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Operating functions in harmonic analysis

Enji Sato

Abstract. In this paper, we state about the Katznelson The-

orem with respect to the operating functions of A(T) and about the
operating functions of modulation spaces in harmonic analysis.

1. Introduction

Study of operating function in harmonic analysis starts with N.Wiener.

Wiener[17] studies the class of A(T) of all continuous functions on the unit cir-

cle T with the absolutely convergent Fourier series, and shows 1
f ∈ A(T) for every

f ∈ A(T) with f(x) ̸= 0 for all x ∈ T. This means that the composition F ◦ f is

in A(T) when F (z) = 1
z and f ∈ A(T) with f(x) ̸= 0 for all x ∈ T. Lèvy[12] gives

an extension of this result which is called Wiener-Lèvy Theorem. After that, the

converse of the Wiener-Lèvy Theorem is studied, and Katznelson[10] gives a result

of it. Moreover, Helson-Kahane-Katznelson-Rudin[6] reveals the functions on R2

which operate on the Fourier transforms on non discrete locally compact abelian

groups. In §2, we briefly state those results.

Thereafter, there are many papers about operating functions on some function

spaces related to Fourier series or Fourier transforms([7],[8],[13],[18],[19], etc.).

In 1983, Feichtinger[4] first introduced the modulation spaces Mp,q whose impor-

tance are indicated by the results related to Schrödinger probagator e−it∆(cf.[2],[5],

etc.).

Recently, Ruzhansky-Sugimoto-Wang[14] proposes the open problem with respect

to general power type nonlinearity of the form |u|αu. Bhimani-Ratnakumar[3] gives

a negative answer about the problem, and proposes an open problem related the

problem in [3]. In §3, we state about this result and give an answer according to

Kobayashi-Sato[11].
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2. The Katznelson Theorem

In this section, we briefly review some classical results with respect to operating

functions. First we state the Wiener Theorem and the Wiener-Lèvy Theorem.

Theorem 2.1. (The Wiener Theorem) Let f be in A(T) such that f(x) ̸= 0

for all x ∈ T. Then we hav 1
f ∈ A(T).

Theorem 2.2. (The Wiener-Lèvy Theorem) Let D be a region in the complex

plane, and F (z) an analytic function on D. Then we have F ◦ f ∈ A(T) for every

f ∈ A(T) with f(T) ⊂ D.

After the Wiener-Lèvy Theorem is showed, there are many papers related to

the converse of this theorem. Katznelson[10](cf.[9]) gives a solution of the converse

problem which is called the Katznelson Theorem:

Theorem 2.3. (The Katznelson Theorem) Let I = [−1, 1], and F (t) be a

complex-valued function on I. If F operates on A(T), F extends to an analytic

function on a neighborhood of I(We say that F operates on A(T), if F ◦ f ∈ A(T)
for every f ∈ A(T) with f(T) ⊂ I).

A complex-valued function F on R2 is said to be real analytic (resp. real entire)

on R2 if for each (s0, t0) ∈ R2, F has a power series expansion

F (s, t) =
∞∑

m,n=0

amn(s− s0)
m(t− t0)

n (resp. F (s, t) =
∞∑

m,n=0

amns
mtn)

which converges absolutely in a neighborhood of (s0, t0)(resp. in R2).

Theorem 2.4. (The Helson-Kahane-Katznelson-Rudin Theorem) Let Φ be a

complex-valued function on R2. If Φ ◦ f ∈ A(T) for every f ∈ A(T), then Φ is real

analytic on R2.

Remark 2.5. Let G be a non discrete locally compact abelian group with the

dual �G, and A(G) the set of all Fourier transforms on �G.

(1) Let F be a function on R2. If we have F (Re f, Im f) ∈ A(G) for every

f ∈ A(G), F is real analytic (cf.[13]).

(2) Let M( �G) be the set of all bounded regular Borel measures on �G, and B(G) the

set of all Fourier-Stieltjes transforms on �G. If we have F (Re f, Im f) ∈ B(G)

for every f ∈ B(G), F is real entire (cf.[13]).
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3. Modulation spaces and the operating functions

First we introduce some notations for modualtion spaces. We write S(Rd) to

denote the Schwartz space of all complex-valued rapidly decreasing infinitely partial

differentiable functions on the d-dimensional Euclidean space Rd and S ′(Rd) to

denote the space of tempered distributions on Rd, that is, the topological dual of

S(Rd). The Fourier transform of f is defined by f̂(ξ) =
∫
Rd f(x)e−ixξdx and the

inverse Fourier transform by f̌(x) = 1
(2π)d

f̂(−x). We also write C∞
c (Rd) to denote

the set of all complex-valued infinitely partial differentiable functions on Rd with

compact support. Let f ∈ S ′(Rd) and g ∈ S(Rd). Then the short-time Fourier

transform Vgf of f with respect to the window g is defined by

Vgf(x, ξ) = < f(t), g(t− x)eitξ >

=

∫

Rd

f(t)g(t− x)e−itξdt.

Also let 1 ≤ p, q ≤ ∞ and g ∈ S(Rd)\{0}. Then the modulation space Mp,q(Rd) =

Mp,q consists of all f ∈ S ′(Rd) such that the norm

||f ||Mp,q(Rd) =

(∫

Rd

(∫

Rd

|Vgf(x, ξ)|pdx
) q

p

dξ

) 1
q

is finite(with usual modification if p = ∞ or q = ∞). We note that since Vg f̄(x, ξ) =

Vḡf(x,−ξ), we have ||f̄ ||Mp,q = ||f ||Mp,q , ||Re f ||Mp,q ≤ ||f ||Mp,q, ||Im f ||Mp,q ≤
||f ||Mp,q. We collect basic properties of modulation spaces in the following

lemma(cf.[5],[15],[16], etc.).

Lemma 3.1. (1) The space Mp,q(Rd) is a Banach space, whose definition is

independent of the choice g. More precisely, we have

||f ||Mp,q
[g0]

(Rd) ≤ C||g||M1,1
[g0]

(Rd)||f ||Mp,q
[g]

(Rd)

for f ∈ Mp,q(Rd) and g0, g ∈ S(Rd)\{0}, where

||f ||Mp,q
[g]

(Rd) = ||||Vgf(x, ξ)||Lp(Rd
x)
||Lq(Rd

ξ)
.

(2)

Mp,min{p,p′}(Rd) ↪→ Lp(Rd) ↪→ Mp,max{p,p′}(Rd)
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In particular, we have M2,2(Rd) = L2(Rd).

(3) Mp,1(Rd) ⊂ C(Rd), that is, f is continuous on Rd if f ∈ Mp,1(Rd).

(4) If p1 ≤ p2 and q1 ≤ q2, then

Mp1,q1(Rd) ↪→ Mp2,q2(Rd).

(5) (density and duality) If p, q < ∞, then S(Rd) is dense in Mp,q(Rd) and

(Mp,q(Rd))′ = Mp′,q′(Rd), where 1
p + 1

p′ = 1 and 1
q + 1

q′ = 1.

(6) (Multiplication) If 1
p1

+ 1
p2

= 1
p and 1

q1
+ 1

q2
= 1

q + 1, then

||fg||Mp,q(Rd) ≤ C||f ||Mp1,q1 (Rd)||g||Mp2,q2 (Rd) (f, g ∈ S(Rd)).

(7) (Dilation property) There exists a constant C > 0 such that

||fλ||M∞,1(Rd) ≤ C||f ||M∞,1(Rd) (f ∈ M∞,1(Rd))

for 0 < λ ≤ 1. Here we denote fλ(x) = f(λx).

Let F be complex-valued function on R2. If F (Re f, Im f) ∈ Mp,1(Rd) for

every f ∈ Mp,1(Rd), then we say that F operates on Mp,1(Rd).

M.Ruzhansky, M.Sugimoto and B.Wang pose the open problem in [14], namely

the validity of the inequality ||f |f |α||α+1
Mp,1 for all f ∈ Mp,1(Rd) and α ∈ (0,∞)\2N.

We have this inequality for α ∈ 2N by f̄ ∈ Mp,1(Rd).

Bhimani-Ratnakumar[3] gives a negative answer to this problem by using the

Helson-Kahane-Katznelson-Rudin Theorem with respect to operating functions in

harmonic analysis:

Theorem 3.2. ([3]) Let 1 ≤ p < ∞ and F be a complex-valued function on

R2. If F operates on Mp,1(Rd), then F is a real analytic function on R2 with

F (0) = 0. Conversely, if F is a real anlytic function on R2 with F (0) = 0, then F

operates on Mp,1(Rd).

Since F (x, y) = (x + iy)|x + iy|α is non real analytic for α ∈ (0,∞)\2N,
Bhimani-Ratnakumar[3] obtains the following:

Corollary 3.3. There exists f ∈ Mp,1(Rd) such that f |f |α /∈ Mp,1(Rd) for

every α ∈ (0,∞)\2N.
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In [3], they propose an open problem: Is the condition Theorem 3.2 sufficient

or not for p > 1 ? Kobayashi-Sato[11] gives an affirmative answer to this problem:

Theorem 3.4. ([11,Theorem 1.1]) Let 1 < p < ∞ and F be a real analytic

function on R2 with F (0) = 0. Then F operates on Mp,1(R).

In the same way as the above proof, we have the following:

Theorem 3.5. Let 1 < p < ∞ and F be a real analytic function on R2 with

F (0) = 0. Then F operates on Mp,1(Rd).

Corollary 3.6. Let 1 ≤ p < ∞ and F be a complex-valued function on R2.

Then F operates on Mp,1(Rd) if and only if F is a real analytic function with

F (0) = 0.

Theorem 3.5 is given by the slight modification of the proof in Kobayashi-

Sato[11] as we said. In the remaining part, we state the outline of the proof of

Theorem 3.5 which is almost same in the proof of Theorem 3.4.

Definition 3.7. Let 1 ≤ p < ∞ and f be a function on Rd.

(1) Let x0 ∈ Rd. If there exist a neighborhood V of x0 and a function g ∈
Mp,1(Rd) satisfying f(x) = g(x) for every x ∈ V , then we say f belongs to

Mp,1(Rd) locally at a point x0 ∈ Rd.

(2) If there exist a compact set K ⊂ Rd and h ∈ Mp,1(Rd) satisfying f(x) = g(x)

for all x ∈ Rd \K, then we say f belongs to Mp,1(Rd) at ∞.

We denote by Mp,1
loc (R

d), the space of functions that are locally in Mp,1(Rd) at

each point x0 ∈ Rd.

Lemma 3.8. ([11,Lemma 2.4]) Let 1 ≤ p < ∞ and f be a function on Rd.

(1) f belongs to Mp,1
loc (R

d), if and only if ϕf ∈ Mp,1(Rd) for every ϕ ∈ C∞
c (Rd).

(2) f belongs to Mp,1
loc (R

d) at ∞, if and only if there exists a function ϕ ∈ C∞
c (Rd)

such that (1− ϕ)f ∈ Mp,1(Rd).

(3) If f ∈ Mp,1
loc (R

d) and f belongs to Mp,1(Rd) at ∞, then f ∈ Mp,1(Rd).

For the sake of the outline of the proof of Theorem 3.5, we use some no-

tations in Fourier analysis. Let C(Td) be the set of all continuous functions on



52 E. Sato

the d-dimensional torus Td, and A(Td) the set of all continuous functions having

absolutely convergent Fourier series :

A(Td) = {f ∈ C(Td)|
∑
m∈Zd

|f̂(m)| < ∞},

where f̂(m) =
∫
[−π,π)d

f(x)e−imxdx, the m-th Fourier coefficient of f . A(Td) is

a commutative Banach algebra under pointwise addition and multiplication with

respect to the norm

||f ||A(Td) =
∑
m∈Zd

|f̂(m)|.

Here, we need the useful lemma for our theorem in Benyi-Oh[1].

Lemma 3.9. (cf.[1,Proposition B.1]) Let f ∈ Mp,1(Rd), 1 ≤ p < ∞ and

ϕ a smooth function supported on [0, 2π)d. Then ϕf ∈ A(Td) and satisfies the

inequality

(1) ||ϕf ||A(Td) ≤ C||f ||Mp,1(Rd).

Also let f ∈ A(Td), 1 ≤ p < ∞ and ϕ the above function. Then ϕf ∈ Mp,1(Rd)

and satisfies the inequality

(2) ||ϕf ||Mp,1(Rd) ≤ C||f ||A(Td).

Also we have the following:

Lemma 3.10. Let λ ∈ (0, 1) and define the 2π periodic function Vλ ∈ C(Td)

by

Vλ(x) = V 1
λ (x1) · · ·V d

λ (xd) (x = (x1, · · · , xd) ∈ [−π, π)d),

where V j
λ (xj) = 2∆2λ(xj)−∆λ(xj) with ∆λ(xj) = max(0, 1− |xj |

λ ), (j = 1, · · · , d).
Moreover, we define V x0

λ (x) = Vλ(x − x0) for x0 ∈ Rd. Then for each g ∈ A(Td)

with g(x0) = 0, we have ||V x0

λ g||A(Td) → 0 as λ → 0.

This Lemma is obtained by applying a partial integration and the Parseval

equality. But we omit the proof, since the proof is given by the slight modification

in Kahane[9;pp.56-57].
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By Lemma 3.10, we can show the following whose proof is same to [11].

Proposition 3.11. (cf.[11,Proposition 3.1]) Let 1 ≤ p < ∞ and F be a

complex-valued real analytic function on R2 with F (0) = 0. If f ∈ Mp,1(Rd), then

F (Re f, Im f) belongs to Mp,1(Rd) locally at x0 for all x0 ∈ Rd.

Also the following is given:

Proposition 3.12. (cf.[11,Proposition 3.2]) Let 1 ≤ p < ∞ and f ∈
Mp,1(Rd). For any ε > 0, there exists a real-valued function Φ ∈ C∞

c (Rd) such

that

||(1− Φ)f ||Mp,1(Rd) < ε.

Lemma 3.13. (cf.[11,Corollary 3.3]) Let 1 ≤ p < ∞, and f1, · · · , fN ∈
Mp,1(Rd). For any ε > 0, there exists a real-valued function Φ ∈ C∞

c (Rd) such

that

||(1− Φ)fj ||Mp,1(Rd) < ε (j = 1, . . . , N).

Proposition 3.14. (cf.[11,Proposition 3.4]) Let 1 ≤ p < ∞ and F be a

real analytic function on R2 with F (0) = 0. If f ∈ Mp,1(Rd), then there exists

H ∈ Mp,1(Rd) such that

H(x) = F (Re f(x), Im f(x))

except for some compact set in Rd.

Theorem 3.4 is proved in Kobayashi-Sato[11], and Theorem 3.5 is proved by

the slight change of the proof of Theorem 3.4 by those propositions and lemmas.

We omit the details.
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