2

≥
(
ϕ

(
2jπ

N

)
sin

(
2jπ

N

))2

≥ 4

(
j

N

)2

.
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Thus

2

N

∑
1≤j≤(r∗/(2π))N

|Φ(j,N)| ≤ c9
2Nβ−1

∑
1≤j≤(r∗/(2π))N

jβ−2.(10)

By noticing that β ∈ (1, 2], it is easy to see that

∑
1≤j≤(r∗/(2π))N

jβ−2 ≤ 1 +

∫ (r∗/(2π))N

1

xβ−2 dx ≤
(
1 +

1

β − 1

( r∗
2π

)β−1
)
Nβ−1.

(11)

Put the pieces ((8),(10),(11)) together, we have (5). □

To complete the proof of Proposition 2.6(4), we use the following inequality

(which is given in Corollary 3 of [2]): for N ∈ N \ {1},

1

1 +
∑N−1

l=1 P ({Sl ∈ [l]N})
≤ P

(N)
R

(
N∪

n=1

{
R(N)

n = (n mod N)
})

.

By combining the above inequality with (5), we obtain Proposition 2.6(4).

4. Conclusion

We notice that the upper and lower bound which is appearing in Corol-

lary 2.4 (I)((II)) have the same asymptotic behavior. Corollary 2.4 and

Proposition 2.6(4) imply that for every β ∈ (0, 2], the asymptotic behavior of

P
(N)
R

(∪N
n=1

{
R

(N)
n = (n mod N)

})
is same as that of the upper bound appearing

in Corollary 2.4. This means that H
(N)
n = n (n = 1, 2, · · · , N) is a better strategy

of the hunter. Corollary 2.4 and Proposition 2.6(3) imply that for every β ∈ (0, 2],

the asymptotic behavior of P
(N)
R

(∪N
n=1

{
R

(N)
n = 0

})
is same as that of the lower

bound appearing in Corollary 2.4. This means that H
(N)
n = 0 (n = 1, 2, · · · , N) is

a worse strategy of the hunter.

We apply our result to practical use of a base station car. There is a area where

towns are on a cycle. We assume that a big accident happened and many basic

stations broke down in this area. It is a better use to make the base station car go

around by uniform velocity along the cycle, and it is a worse use to park the base

station car at a starting point.
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