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Convergence theorems of the Choquet integral for three

types of convergence of measurable functions

Jun Kawabe

Abstract. The purpose of this paper is to gather and rearrange

some results known as convergence theorems of the Choquet integral
in terms of three types of convergence of measurable functions, that
is, pointwise convergence, almost everywhere convergence, and con-
vergence in measure. Moreover, some characteristics of nonadditive

measures are specified by the validity of those convergence theorems.

1. Introduction

A nonadditive measure is a monotonically increasing set function that is not

necessarily additive and the Choquet integral is the nonlinear integral with respect

to a nonadditive measure [4, 18, 25]. They are important in terms of expected

utility theory, subjective evaluation problem, and the refinement of measure and

integration theory, in which the σ-additivity of measures may be a strong constraint

and the Lebesgue integral may not give a proper aggregation process [5, 6, 17, 26].

In order to put the Choquet integral into practical use and aim for application to

various fields, it is indispensable to establish convergence theorems assuring that the

limit of the integrals of a sequence of functions is the integral of the limit function.

For this reason, many researchers have already studied several kinds of convergence

theorems of the Choquet integral, such as the monotone convergence theorem, the

bounded convergence theorem, and the dominated convergence theorem, but they

are formulated under ones’ own terms and settings. In addition, the outcomes are

dispersed in numerous papers; see [3, 4, 10, 12, 13, 14, 15, 16, 18, 19, 24, 25] among

others.

The purpose of this paper is to gather and rearrange some results known as

convergence theorems of the Choquet integral in terms of three types of conver-

gence of measurable functions, that is, pointwise convergence, almost everywhere

convergence, and convergence in measure. Those theorems are refined in the sense
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that a counterexample can be found if any one of the assumptions of the theorem is

not assumed. Moreover, with a few exceptions, some characteristics of nonadditive

measures are specified by the validity of those convergence theorems.

The paper is organized as follows. In Section 2, some basic properties of nonad-

ditive measures and the Choquet integral are recalled. In particular, the uniform

Choquet integrability and some types of the uniform essential boundedness of func-

tions are surveyed. In Section 3, several important convergence theorems, such as

the monotone convergence theorem, the Fatou lemma, the dominated convergence

theorem, the bounded convergence theorem, and the Vitali convergence theorem

are gathered and rearranged in terms of pointwise convergence, almost everywhere

convergence, and convergence in measure of measurable functions. The paper ends

in Section 4 by giving the bounded convergence theorem and the dominated conver-

gence theorem for the symmetric and asymmetric Choquet integrals of a sequence

of not necessarily non-negative functions.

2. Preliminaries

In this paper, unless stated otherwise, X is a non-empty set and A is a field of

subsets of X. Let R and N denote the set of all real numbers and the set of all

natural numbers. Let R := R∪ {−∞,∞} with usual total order. For any a, b ∈ R,
let a ∨ b := max (a, b) and a ∧ b := min (a, b). For any functions f, g : X → R, let
(f ∨ g)(x) := f(x)∨ g(x) and (f ∧ g)(x) := f(x)∧ g(x) for every x ∈ X. We adopt

the usual conventions for algebraic operations on R. We also adopt the convention

(±∞) · 0 = 0 · (±∞) = 0 and inf∅ = ∞. If a positive number c may take ∞,

we explicitly write c ∈ (0,∞] instead of the ambiguous expression c > 0. In other

words, c > 0 always means c ∈ (0,∞). This notational convention will be used for

similar cases.

Let χA denote the characteristic function of a set A, that is, χA(x) = 1 if

x ∈ A and χA(x) = 0 otherwise. A function f : X → R is called A-measurable if

{f ≥ t} := {x ∈ X : f(x) ≥ t} ∈ A and {f > t} := {x ∈ X : f(x) > t} ∈ A for

every t ∈ R. Any constant function and the characteristic function χA of any set

A ∈ A are A-measurable. If f and g are A-measurable and c ∈ R, then so are

f+ := f ∨ 0, f− := (−f) ∨ 0, |f | := f ∨ (−f), cf , f + c, f ∨ g, and f ∧ g. Note

that f = f ∧ c+ (f − c)+. Let F(X) denote the set of all A-measurable functions

f : X → R and F+(X) := {f ∈ F(X) : f ≥ 0}.

2.1. Nonadditive measures

A nonadditive measure onX is a set function µ : A → [0,∞] such that µ(∅) = 0

and µ(A) ≤ µ(B) whenever A,B ∈ A and A ⊂ B. It is called finite if µ(X) < ∞.
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This type of set function is also called a monotone measure [25], a capacity [2], and

a fuzzy measure [22] in the literature. Let M(X) denote the set of all nonadditive

measures µ : A → [0,∞]. Let Mb(X) := {µ ∈ M(X) : µ(X) < ∞}. For µ ∈
Mb(X), its dual µ̄ ∈ Mb(X) is defined by µ̄(A) := µ(X)−µ(Ac) for every A ∈ A,

where Ac denotes the complement of A. It is obvious that ¯̄µ = µ. A nonadditive

measure µ is called subadditive if µ(A ∪ B) ≤ µ(A) + µ(B) for any A,B ∈ A such

that A ∩ B = ∅ and called additive if the equality holds. If µ is additive, then

µ̄ = µ.

2.2. The Choquet integral

The Choquet integral [2, 20] is a typical nonlinear integral. It is widely used

in nonadditive measure theory and has applications in expected utility theory,

subjective evaluation problem, economics with Knightian uncertainty, data mining,

and others [5, 6, 17, 26].

Definition 2.1. Let µ ∈ M(X) and f ∈ F+(X). The Choquet integral is

defined by

Ch(µ, f) :=

∫ ∞

0

µ({f > t})dt,

where the integral of the right hand side is the Lebesgue integral or the improper

Riemann integral.

Remark 2.2. (1) Since the µ-distribution function Gµ,f (t) := µ({f > t}) (t ∈
R) is decreasing and non-negative, it has a well-defined improper Riemann integral

and also defines the Lebesgue integral. Moreover, the function µ({f > t}) can be

replaced with µ({f ≥ t}) without changing the value of the integral.

(2) The Choquet integral is equal to the abstract Lebesgue integral if µ is σ-

additive and A is a σ-field [21, Corollary 18]; see also [12, Propositions 8.1 and 8.2].

If f ∈ F+(X) and Ch(µ, f) < ∞, then f is called µ-integrable. If f ∈ F(X)

and Ch(µ, |f |) < ∞, then f is called µ-absolutely integrable, which will be called µ-

integrable for short without any confusion. The Choquet integral has the following

properties; see [4, 14, 18, 25].

Proposition 2.3 ([14, Propositions 2.6 and 2.7]). Let µ ∈ M(X), A ∈ A,

and f, g, h ∈ F+(X). Let a ≥ 0 be a constant.

(1) 0 ≤ Ch(µ, f) ≤ ∥f∥µ ·µ({f > 0}), where ∥f∥µ := inf{c > 0: µ({f > c}) = 0}.

(2) If f(x) ≤ g(x) for every x ∈ X, then Ch(µ, f) ≤ Ch(µ, g).
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(3) Ch(µ, aχA) = aµ(A).

(4) Ch(µ, af) = aCh(µ, f).

(5) Ch(µ, f + a) = Ch(µ, f) + aµ(X).

(6) Assume that either f or g is µ-integrable. If |f(x) − g(x)| ≤ a for every

x ∈ X, then |Ch(µ, f)− Ch(µ, g)| ≤ aµ(X).

(7) The following inequality holds.

aµ(A ∩ {f ≥ a}) ≤ Ch(µ, χAf) ≤ aµ(A ∩ {f > 0}) + Ch(µ, χA∩{f>a}f).

Proposition 2.4 ([14, Proposition 2.8]). Let µ ∈ M(X) and f ∈ F(X). If

f is µ-integrable, then the following conditions hold.

(i) limc→∞ µ({|f | > c}) = 0.

(ii) limc→∞ Ch(µ, χ{|f |>c}|f |) = 0.

(iii) f is µ-absolutely continuous, that is, for any ε > 0, there is δ > 0 such that

Ch(µ, χA|f |) < ε whenever A ∈ A and µ(A) < δ.

The Vitali theorem discussed in this paper needs the uniform integrability of

functions, which takes the same form as the case of the Lebesgue integral.

Definition 2.5. Let µ ∈ M(X). Let F be a non-empty subset of F(X).

(1) F is called uniformly µ-integral bounded if supf∈F Ch(µ, |f |) < ∞.

(2) F is called uniformly µ-absolutely continuous if, for any ε > 0, there is δ > 0

such that supf∈F Ch(µ, χA|f |) < ε whenever A ∈ A and µ(A) < δ.

(3) F is called uniformly µ-integrable if limc→∞ supf∈F Ch(µ, χ{|f |>c}|f |) = 0.

For a non-empty F ⊂ F(X) and a ̸= 0, let F+ := {f+ : f ∈ F}, F− :=

{f− : f ∈ F}, |F| := {|f | : f ∈ F}, and aF := {af : f ∈ F}. The uniform

integrability of functions for the Choquet integral has the same properties as that

for the Lebesgue integral.

Proposition 2.6 ([14, Propositions 3.2, 3.3, 3.4, 6.4 and 6.5]). Let µ ∈
M(X). Let F be a non-empty subset of F(X).

(1) If F is uniformly µ-integrable, then so are aF , F+, F−, and |F|, where

a ̸= 0 is a constant.
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(2) If F is uniformly µ-integral bounded, then limc→∞ supf∈F µ({|f | > c}) = 0.

(3) Consider the following two conditions.

(i) F is uniformly µ-integral bounded and uniformly µ-absolutely continu-

ous.

(ii) F is uniformly µ-integrable.

Then (i) implies (ii). Conversely, (ii) implies the uniform µ-absolute conti-

nuity of F . If µ is finite, then (ii) also implies the uniform µ-integral bound-

edness of F .

(4) F is uniformly µ-integrable if there is a µ-integrable function g ∈ F+(X)

such that |f(x)| ≤ g(x) for every x ∈ X and f ∈ F .

(5) F is uniformly µ-integrable if there is c > 0 such that µ({|f | > c}) = 0 for

every f ∈ F .

(6) If supf∈F Ch(µ, |f |p) < ∞ for some p > 1, then F is uniformly µ-integrable.

When µ(X) = ∞, the uniform µ-integral boundedness does not follow from

the uniform µ-integrability; in particular, for each f ∈ F(X), Ch(µ, |f |) < ∞ does

not follow from limc→∞ Ch(µ, χ{|f |>c}|f |) = 0; see (2) of Remark 3.5 [14]. For

this reason, the notion of the uniform integrability is more interesting for finite

measures.

As for the bounded convergence theorem, the uniform essential (symmetric)

boundedness of functions are needed for its formulation.

Definition 2.7 ([14, Definition 6.1]). Let µ ∈ M(X). Let F be a non-empty

subset of F(X).

(1) F is called uniformly µ-essentially bounded if there is c > 0 such that µ({f >

c}) = 0 and µ({f > −c}) = µ(X) for every f ∈ F . In particular, f ∈ F(X)

is called µ-essentially bounded if there is c > 0 such that µ({f > c}) = 0 and

µ({f > −c}) = µ(X).

(2) F is called uniformly µ-essentially symmetric bounded if there is c > 0 such

that µ({f > c}) = µ({f < −c}) = 0 for every f ∈ F . In particular,

f ∈ F(X) is called µ-essentially symmetric bounded if there is c > 0 such

that µ({f > c}) = µ({f < −c}) = 0.
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(3) F is called uniformly µ-essentially absolute bounded if there is c > 0 such

that µ({|f | > c}) = 0 for every f ∈ F . In particular, f ∈ F(X) is called

µ-essentially absolute bounded if there is c > 0 such that µ({|f | > c}) = 0.

If µ is additive, then the above three notions of uniform boundedness coincide

with each other. By (5) of Proposition 2.6, every uniformly µ-essentially absolute

bounded subset of F(X) is uniformly µ-integrable. When F ⊂ F+(X), the uni-

form µ-essential boundedness, symmetric boundedness, and absolute boundedness

coincide with each other and they are reduced to the condition that there is c > 0

such that µ({f > c}) = 0 for every f ∈ F . For this reason, the terms uniform µ-

essential symmetric boundedness and absolute boundedness will be avoided using

for a family of non-negative functions.

Proposition 2.8 ([14, Propositions 6.3 and 6.5]). Let µ ∈ M(X). Let F be

a non-empty subset of F(X).

(1) F is uniformly µ-essentially symmetric bounded if and only if F+ and F−

are both uniformly µ-essentially bounded. In this case, F+ and F− are both

uniformly µ-integrable.

(2) Assume that µ is finite. F is uniformly µ-essentially bounded if and only

if F+ is uniformly µ-essentially bounded and F− is uniformly µ̄-essentially

bounded. In this case, F+ is uniformly µ-integrable, while F− is uniformly

µ̄-integrable.

See [4, 11, 18, 25] for more information on nonadditive measures and the Cho-

quet integral.

3. Convergence theorems of the Choquet integral

In this section, some results known as convergence theorems of the Choquet

integral are gathered and rearranged in terms of three types of convergence of mea-

surable functions, that is, pointwise convergence, almost everywhere convergence,

and convergence in measure; see [3, 4, 10, 12, 13, 14, 15, 16, 18, 19, 24, 25].

In what follows, those convergence theorems are refined in the sense that a

counterexample can be found if any one of the assumptions of the theorem is not

assumed. Moreover, with a few exceptions, some characteristics of nonadditive

measures are specified by the validity of those convergence theorems.
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3.1. Pointwise convergence theorems

Let (X,A) be a measurable space. For {fn}n∈N ⊂ F(X) and f ∈ F(X), the

symbol fn → f denotes pointwise convergence, that is, fn(x) → f(x) for every

x ∈ X. It is written as fn ↑ f if fn(x) ≤ fn+1(x) for every n ∈ N and x ∈ X and

as fn ↓ f if fn(x) ≥ fn+1(x) for every n ∈ N and x ∈ X.

Let F be a non-empty subset of F(X). Then, F is called uniformly bounded if

there is c > 0 such that |f(x)| ≤ c for every f ∈ F and x ∈ X. Every uniformly

bounded subset of F(X) is uniformly µ-essentially bounded, symmetric bounded,

and absolute bounded, and hence, uniformly µ-integrable. Moreover, F is called

having a dominating function g ∈ F+(X) if |f(x)| ≤ g(x) for every f ∈ F and x ∈
X. Every subset of F(X) having a µ-integrable dominating function is uniformly

µ-integrable.

Pointwise convergence theorems are related to the following several types of the

continuity of nonadditive measures. For {An}n∈N ⊂ A and A ∈ A, the symbol

An ↑ A denotes that {An}n∈N is increasing and A =
∪∞

n=1 An. Similarly, An ↓ A

denotes that {An}n∈N is decreasing and A =
∩∞

n=1 An.

Definition 3.1. Let µ ∈ M(X).

(1) µ is called continuous from above if µ(An) → µ(A) for any {An}n∈N ⊂ A and

A ∈ A such that An ↓ A.

(2) µ is called conditionally continuous from above if µ(An) → µ(A) for any

{An}n∈N ⊂ A and A ∈ A such that An ↓ A and µ(A1) < ∞.

(3) µ is called continuous from below if µ(An) → µ(A) for any {An}n∈N ⊂ A and

A ∈ A such that An ↑ A.

(4) µ is called conditionally continuous from below if µ(An) → µ(A) for any

{An}n∈N ⊂ A and A ∈ A such that An ↑ A and µ(A) < ∞.

(5) µ is called continuous if it is continuous from above and continuous from

below.

(6) µ is called conditionally continuous if it is conditionally continuous from

above and continuous from below.

(7) µ is called conditionally continuous from above and below if it is conditionally

continuous from above and conditionally continuous from below.

The σ-additivity of measures implies not the continuity from above but the

conditional continuity from above. The notion of the continuity from above is thus
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believed to be too strong, so that there is a tendency to avoid its use in ordinary

measure theory. However, in nonadditive measure theory, where the additivity of

measures is not a prerequisite, the infinite continuous nonadditive measure µ = φ◦p
on R is simply given by distorting a probability measure p on R by the function

φ : [0, 1] → [0,∞] defined as

φ(t) :=



tan

(
πt

2

)
if t ∈ [0, 1)

∞ if t = 1,

where φ ◦ p(A) := φ(p(A)) for every Borel measurable subset A of R. Therefore,

the notion of the continuity of measures as well as the conditional continuity is

often a subject of study in nonadditive measure theory.

The notions of the continuity, the conditional continuity, and the conditional

continuity from above and below are equivalent to each other if µ is finite. For this

reason, the terms continuity, continuity from above, and continuity from below

will be used preferentially for finite nonadditive measures instead of the terms con-

ditional continuity, conditional continuity from above, and conditional continuity

from below. However, the nonadditive measure µ = θ ◦ λ on R given by distorting

the Lebesgue measure λ on R by the function θ : [0,∞] → [0,∞] defined as

θ(t) :=

{
tan−1 t if t ∈ [0,∞)

∞ if t = ∞

is conditional continuous from above and below, but neither continuous from above

nor continuous from below.

Theorem 3.2 ([3, 4, 9, 12, 14, 15, 18, 19, 21, 24, 25]). Let (X,A) be a

measurable space and µ ∈ M(X).

(1) The following conditions are equivalent.

(i) µ is continuous from below.

(ii) The monotone increasing pointwise convergence theorem holds for µ,

that is, Ch(µ, fn) → Ch(µ, f) for any {fn}n∈N ⊂ F+(X) and any f ∈
F+(X) such that fn ↑ f .

(iii) The Fatou pointwise lemma holds for µ, that is,

Ch(µ, lim inf
n→∞

fn) ≤ lim inf
n→∞

Ch(µ, fn)
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for any {fn}n∈N ⊂ F+(X).

(2) The following conditions are equivalent.

(i) µ is conditionally continuous from above.

(ii) The monotone decreasing pointwise convergence theorem holds for µ,

that is, Ch(µ, fn) → Ch(µ, f) for any {fn}n∈N ⊂ F+(X) and any f ∈
F+(X) such that fn ↓ f and Ch(µ, f1) < ∞.

(iii) The reverse Fatou pointwise lemma holds for µ, that is,

lim sup
n→∞

Ch(µ, fn) ≤ Ch(µ, lim sup
n→∞

fn)

for any {fn}n∈N ⊂ F+(X) having a µ-integrable dominating function

g ∈ F+(X).

(3) The following conditions are equivalent.

(i) µ is conditionally continuous from above and below.

(ii) The dominated pointwise convergence theorem holds for µ, that is, f is µ-

integrable and Ch(µ, fn) → Ch(µ, f) for any {fn}n∈N ⊂ F+(X) having

a µ-integrable dominating function g ∈ F+(X) and any f ∈ F+(X)

such that fn → f .

(4) Assume that µ is finite. The following conditions are equivalent.

(i) µ is continuous.

(ii) The bounded pointwise convergence theorem holds for µ, that is,

Ch(µ, fn) → Ch(µ, f) for any uniformly bounded {fn}n∈N ⊂ F+(X)

and any f ∈ F+(X) such that fn → f .

(iii) The Vitali pointwise convergence theorem holds for µ, that is, f is

µ-integrable and Ch(µ, fn) → Ch(µ, f) for any uniformly µ-integrable

{fn}n∈N ⊂ F+(X) and any f ∈ F+(X) such that fn → f .

Remark 3.3. Let X := [0, 1). Let λ be the Lebesgue measure on R. Then, λ is

a finite σ-additive measure on [0, 1) and hence continuous. Let fn(x) :=
1

n(1−x) for

every x ∈ [0, 1) and n ∈ N. Then, fn ↓ 0 but Ch(λ, fn) = ∞ for every n ∈ N. This
example shows that the convergence theorems in Theorem 3.2 does not established

only by assuming pointwise convergence of fn to f , except the monotone increasing

pointwise theorem and the pointwise Fatou lemma.



64 J. Kawabe

3.2. Almost everywhere convergence theorems

Almost everywhere convergence theorems of the Choquet integral are related

to the following characteristics of nonadditive measures.

Definition 3.4 ([1, 25]). Let µ ∈ M(X).

(1) µ is called null-additive if µ(A∪B) = 0 for any A,B ∈ A such that µ(B) = 0.

(2) µ is called null-continuous if µ(A) = 0 for any {An}n∈N ⊂ A and any A ∈ A
such that An ↑ A and µ(An) = 0 for every n ∈ N.

Clearly, every subadditive nonadditive measure is null-additive. Every nonad-

ditive measure that is continuous from below and every nonadditive measure that

is continuous from above and null-additive is null-continuous [1, Proposition 9].

Let (X,A) be a measurable space and µ ∈ M(X). For N ∈ A, if µ is not addi-

tive, then µ(N) = 0 is not necessarily equivalent to µ(X \N) = µ(X). In addition,

µ(N) = 0 does not always imply µ(A∪N) = µ(A) for every A ∈ A. Therefore, there

are several types of definitions of “almost everywhere” for nonadditive measures.

In this paper, standard definitions in ordinary measure theory are adopted when

defining the notion of null sets and almost everywhere. In other words, a condition

is said to hold µ-almost everywhere if there is N ∈ A with µ(N) = 0 such that the

condition holds for every x ̸∈ N ; see textbooks [7]. Thus, for {fn}n∈N ⊂ F(X) and

f ∈ F(X), the symbol fn → f µ-a.e. denotes µ-almost everywhere convergence,

that is, there is N ∈ A with µ(N) = 0 such that fn(x) → f(x) for every x /∈ N . It

is written as fn ↑ f µ-a.e. if fn ≤ fn+1 µ-a.e. for every n ∈ N and as fn ↓ f µ-a.e. if

fn ≥ fn+1 µ-a.e. for every n ∈ N.
Let F ⊂ F(X). Then, F is called a uniformly µ-a.e. bounded if there is c > 0

such that |f | ≤ c µ-a.e. for every f ∈ F . Every uniformly µ-a.e. bounded subset of

F(X) is uniformly µ-essentially symmetric bounded and absolute bounded. It is

uniformly µ-essentially bounded if µ is null-additive. Moreover, F is called having

a µ-a.e. dominating function g ∈ F+(X) if |f | ≤ g µ-a.e. for every f ∈ F . Every

non-empty subset of F(X) having a µ-integrable µ-a.e. dominating function is

uniformly µ-integrable if µ is null-additive.

It should be mentioned that condition “fn ≤ fn+1 µ-a.e. for every n ∈ N” means

that for each n ∈ N, there is N ∈ A with µ(N) = 0, which may depend on n, such

that fn(x) ≤ fn+1(x) for every x /∈ N . It does not imply that there is N ∈ A
with µ(N) = 0, which does not depend on n, such that fn(x) ≤ fn+1(x) for every

x /∈ N and n ∈ N. Both of them are equivalent if µ is null-continuous. The same

is mentioned in other cases.
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Theorem 3.5 ([3, 14, 15, 19, 24, 25]). Let (X,A) be a measurable space and

µ ∈ M(X).

(1) The following conditions are equivalent.

(i) µ is continuous from below and null-additive.

(ii) The monotone increasing a.e. convergence theorem holds for µ, that is,

Ch(µ, fn) → Ch(µ, f) for any {fn}n∈N ⊂ F+(X) and any f ∈ F+(X)

such that fn ↑ f µ-a.e.

(iii) The Fatou a.e. lemma holds for µ, that is,

Ch(µ, f) ≤ lim inf
n→∞

Ch(µ, fn)

for any {fn}n∈N ⊂ F+(X) and any f ∈ F+(X) such that fn → f µ-a.e.

(2) The following conditions are equivalent.

(i) µ is conditionally continuous from above, null-additive, and null-

continuous.

(ii) The monotone decreasing a.e. convergence theorem holds for µ, that is,

Ch(µ, fn) → Ch(µ, f) for any {fn}n∈N ⊂ F+(X) and any f ∈ F+(X)

such that fn ↓ f µ-a.e. and Ch(µ, f1) < ∞.

In addition, the null-continuity of µ in assertion (i) can be dropped if “fn ↓ f

µ-a.e.” in assertion (ii) is replaced with “fn → f µ-a.e. and fn(x) ≥ fn+1(x)

for every x ∈ X and n ∈ N.”

(3) Consider the following conditions.

(i) µ is continuous from above and null-additive.

(ii) µ is conditionally continuous from above, null-additive, and null-

continuous.

(iii) The reverse Fatou a.e. lemma holds for µ, that is,

lim sup
n→∞

Ch(µ, fn) ≤ Ch(µ, f)

for any {fn}n∈N ⊂ F+(X) having a µ-integrable µ-a.e. dominating func-

tion g ∈ F+(X) and any f ∈ F+(X) such that fn → f µ-a.e.

(iv) µ is conditionally continuous from above and null-additive.
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Then (i)⇒(ii)⇒(iii)⇒(iv) holds. If µ is finite, then the above conditions are

equivalent.

(4) The following conditions are equivalent.

(i) µ is conditionally continuous from above and below, null-additive, and

null-continuous.

(ii) The dominated a.e. convergence theorem holds for µ, that is, f is µ-

integrable and Ch(µ, fn) → Ch(µ, f) for any {fn}n∈N ⊂ F+(X) having a

µ-integrable µ-a.e. dominating function g ∈ F+(X) and any f ∈ F+(X)

such that fn → f µ-a.e.

In addition, the null-continuity of µ in assertion (i) can be dropped if “µ-

a.e. dominating” in assertion (ii) is replaced with “dominating.”

(5) Assume that µ is finite. The following conditions are equivalent.

(i) µ is continuous and null-additive.

(ii) The bounded a.e. convergence theorem holds for µ, that is, Ch(µ, fn) →
Ch(µ, f) for any uniformly µ-a.e. bounded {fn}n∈N ⊂ F+(X) and any

f ∈ F+(X) such that fn → f µ-a.e.

(iii) The bounded a.e. convergence theorem holds for µ̄, that is, Ch(µ̄, fn) →
Ch(µ̄, f) for any uniformly µ-a.e. bounded {fn}n∈N ⊂ F+(X) and any

f ∈ F+(X) such that fn → f µ-a.e.

(iv) The dominated a.e. convergence theorem holds for µ, that is, f is µ-

integrable and Ch(µ, fn) → Ch(µ, f) for any {fn}n∈N ⊂ F+(X) having a

µ-integrable µ-a.e. dominating function g ∈ F+(X) and any f ∈ F+(X)

such that fn → f µ-a.e.

(v) The dominated a.e. convergence theorem holds for µ̄, that is, f is µ̄-

integrable and Ch(µ̄, fn) → Ch(µ̄, f) for any {fn}n∈N ⊂ F+(X) having

µ̄-integrable µ-a.e. dominating function g ∈ F+(X) and any f ∈ F+(X)

such that fn → f µ-a.e.

(vi) The Vitali a.e. convergence theorem holds for µ, that is, f is µ-integrable

and Ch(µ, fn) → Ch(µ, f) for any uniformly µ-integrable {fn}n∈N ⊂
F+(X) and any f ∈ F+(X) such that fn → f µ-a.e.

(vii) The Vitali a.e. convergence theorem holds for µ̄, that is, f is µ̄-integrable

and Ch(µ̄, fn) → Ch(µ̄, f) for any uniformly µ̄-integrable {fn}n∈N ⊂
F+(X) and any f ∈ F+(X) such that fn → f µ-a.e.
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Remark 3.6. As for the dual measure forms in (5), the nonadditive measure

that is assumed to be null-additive is not µ̄ but µ, and the convergence of functions

is not fn → f µ̄-a.e. but fn → f µ-a.e. Moreover, {fn}n∈N is assumed to have not

a µ̄-a.e. but µ-a.e. dominating function. In fact, if µ is null-additive, then every

µ-null set is always µ̄-null, so that fn → f µ-a.e. implies fn → f µ̄-a.e. and every

µ-a.e dominating function is also µ̄-a.e. dominating. However, since µ̄ is not always

null-additive even if µ is null-additive [14, Example 2.2], those dual measure forms

are not immediate consequences of the original ones.

3.3. Convergence in measure theorems

Let (X,A) be a measurable space and µ ∈ M(X). Let F0(X) := {f ∈
F(X) : f is real-valued}, F+

0 (X) := {f ∈ F0(X) : f ≥ 0}. For {fn}n∈N ⊂ F0(X)

and f ∈ F0(X), the symbol fn
µ−→ f denotes convergence in µ-measure, that is,

µ({|fn − f | > ε}) → 0 for every ε > 0. Obviously, if fn
µ−→ f , then |fn|

µ−→ |f |,
f+
n

µ−→ f+, and f−
n

µ−→ f−.

Convergence theorems of the Choquet integral for a sequence of measurable

functions converging in measure need the following characteristics related to the

quasi-additivity of nonadditive measures.

Definition 3.7 ([19, 25]). Let µ ∈ M(X).

(1) µ is called autocontinuous from above if µ(A ∪ Bn) → µ(A) for any A ∈ A
and any {Bn}n∈N ∈ A such that µ(Bn) → 0.

(2) µ is called autocontinuous from below if µ(A \ Bn) → µ(A) for any A ∈ A
and any {Bn}n∈N ∈ A such that µ(Bn) → 0.

(3) µ is called autocontinuous if it is autocontinuous from above and autocontin-

uous from below.

(4) µ is called monotonely autocontinuous from above if µ(A ∪ Bn) → µ(A) for

any A ∈ A and any decreasing {Bn}n∈N ∈ A such that µ(Bn) → 0.

(5) µ is called monotonely autocontinuous from below if µ(A \ Bn) → µ(A) for

any A ∈ A and any decreasing {Bn}n∈N ∈ A such that µ(Bn) → 0.

(6) µ is called monotonely autocontinuous if it is monotonely autocontinuous

from above and monotonely autocontinuous from below.

The following implications are valid for several types of the quasi-additivity

conditions defined above; see [8, 9, 19].
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• subadditive ⇒ autocontinuous from above ⇒ monotonely autocontinuous

from above ⇒ null-additive

• subadditive ⇒ autocontinuous from below ⇒ monotonely autocontinuous

from below ⇒ null-additive

• µ is autocontinuous from above if it is continuous from above and autocon-

tinuous from below, while µ is autocontinuous from below if it is continuous

from below and autocontinuous from above [23].

• µ is monotonely autocontinuous from above if it is continuous from above

and null-additive, while µ is monotonely autocontinuous from below if it is

continuous from below and null-additive.

Remark 3.8. By definition, the combination of the continuity from above (be-

low) with the null-additivity can be characterized in the following way [19, Propo-

sition 3.1].

(1) µ is continuous from above and null-additive if and only if it is strongly

monotone autocontinuous from above, that is, µ(A ∪ Bn) → µ(A) for any

A,B ∈ A and any {Bn}n∈N ⊂ A such that Bn ↓ B and µ(B) = 0.

(2) µ is continuous from below and null-additive if and only if it is strongly

monotone autocontinuous from below, that is, µ(A \ Bn) → µ(A) for any

A,B ∈ A and any {Bn}n∈N ⊂ A such that Bn ↓ B and µ(B) = 0.

A nonadditive measure µ is autocontinuous if it satisfies inf{µ(A) : A ∈ A, A ̸=
∅} > 0 and null-additive if it satisfies µ(A) > 0 for every non-empty A ∈ A [25,

Theorems 6.1 and 6.5]. Moreover, the distorted measure µ = φ ◦ m, where m is

an additive measure on (X,A) and φ : [0,m(X)] → [0,∞] is an increasing function

with φ(0) = 0, is

• subadditive if φ satisfies φ(s+ t) ≤ φ(s) + φ(t) for every s, t ∈ [0,m(X)],

• null-additive if φ−1({0}) = {0},

• autocontinuous from above if φ−1({0}) = {0} and φ is right continuous on

[0,m(X)).

• autocontinuous from below if φ−1({0}) = {0} and φ is left continuous on

(0,m(X)].
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Theorem 3.9 ([3, 4, 10, 14, 15, 16, 19, 24, 25]). Let (X,A) be a measurable

space and µ ∈ M(X).

(1) The following conditions are equivalent.

(i) µ is monotonely autocontinuous from below.

(ii) The monotone increasing convergence in measure theorem holds for µ,

that is, Ch(µ, fn) → Ch(µ, f) for any {fn}n∈N ⊂ F+
0 (X) and any f ∈

F+
0 (X) such that fn

µ−→ f and fn(x) ≤ fn+1(x) ≤ f(x) for every x ∈ X

and n ∈ N.

If µ is finite, then the above conditions are equivalent to the following.

(iii) The monotone decreasing convergence in measure theorem holds for µ̄,

that is, Ch(µ̄, fn) → Ch(µ̄, f) for any {fn}n∈N ⊂ F+
0 (X) and any f ∈

F+
0 (X) such that fn

µ−→ f , f(x) ≤ fn+1(x) ≤ fn(x) for every x ∈ X

and n ∈ N, and Ch(µ̄, f1) < ∞.

(2) Consider the following conditions.

(i) µ is monotonely autocontinuous from above.

(ii) The monotone decreasing convergence in measure theorem holds for µ,

that is, Ch(µ, fn) → Ch(µ, f) for any {fn}n∈N ⊂ F+
0 (X) and any f ∈

F+
0 (X) such that fn

µ−→ f , f(x) ≤ fn+1(x) ≤ fn(x) for every x ∈ X

and n ∈ N, and Ch(µ, f1) < ∞.

Then (i)⇒(ii) holds. If µ is finite,then (i)⇔(ii) holds and they are equivalent

to the following.

(iii) The monotone increasing convergence in measure theorem holds for µ̄,

that is, Ch(µ̄, fn) → Ch(µ̄, f) for any {fn}n∈N ⊂ F+
0 (X) and any f ∈

F+
0 (X) such that fn

µ−→ f and fn(x) ≤ fn+1(x) ≤ f(x) for every x ∈ X

and n ∈ N.

(3) The following conditions are equivalent.

(i) µ is autocontinuous from below.

(ii) The Fatou in measure lemma holds for µ, that is,

Ch(µ, f) ≤ lim inf
n→∞

Ch(µ, fn)

for any {fn}n∈N ⊂ F+
0 (X) and any f ∈ F+

0 (X) such that fn
µ−→ f .
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If µ is finite, then they are equivalent to the following.

(iii) The reverse Fatou in measure lemma holds for µ̄, that is,

lim sup
n→∞

Ch(µ̄, fn) ≤ Ch(µ̄, f)

for any {fn}n∈N ⊂ F+
0 (X) and any f ∈ F+

0 (X) such that fn
µ−→ f and

Ch(µ̄, f1) < ∞.

(4) Consider the following conditions.

(i) µ is autocontinuous from above.

(ii) The reverse Fatou in measure lemma holds for µ, that is,

lim sup
n→∞

Ch(µ, fn) ≤ Ch(µ, f)

for any {fn}n∈N ⊂ F+
0 (X) and any f ∈ F+

0 (X) such that fn
µ−→ f and

Ch(µ, f1) < ∞.

Then (i)⇒(ii) holds. If µ is finite, then (i)⇔(ii) holds and they are equivalent

to the following.

(iii) The Fatou in measure lemma holds for µ̄, that is,

Ch(µ̄, f) ≤ lim inf
n→∞

Ch(µ̄, fn)

for any {fn}n∈N ⊂ F+
0 (X) and any f ∈ F+

0 (X) such that fn
µ−→ f .

(5) Consider the following conditions.

(i) µ is autocontinuous.

(ii) The dominated convergence in measure theorem holds for µ, that is, f

is µ-integrable and Ch(µ, fn) → Ch(µ, f) for any {fn}n∈N ⊂ F+
0 (X)

having a µ-integrable µ-a.e. dominating function g ∈ F+(X) and any

f ∈ F+
0 (X) such that fn

µ−→ f .

Then (i)⇒(ii) holds. If µ is finite, then (i)⇔(ii) holds and they are equivalent

to the following.

(iii) The dominated convergence in measure theorem holds for µ̄, that is, f

is µ̄-integrable and Ch(µ̄, fn) → Ch(µ̄, f) for any {fn}n∈N ⊂ F+
0 (X)
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having a µ̄-integrable µ-a.e. dominating function g ∈ F+(X) and any

f ∈ F+
0 (X) such that fn

µ−→ f .

(6) Assume that µ is finite. The following conditions are equivalent.

(i) µ is autocontinuous.

(ii) The bounded convergence in measure theorem holds for µ, that is, f is

µ-essentially bounded and Ch(µ, fn) → Ch(µ, f) for any uniformly µ-

essentially bounded {fn}n∈N ⊂ F+
0 (X) and any f ∈ F+

0 (X) such that

fn
µ−→ f .

(iii) The bounded convergence in measure theorem holds for µ̄, that is, f is

µ̄-essentially bounded and Ch(µ̄, fn) → Ch(µ̄, f) for any uniformly µ̄-

essentially bounded {fn}n∈N ⊂ F+
0 (X) and any f ∈ F+

0 (X) such that

fn
µ−→ f .

(iv) The Vitali convergence in measure theorem holds for µ, that is, f is

µ-integrable and Ch(µ, fn) → Ch(µ, f) for any uniformly µ-integrable

{fn}n∈N ⊂ F+
0 (X) and any f ∈ F+

0 (X) such that fn
µ−→ f .

(v) The Vitali convergence in measure theorem holds for µ̄, that is, f is

µ̄-integrable and Ch(µ̄, fn) → Ch(µ̄, f) for any uniformly µ̄-integrable

{fn}n∈N ⊂ F+
0 (X) and any f ∈ F+

0 (X) such that fn
µ−→ f .

Remark 3.10. As for the dual measure forms in the above convergence theo-

rems, the nonadditive measure that is assumed to be (monotonely) autocontinuous

(from above or below) is not µ̄ but µ, and the convergence of functions is not

fn
µ̄−→ f but fn

µ−→ f . Moreover, {fn}n∈N is assumed to have not a µ̄-a.e. but µ-

a.e. dominating function. In fact, if µ is autocontinuous from below, then fn
µ−→ f

implies fn
µ̄−→ f . In addition, if µ is null-additive, then every µ-a.e. dominating

function is also µ̄-a.e. dominating and every uniformly µ-essentially bounded sub-

set of F+(X) is uniformly µ̄-essentially bounded; see Remark 3.6. However, those

dual measure forms are not immediate consequences of the original ones since µ̄ is

not always (monotonely) autocontinuous (from above or below) even if µ has the

same property [14, Example 2.2].

4. Concluding remarks

The Choquet integral can be extended in the following two ways

Chs(µ, f) := Ch(µ, f+)− Ch(µ, f−), (µ, f) ∈ M(X)×F(X)
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Cha(µ, f) := Ch(µ, f+)− Ch(µ̄, f−), (µ, f) ∈ Mb(X)×F(X)

in order to consider the integrals of not necessarily non-negative functions [18,

20]. These are not defined if the right-hand side is of the form ∞ − ∞. The

Chs is called the symmetric Choquet integral, while Cha is called the asymmetric

Choquet integral. The symmetric Choquet integral is symmetric in the sense that

Chs(µ,−f) = −Chs(µ, f) and the asymmetric Choquet integral is asymmetric in

the sense that Cha(µ,−f) = −Cha(µ̄, f).

A function f ∈ F(X) is called symmetrically µ-integrable if Ch(µ, f+) < ∞ and

Ch(µ, f−) < ∞, while it is called asymmetrically µ-integrable if Ch(µ, f+) < ∞
and Ch(µ̄, f−) < ∞. Recall that f is µ-integrable if Ch(µ, |f |) < ∞. If f is µ-

integrable, then so are f+ and f−, but the converse statement does not hold in

general. In addition, f is not µ-integrable even if it is symmetrically and asymmet-

rically µ-integrable; see [14, Example 5.2]. Obviously, if f is µ-integrable, then f

is symmetrically µ-integrable and |Chs(µ, f)| ≤ Ch(µ, |f |), but this is not the case

for the asymmetric µ-integral [14, Example 5.3].

Although details are omitted, all results in Section 3 hold for the symmetric

and asymmetric Choquet integrals with appropriate modifications. For instance,

the bounded convergence theorem and the dominated convergence theorem can be

formulated as follows.

Theorem 4.1. Let (X,A) be a measurable space and µ ∈ Mb(X). Let

{fn}n∈N ⊂ F(X) and f ∈ F(X). The following types of the bounded convergence

theorem hold for the symmetric and asymmetric Choquet integrals.

(1) Assume that µ is continuous. Assume that fn → f and {fn}n∈N is uniformly

bounded. Then Chs(µ, fn) → Chs(µ, f) and Cha(µ, fn) → Cha(µ, f).

(2) Assume that µ is continuous and null-additive. Assume that fn → f µ-a.e.

and {fn}n∈N is uniformly µ-a.e. bounded. Then Chs(µ, fn) → Chs(µ, f) and

Cha(µ, fn) → Cha(µ, f).

(3) Assume that µ is autocontinuous. Assume that fn
µ−→ f and fn and f

are real-valued. If {fn}n∈N is uniformly µ-essentially symmetric bounded,

then f is µ-essentially symmetric bounded and Chs(µ, fn) → Chs(µ, f). If

{fn}n∈N is uniformly µ-essentially bounded, then f is µ-essentially bounded

and Cha(µ, fn) → Cha(µ, f).

Theorem 4.2. Let (X,A) be a measurable space and µ ∈ M(X). Let

{fn}n∈N ⊂ F(X) and f ∈ F(X). The following types of the dominated convergence

theorem hold for the symmetric and asymmetric Choquet integrals.
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(1) Assume that µ is conditionally continuous from above and below. Assume

that fn → f and {fn}n∈N has a µ-integrable dominating function g ∈ F+(X).

Then f is symmetrically µ-integrable and Chs(µ, fn) → Chs(µ, f). Moreover,

if µ is finite and g is simultaneously µ-integrable and µ̄-integrable, then f is

asymmetrically µ-integrable and Cha(µ, fn) → Cha(µ, f).

(2) Assume that µ is conditionally continuous from above and below, null-

additive, and null-continuous. Assume that fn → f µ-a.e. and {fn}n∈N has

a µ-integrable µ-a.e. dominating function g ∈ F+(X). Then f is symmetri-

cally µ-integrable and Chs(µ, fn) → Chs(µ, f). Moreover, if µ is finite and

g is simultaneously µ-integrable and µ̄-integrable, then f is asymmetrically

µ-integrable and Cha(µ, fn) → Cha(µ, f).

(3) Assume that µ is autocontinuous. Assume that fn
µ−→ f , {fn}n∈N has a

µ-integrable µ-a.e. dominating function g ∈ F+(X), and fn and f are real-

valued. Then f is symmetrically µ-integrable and Chs(µ, fn) → Chs(µ, f).

Moreover, if µ is finite and g is simultaneously µ-integrable and µ̄-integrable,

then f is asymmetrically µ-integrable and Cha(µ, fn) → Cha(µ, f).

Let k ≥ 1 be a constant. A nonadditive measure µ is called k-subadditive if

µ(A∪B) ≤ µ(A)+kµ(B) for anyA,B ∈ A such thatA∩B = ∅ [18, Definition 11.9].

For instance, every subadditive nonadditive measure is 1-subadditive. Every k-

subadditive nonadditive measure is autocontinuous. In general, the µ̄-integrability

does not follow from the µ-integrability [14, Example 5.7]. However, if µ is finite

and k-subadditive, then µ̄ ≤ kµ, so that the (uniform) µ-integrability automatically

implies the (uniform) µ̄-integrability.
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[21] J. Šipoš, Integral with respect to a pre-measure, Math. Slovaca, 29, (1979), 141–155.
[22] M. Sugeno, Theory of Fuzzy Integrals and its Applications, Doctoral Thesis, Tokyo Inst. of

Tech., Tokyo, 1974.
[23] Z. Wang, On the null-additivity and the autocontinuity of a fuzzy measure, Fuzzy Sets Syst.,

45, (1992), 223–226.
[24] Z. Wang, Convergence theorems for sequences of Choquet integrals, Int. J. General Syst.,

26, (1997), 133–143.

[25] Z. Wang and G. J. Klir, Generalized Measure Theory, Springer, New York, 2009.
[26] Z. Wang, R. Yang and K.-S. Leung, Nonlinear Integrals and their Applications in Data

Mining, World Scientific, Singapore, 2010.

Jun Kawabe

Division of Mathematics and Physics, Faculty of Engineering,

Shinshu University

4-17-1 Wakasato, Nagano, 380-8553, Japan

E-mail: jkawabe@shinshu-u.ac.jp




