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Tsallis relative operator entropy of negative order

Yuki Seo

Abstract. In this paper, we show some fundamental properties
of the quatum Tsallis relative entropy of negative order based on the
properties of the α-quasi geometric mean for α ∈ [−1, 0) of positive

semidefinite matrices. Moreover, we show matrix trace inequalities on
the quantum Tsallis relative entropy of negative order, which includes
the quasi geometric mean of positive definite matrices.

1. Introduction

As a quantum extension of the Shannon entropy [17], von Neumann [13] defined

the entropy of the density matrix ρ by the formula

S(ρ) = Tr[η(ρ)]

for the entropy function η(t) = −t log t. As for the Shannon entropy, it is extremely

useful to define a quantum version of the relative entropy. Suppose ρ and σ are

density matrices. The quantum relative entropy of ρ with respect to σ is defined

by

(1.1) SU (ρ|σ) =
{
Tr[ρ(log ρ− log σ)] if supp ρ ≤ suppσ,

+∞ otherwise,

which was firstly introduced in the setting of von Neumann algebra by Umegaki [18]

in 1962. This is a quantum generalization of the relative entropy due to Kullback

and Leibler [12]. In [1], the Tsallis relative entropy of ρ to σ is defined by

(1.2) Tα(ρ|σ) =
1− Tr[ρ1−ασα]

α
= Tr[ρ1−α(lnα ρ− lnα σ)]

for any 0 < α < 1, where lnα ρ = ρα−1
α is the α-logarithmic function. The Tsallis

relative entropy (1.2) is a one-parameter extension of the Umegaki relative entropy
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(1.1), and Ruskai and Stillinger [15] showed the following relation between the

Tsallis relative entropy and the Umegaki relative entropy:

(1.3)

Tα(ρ|σ) = −Tr

[
ρ1−ασα − ρ

α

]
≤ SU (ρ|σ) ≤ Tr

[
ρ1+ασ−α − ρ

α

]
= T−α(ρ|σ)

for all 0 < α < 1 and positive definite ρ and σ.

On the other hand, there is another formulation of the quantum relative entropy:

Fujii and Kamei [4] introduced the relative operator entropy which is a relative

version of the operator entropy defined by Nakamura-Umegaki [16]: For positive

definite matrices ρ and σ, the relative operator entropy is defined by

S(ρ|σ) = ρ1/2(log ρ−1/2σρ−1/2)ρ1/2.

By virtue of the relative operator entropy, we define the quantum relative entropy

as

(1.4) SFK(ρ|σ) = −Tr[S(ρ|σ)].

The quantum quantity Tr[ρ(log ρ1/2σ−1ρ1/2)] is firstly proposed by Belavkin and

Staszewski [3]. Since we treat SFK(ρ|σ) as the minus of the trace of the relative

operator entropy S(ρ|σ), we call (1.4) the FK relative entropy, or the BS relative

entropy in [14, pp125]. If ρ and σ commute, then we have SU (ρ|σ) = SFK(ρ|σ).
Generally, two quantum formulations of the relative entropy are different. In fact,

Hiai and Petz [9] showed the following relation:

(1.5) SU (ρ|σ) ≤ SFK(ρ|σ).

Moreover, Yanagi, Kuriyama and Furuichi [19] have been advancing research on the

Tsallis relative operator entropy as an operator generalization of the Tsallis relative

entropy, which is regarded as a parametric extension of the relative operator entropy

by Fujii-Kamei: For positive definite matrices ρ and σ, the Tsallis relative operator

entropy is defined by

Tα(ρ|σ) =
ρ ♯α σ − ρ

α

for 0 < α ≤ 1, where the matrix α-geometric mean is defined by

ρ ♯α σ = ρ1/2(ρ−1/2σρ−1/2)αρ1/2.
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Since S(ρ|σ) ≤ ρ ♯α σ−ρ
α for all 0 < α ≤ 1, we have

(1.6) −Tr[Tα(ρ|σ)] ≤ SFK(ρ|σ).

Compared (1.3) with (1.6), Furuichi, Yanagi and Kuriyama [6] showed the following

relation which is an extension of the Hiai-Petz inequality (1.5):

Tα(ρ|σ) ≤ −Tr[Tα(ρ|σ)]

for all 0 < α ≤ 1. In fact, if we put α → 0, then we have (1.5).

Since

Tr

[
ρ1+ασ−α − ρ

α

]
= −Tr

[
ρ1+ασ−α − ρ

−α

]

in (1.3) and −1 ≤ −α < 0, it suggests the formulation of the Tsallis relative

operator entropy of negative order α ∈ [−1, 0): We use the notation ♮α for the

binary operation

(1.7) ρ ♮α σ = ρ1/2(ρ−1/2σρ−1/2)αρ1/2 for α ∈ [−1, 0),

that have formula in common with ♯α. Though ρ ♮α σ for α ∈ [−1, 0) are not matrix

means in the sense of Kubo-Ando theory [11], ρ ♮α σ have mean-like properties for

positive definite matrices ρ and σ. Thus we call (1.7) the α-quasi geometric mean

for α ∈ [−1, 0). Then the Tsallis relative operator entropy of negative order is

defined by

Tα(ρ|σ) =
ρ ♮α σ − ρ

α
for α ∈ [−1, 0).

The α-quasi geometric mean and the Tsallis relative operator entropy of negative

order are discussed in detail in [5].

In this paper, we show some fundamental properties of the quatum Tsallis

relative entropy of negative order based on the properties of the α-quasi geometric

mean for α ∈ [−1, 0) of positive semidefinite matrices. Moreover, we show matrix

trace inequalities on the quantum Tsallis relative entropy of negative order, which

includes the quasi geometric mean of positive definite matrices.
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2. α-quasi geoemtric mean ♮α for −1 ≤ α < 0

First of all, we study the properties of the α-quasi geometric mean ♮α for α ∈
[−1, 0) in non-invertible case.

Let ρ and σ be positive semidefinite matrices and α ∈ [−1, 0). Since ρ ♮α (σ+ε)

is monotone increasing on ε ↓ 0, the α-quasi geometric mean ρ ♮α σ for α ∈ [−1, 0)

is defined as the following limit if it exists:

(2.1) ρ ♮α σ = lim
ε↓0

ρ ♮α (σ + ε).

By the definition of (2.1), ρ ♮α σ for α ∈ [−1, 0) exists if a set {ρ ♮α (σ+ε) : ε > 0} is
bounded above. For noninvertible case, we have the following properties of α-quasi

geometric means ρ ♮α σ for α ∈ [−1, 0):

Lemma 2.1. Let ρ, σ, τ and ψ be positive semidefinite matrices. If ρ ♮α σ and

τ ♮α ψ exist for some α ∈ [−1, 0), then the following properties like matrix means

hold:

(1) right reverse monotonicity: σ ≤ τ implies ρ ♮α σ ≥ ρ ♮α τ .

(2) super-additivity: ρ ♮α σ + τ ♮α ψ ≥ (ρ+ τ) ♮α (σ + ψ).

(3) homogeneity: (aρ) ♮α (aσ) = a(ρ ♮α σ) for all a > 0.

(4) jointly convexity: For a ∈ [0, 1]

((1− a)ρ+ aτ) ♮α ((1− a)σ + aψ) ≤ (1− a)ρ ♮α σ + a τ ♮α ψ.

Remark 2.2. (1) in Lemma 2.1 means that if ρ ♮α σ exists for some α ∈ [−1, 0)

and ρ ≤ τ , then ρ ♮α τ exists and ρ ♮α σ ≥ ρ ♮α τ . Similarly, (2) means that if

ρ ♮α σ and τ ♮α ψ exist for some α ∈ [−1, 0), then (ρ + τ) ♮α (σ + ψ) exists and

ρ ♮α σ + τ ♮α ψ ≥ (ρ+ τ) ♮α (σ + ψ).

For noninvertible case, the α-quasi geometric mean ρ ♮α σ for α ∈ [−1, 0) have

the following information monotonicity:

Theorem 2.3. Let ρ and σ be positive semidefinite matrices and Φ a positive

linear map. If ρ ♮α σ exists for some α ∈ [−1, 0), then Φ(ρ) ♮α Φ(σ) exists and

information monotonicity: Φ(ρ ♮α σ) ≥ Φ(ρ) ♮α Φ(σ).

For α ∈ [−1, 0), since 1 ♮α ε is not bounded above for ε > 0, 1 ♮α 0 does not

make sense. Thus we consider an existence condition such that ρ ♮α σ exists as
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a matrix, which is expressed by the boundedness of tangent lines: For a > 0 and

α ∈ [−1, 0), we define the line tangent to the curve y = x1−α at x = a by

La,α(ρ, σ) = (1− α)a−αρ+ αa1−ασ.

Lemma 2.4. Let ρ and σ be positive semidefinite matrices and α ∈ [−1, 0).

Then ρ ♮α σ exists as a matrix if and only if

(2.2) sup
a>0

La,α(ρ, σ) = sup
a>0

[
(1− α)a−αρ+ αa1−ασ

]
< +∞.

The convention (2.2) means that there exists a scalar constant c with

φ(La,α(ρ, σ)) ≤ c for all states φ and a > 0. In this case, it follows that ρ ♮α σ ≤ c.

In order to show one of equivalent conditions that ρ ♮α σ for some α ∈ [−1, 0)

exists, we need some preliminaries. The following lemma says that the α-quasi

geometric mean for α ∈ [−1, 0) has normalization:

Lemma 2.5. Let ρ be a positive semidefinite matrix and α ∈ [−1, 0). Then

ρ ♮α ρ = ρ.

The following lemma shows that a kind of arithmetic-geometric mean inequality

holds, also see [8, p129, Theorem 2]:

Lemma 2.6. Let ρ and σ be positive semidefinite matrices and α ∈ [−1, 0). If

ρ ♮α σ exists, then

ρ ♮α σ ≥ (1− α)ρ+ ασ.

We have the following equivalent relations around existence conditions:

Theorem 2.7. The following three conditions are mutually equivalent for any

positive semidefinite matrices ρ, σ and α ∈ [−1, 0):

(1) majorization or range inclusion: ρ ≤ cσ for some c > 0, i.e., ran ρ
1
2 ⊂

ran σ
1
2 .

(2) existence condition: ρ ♮α σ exists as a matrix, i.e.,

sup
a>0

[
(1− α)a−αρ+ αa1−ασ

]
< +∞.

(3) kernel inclusion: ker ρ ⊃ ker σ.
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3. Quatum Tsallis relative entropy of negative order

For convenience, we denote another quantum Tsallis relative entropy of negative

order α ∈ [−1, 0) by

NTα(ρ|σ) = −Tr[Tα(ρ|σ)] = −Tr

[
ρ ♮α σ − ρ

α

]

for positive semidefinite matrices ρ and σ. Since ρ ♮α (σ+ε) is monotone increasing

on ε ↘ 0, it follows that Tα(ρ|σ+ ε) is monotone decreasing on ε ↘ 0 and thus for

non-invertivle case we can define the quantum Tsallis relative entropy of negative

order as

NTα(ρ|σ) = lim
ε→0

NTα(ρ|σ + ε)

if the limit exists. Let supp ρ and suppσ be the supports of ρ and σ, respectively.

In the case when supp ρ ≤ suppσ, NTα(ρ|σ+ε) has the well-defined limit as ε → 0

for each α ∈ [−1, 0) by Theorem 2.7.

We have the following properties of the quantum relative entropy NTα of neg-

ative order α ∈ [−1, 0) for non-invertible case, also see [5]:

Proposition 3.1. Let ρ and σ be (non-invertible) density matrices. If Tα(ρ|σ)
exists for some α ∈ [−1, 0), then the following properties of the quantum Tsallis

relative entropy NTα hold:

(1) (Non-negativity) NTα(ρ|σ) ≥ 0.

(2) (Psedoadditivity)

NTα(ρ1⊗ρ2|σ1⊗σ2) = NTα(ρ1|σ1)+NTα(ρ2|σ2)+αNTα(ρ1|σ1)NTα(ρ2|σ2).

(3) (Joint convexity) NTα(
∑

j λjρj |
∑

j λjσj) ≤
∑

j λjNTα(ρj |σj).

(4) (Monotonicity) For any trace-preserving positive linear map Φ

NTα(Φ(ρ)|Φ(σ)) ≤ NTα(ρ|σ).

Proof. For (1), since ρ ♮α σ exists for some α ∈ [−1, 0) by assumption, it follows

from Lemma 2.6 that (1− α)ρ+ ασ ≤ ρ ♮α σ and so

NTα(ρ|σ) = −Tr

[
ρ ♮α σ − ρ

α

]
≥ −Tr

[
(1− α)ρ+ ασ − ρ

α

]
= −Tr[σ − ρ] = 0.
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For (2), since ρ1 ♮α σ1 and ρ2 ♮α σ2 exist for some α ∈ [−1, 0), it follows that

(ρ1 ⊗ ρ2) ♮α (σ1 + ε)⊗ (σ2 + ε) = [ρ1♮α (σ1 + ε)]⊗ [ρ2 ♮α (σ2 + ε)]

≤ [ρ1♮α σ1]⊗ [ρ2 ♮α σ2]

for all ε > 0 and so Tα(ρ1 ⊗ ρ2|σ1 ⊗ σ2) exists. In a similar way that Furuichi,

Yanagi and Kuriyama showed in [7, Theorem 4.2], we have

Tα(ρ1 ⊗ ρ2|σ1 ⊗ σ2) = αTα(ρ1|σ1)⊗ Tα(ρ2|σ2) + Tα(ρ1|σ1)⊗ ρ2 + ρ1 ⊗ Tα(ρ2|σ2).

In fact,

Tα(ρ1 ⊗ ρ2|σ1 ⊗ σ2)

=
1

α
[(ρ1 ⊗ ρ2)♮α(σ1 ⊗ σ2)− ρ1 ⊗ ρ2]

=
1

α
[(ρ1♮ασ1)⊗ (ρ2♮ασ2)− ρ1 ⊗ ρ2]

=
1

α

[
1

2
(ρ1♮ασ1)⊗ (ρ2♮ασ2)−

1

2
ρ1 ⊗ (ρ2♮ασ2) +

1

2
(ρ1♮ασ1)⊗ (ρ2♮ασ2)

− 1

2
(ρ1♮ασ1)⊗ σ2 +

1

2
ρ1 ⊗ (ρ2♮ασ2)−

1

2
ρ1 ⊗ ρ2

+
1

2
(ρ1♮ασ1)⊗ σ2 −

1

2
ρ1 ⊗ ρ2

]

=
1

2
Tα(ρ1|σ1)⊗ (ρ2♮ασ2) +

1

2
(ρ1♮ασ1)⊗ Tα(ρ2|σ2) +

1

2
ρ1 ⊗ Tα(ρ2|σ2)

+
1

2
Tα(ρ1|σ1)⊗ ρ2

=
1

2
Tα(ρ1|σ1)⊗ (ρ2♮ασ2)−

1

2
Tα(ρ1|σ1)⊗ ρ2 + Tα(ρ1|σ1)⊗ ρ2

+
1

2
(ρ1♮ασ1)⊗ Tα(ρ2|σ2)−

1

2
ρ1 ⊗ Tα(ρ2|σ2) + ρ1 ⊗ Tα(ρ2|σ2)

= αTα(ρ1|σ1)⊗ Tα(ρ2|σ2) + Tα(ρ1|σ1)⊗ ρ2 + ρ1 ⊗ Tα(ρ2|σ2).

Hence we have the desired equality (2).

For (3), since Tα(ρj |σj) exist for each j, it follows from (4) jointly convexity of

Lemma 2.1 that Tα(
∑

j λjρj |
∑

j λjσj) exists and

NTα(
∑
j

λjρj |
∑
j

λjσj) = −Tr

[
(
∑

λjρj) ♮α (
∑

λjσj)−
∑

λjρj
α

]
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≤ −Tr

[∑
λj(ρj ♮α σj)−

∑
λjρj

α

]

= −Tr


∑

j

λjTα(ρj |σj)


 =

∑
j

λjNTα(ρj |σj)

and thus we have (3).

For (4), since Tα(ρ|σ) exists for some α ∈ [−1, 0), it follows from the information

monotonicity of Theorem 2.3 that Tα(Φ(ρ)|Φ(σ)) exists and

NTα(Φ(ρ)|Φ(σ)) = −Tr [Tα(Φ(ρ)|Φ(σ))] = −Tr

[
Φ(ρ) ♮α Φ(σ)− Φ(ρ)

α

]

≤ −Tr

[
Φ(ρ ♮α σ)− Φ(ρ)

α

]
= −Tr

[
Φ(

ρ ♮α σ − ρ

α
)

]

= −Tr

[
ρ ♮α σ − ρ

α

]

= NTα(ρ|σ)

and hence we have (4). □

4. Matrix trace inequalities related to Tsallis relative entropies

Let ρ and σ be positive definite matrices and α ∈ [−1, 0). Since ρ ♮α σ−ρ
α ≤

S(ρ|σ), it follows that

SFK(ρ|σ) ≤ NTα(ρ|σ)

and NTα(ρ|σ) converges to SFK(ρ|σ) as α ↓ 0.

On the other hand, we have SU (ρ|σ) ≤ Tα(ρ|σ). Since SU (ρ|σ) ≤ SFK(ρ|σ)
and Tα(ρ|σ) ≤ NTα(ρ|σ) holds for α ∈ (0, 1], we might expect that Tα(ρ|σ) ≤
NTα(ρ|σ) holds for all α ∈ [−1, 0). However, we do not know the relation between

NTα(ρ|σ) and Tα(ρ|σ) for α ∈ [−1, 0). Thus, we consider another estimation of

NTα(ρ|σ). For this, we need some preliminaries. we recall the following inequality

due to Araki [2]: Let ρ, σ be positive semidefinite matrices. Then

(4.1) Tr
[
(σ1/2ρσ1/2)st

]
≤ Tr

[
(σt/2ρtσt/2)s

]
for all s > 0 and t ≥ 1,

or equivalently

(4.2) Tr
[
(σt/2ρtσt/2)s/t

]
≤ Tr

[
(σ1/2ρσ1/2)s

]
for all s > 0 and 0 < t ≤ 1.
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Moreover, in [10, Corollary 3.2], we showed that for α ∈ [−1, 0)

(4.3) Tr((ρq♮ασ
q)1/q ≤ Tr((ρp♮ασ

p)1/p)

for all 0 < q ≤ p and positive definite ρ and σ.

Theorem 4.1. Let ρ, σ be positive definite matrices. Then

(4.4) NTα(ρ|σ) ≤ −Tr

[
(ρ(1−α)p/2σαpρ(1−α)p/2)1/p − ρ

α

]

for all −1 ≤ α ≤ −1/2 and p ≥ 2. Also

(4.5) NTα(ρ|σ) ≥ −Tr

[
(σαq/2ρ(1−α)qσαq/2)1/q − ρ

α

]

for all −1 ≤ α < 0 and 0 < q ≤ 1/2.

Proof. For −1 ≤ α ≤ −1/2 and p ≥ 1, we have

Tr [ρ ♮α σ] ≤ Tr
[
(ρp ♮α σp)1/p

]
= Tr

[
(ρp/2(ρ−p/2σpρ−p/2)αρp/2)1/p

]
by (4.3)

= Tr
[
(ρp/2(ρp/2σ−pρp/2)−αρp/2)

1
−α

−α
p

]

≤ Tr
[
(ρ

(α−1)p
2α σ−pρ

(α−1)p
2α )

−2α
2p

]
by (4.2) and 1/2 ≤ −α ≤ 1

≤ Tr
[
(ρ(1−α)pσ2αpσ(1−α)p)

1
2p

]
by (4.1) and 1 ≤ −2α ≤ 2

and this implies the desired inequality (4.4) by replacing 2p(≥ 2) by p.

For −1 ≤ α < 0 and 0 < q ≤ 1, we have

Tr [ρ ♮α σ] ≥ Tr
[
(ρq ♮α σq)1/q

]
= Tr

[
(σq ♮1−α ρq)1/q

]
by (4.3)

= Tr
[
(σq/2(σ−q/2ρqσ−q/2)1−ασq/2)1/q

]

≥ Tr
[
(σ

qα
2(1−α) ρqσ

qα
2(1−α) )

1−α
q

]
by (4.1) and 1 < 1− α ≤ 2

≥ Tr
[
(σ

qα
4 ρ

q(1−α)
2 σ

qα
4 )

2
q

]
by (4.1) and 1 ≤ 2

1−α ≤ 2

and this implies the desired inequality (4.5) by replacing 0 < q
2 ≤ 1

2 by q. □
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Remark 4.2. If we put p = 2 in (4.4) of Theorem 4.1, then we have

NTα(ρ|σ) ≤ −Tr

[
|σαρ1−α| − ρ

α

]

for all −1 ≤ α ≤ − 1
2 .

If we put q = 1
2 in (4.5) of Theorem 4.1, then we have

NTα(ρ|σ) ≥ −Tr

[
(ρ

1−α
2 σ

α
2 )2 − ρ

α

]

for all −1 ≤ α < 0.

Since it follows from (4.2) that

Tr[(ρ
1−α
2 σ

α
2 )2] = Tr[(ρ

1−α
4 σ

α
2 ρ

1−α
4 )2] ≤ Tr[ρ

1−α
2 σαρ

1−α
2 ] = Tr[ρ1−ασα],

unfortunately we have Tα(ρ|σ) ≥ −Tr

[
(ρ

1−α
2 σ

α
2 )2−ρ

α

]
. Similarly, Tα(ρ|σ) ≤

−Tr
[
|σαρ1−α|−ρ

α

]
and hence we do not know the relation between NTα(ρ|σ) and

Tα(ρ|σ) for α ∈ [−1, 0).
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