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Quantum gates and TQC

Jun Ichi Fujii

Abstract. The TQC theory based on non-abelian anyons is
one of remarkable approaches to realize quantum computer. Surveying

this theory, we observe how to construct quantum gates by a Fibonacci
anyon, a typical non-abelian one.

1. Introduction

There are many approaches to realize quantum computers as in the following

figure:

quantum
computer

quantum Izing
analog

quantum gate
digital
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IBM-Q
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Figure 1.

Among others, we are interested in the topological quantum computing

(TQC) method supported by Microsoft, which is related to many mathematical

and physical fields; knot theory, braid theory, quantum groups, conformal field

theory(WZW model or Chern-Simons theory), string theory and so on. In this

method, the main concept is non-abelian anyon, which is quasi-particle related

to quantum Hall effects or quantum vortex. These particles are paraphrased in the

following way:

• Boson: |y⟩ ⊗ |x⟩ ∼ |x⟩ ⊗ |y⟩ • Fermion: |y⟩ ⊗ |x⟩ ∼ −|x⟩ ⊗ |y⟩
• (abelian) anyon: |y⟩ ⊗ |x⟩ ∼ eit|x⟩ ⊗ |y⟩
• (non-abelian) anyon: |y⟩ ⊗ |x⟩ ∼ eiH(|x⟩ ⊗ |y⟩)
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Making use of this non-abelian property, topological quantum computing is

done by braiding strings as world lines of (quasi)particles as in the picture on the

front page in [3].

In this paper, surveying TQC, we observe how quantum gates are constructed

in the above way.

2. Modular category as a model of TQC

TQC theory is based on various mathematical theories. Here we give one of

models; modular tensor category (MTC), see [15, 17] for direct relation be-

tween TQC and MTC, see also [1, 4, 5, 10](see [11] for categorical basics).

A MTC C = (C,V) is a semisimple Ribbon category with the nondegenerate

modular S-matrix S:

• The direct sum ⊕ as the biproduct and the dualX∗ of a objectX are defined:

The dual is determined by morphisms eX and iX

X∗

eX

X

X

iX

X∗

• The objects are generated by the simple objects {Vj |j ∈ J};
X = ⊕j∈JNjVj

(
Nj = dimHom(X,Vj)

)
.

The set V = {Vj} is finite and self-dual: V ∗
j ∈ {Vj}.

The vacuum V0 exists in V ; V0 ⊗A = A⊗ V0 = A.

• The following isomorphisms are equipped:

braiding σV,W

V W

, twist θV

V

θV⊗W = θV ⊗ θW σW,V σV,W

• Morphisms Hom(A,B) are finite dimensional C vector space. In particular,

Hom(Vi, Vj) = {0} if i ̸= j and End(Vj) = Hom(Vj , Vj) = C.

• modularity: S = (sij) is invertible; sij =

V W

0

By the above definition, for X = ⊕jNjVj , we have

Hom(X,Vk) =
⊕
j

Hom(Vj , Vk)
Nj = Hom(Vk, Vk)

Nk = CNk ,
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and also Hom(Vk, X) = CNk . In particular, for simple objects,

Nk
ij ≡ dimHom(Vi ⊗ Vj , Vk) = dimHom(Vk, Vi ⊗ Vj).

This guarantees the fusion (or splitting) property:

Vi ⊗ Vj =
⊕
k

Nk
ijVk

and Nk
ij is called the fusion coefficient. Thus MTC is equipped with braidings

and fusion structure. The anyons in TQC is considered as a simple object Vj or its

morphism idVj as a string (or its representation) in MTC.

The term ‘Ribbon’ comes from the following fact: We can use the framed string

(called ribbon) instead of string in TQC to see braidings and twists. For example,

we show the following formula for the rotation RZ
VW :

Z

V W

=

V

Z

W

.

Theorem 2.1 (monodromy equation). RZ
WV R

Z
VW =

θZ
θV θW

I.

Proof. By θV = = , transforming V,W,Z �→ A,B,C as framed

strings, we have

RC
BAR

C
AB

C

A B

C

A B

≡

C

A B

=

back side

A B

C

=

C

A B

=
θC

θAθB

,

which shows the monodromy equation. □

3. Fusion in TQC

In this section, the references are [7, 4, 2, 12, 14, 16, 18]. Afterwards, let F be

the finite self-dual set of particles, 0 the vacuum one (Nx
a0 = Nx

0a = δa,x.), ā the

dual of a ∈ F which is considered as the anti-particle of a.
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Then the fusion structure is expressed as (where ⊕0
µ=1x = 0 for convenience)

(1) a⊗ b →
⊕
x∈F

Nx
abx =

∑
x∈F

Nx
abx =

∑
x∈F

Nx
ab⊕

µ=1

x Nx
ab ∈ N ∪ {0} .

Moreover the fusion coefficients satisfy N c
ba = N c

ab = N ā
bc̄ by the following identifi-

cation since ā can be expressed as the reversed arrow for a:

b

c

a

∼=
a

c

b

∼=
ā

c̄

b

For the pair of a and its dual ā, the fusion for pair annihilation is a ⊗ ā → 0 and

the splitting for pair creation is 0 → a⊗ ā; 0

a

ā

0 , which defines the scalar

quantum trace da ≡ Tr a = . Taking trace for a⊗ b =
∑

x N
x
a,bx, we have

Theorem 3.1. dadb =
∑
x

Nx
a,bdx =

∑
x

(Na)bxdx.

As a consequence, we can take da as a positive number by virtue of Perron-

Frobenius theorem for nonnegative matrix Na.

Note that the above fusion tree has the multiplicity as in (1), so we must express

it in an exact discussion:

a
µ

b

c µ = 1, 2, ..., N c
ab.

To see some important formulas, we introduce θ-net Θ(a, b, x) = x ba

(It is 0 if it cannot be defined); Nx
a,b = 0 ⇐⇒ Θ(a, b, x) = 0. For convenience, we

define Nx
a,b/Θ(a, b, x) = 0 in this case. Moreover, observing θ-net in 3 dimensions

as 3 half-circles, we may consider

Θ(a, b, c) = ca b =
√
dadbdc.

Then we have the following fusion formula
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Theorem 3.2.

a b

=
∑
x

Nx
a,bdx

Θ(a, b, x)
x

a b

=
∑
x,µ

√
dx
dadb

µ

µ

a

x

b

.　

Proof. Observing the following circled parts in red at both ends;

a b = dadb =
∑
x

Nx
a,bdx =

∑
x

Nx
a,bdx

Θ(a, b, x) a b

x ,

we have the required formula. □

Next we also the bubble-removing formula:

Theorem 3.3. a
b = δc,c′δµ,µ′

√
dadb
dc

µ′
c′

µ

c c

Proof. We have the non-zero quantum trace for the left hand of the above if and

only if c = c′ and µ = µ′. In this case we see

a b

c

= Θ(a, b, c) =
√

dadbdc =

√
dadb
dc

dc =

√
dadb
dc

c

,

which implies the required formula. □

Lemma 3.4. θaθbsa,b = Tr θa⊗b =
∑
x

Nx
a,bθxdx.

Proof. Tr θa⊗b =

b a

=
∑
x

Nx
a,bdx

Θ(a, b, x)
x

b a

=
∑
x

Nx
a,bdx

Θ(a, b, x)

x

ab

=
∑
x

Nx
a,bdxθx

Θ(a, b, x)

x

ab

=
∑
x

Nx
a,bdxθx

Θ(a, b, x)
Θ(a, b, x) =

∑
x

Nx
a,bdxθx.



92 J. I. Fujii

On the other hand,

b a

=
a

b

= θaθb
a

b

= θaθb
a

b

= θaθbsa,b. □

So we have the S-matrix formula:

Theorem 3.5 (balancing equation). sa,b =
∑
x

Nx
ab

θx
θaθb

dx.

4. Fibonacci anyon and its braiding

Fibonacci anyon τ is determined the following situation:

F = {0, τ}, τ ⊗ τ → 0+ τ, Nτ
ττ = 1, N0

ττ = 1, N0
τ0 = 0.

To consider the braiding matrices, we define the following vectors [6, 4]:

Definition 4.1. fusion vectors (fusion trees, conformal blocks)

|0⟩=
τ

τ

ττ

0 |1⟩=
τ

τ

ττ

τ |N⟩=
τ

0

ττ

τ .

The vector |N⟩ is negligible since it plays the vacuum role. In the below, we

discuss the 2-dimensional space for |0⟩ and |1⟩.
Now we define two matrices F, R as:

a

d

cb

y =
∑
x∈F

(F d
abc)

y
x

a

d

cb

x ,

a

µ

b

=
∑

1≦ν≦Nc
ab

(Rc
ab)

µ
ν

a

ν

b

c

.

Then , by Mac Lane’s coherence theorem [11], F-matrix satisfies the following

equation:

Pentagon equation: (F 5
12c)

d
a(F

5
a34)

c
b =

∑
x

(F d
234)

c
x(F

5
1x4)

d
b(F

b
123)

x
a.

It is illustrated as:
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5
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3
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1

5

42

a

3

c

1

5

42

d

3

c

(F 5
a34)

c
b (F 5

12c)
d
a

1

5

42

x

3

b

1

5

42

x

3

d

(F b
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x
a (F d

234)
c
x

(F 5
1x4)

d
b

∑
x

Figure 2. Pentagon axiom

By the above equation, we obtain F-matrix. For example, in the Fibonacci

case, F acts on the space V0 ⊕Vτ and F τ
τττ = 1

g

(
1

√
g√

g −1

)
where g = 1+

√
5

2 is the

golden number.

Also, R-matrix satisfies the following equation:

Hexagon equation Rb
13(F

4
213)

b
aR

a
12 =

∑
x

(F 4
231)

b
xR

4
1x(F

4
123)

x
a

It is expressed as:

1

4

32

a

1

4

32

a

1

4

32

b

1

4

32

b

Ra
12 Rb

13

(F 4
213)

b
a

∑
x

1

4

32

x

1

4

2

x

3

R4
1x

(F 4
123)

x
a (F 4

231)
b
x

Figure 3. Hexagon axiom

For the Fibonacci, we have Rττ =

(
R0

ττ

0 Rτ
ττ

)
=

(
e−

4iπ
5 0

0 e
3iπ
5

)
on V0 ⊕ Vτ .
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So we define the braiding matrices B on the 2-dimensional space C|0⟩⊕C|1⟩
by the following figure:

B1:

τ

τ

τ

τ

x

Rττ = diag(Rx
ττ ) itself.

B2:

τ

τ

τ

τ

x

　
∑

y(F
τ
τττ )

x
yR

y
ττ (F

τ
τττ )

y
x ：non-diagonal.

Figure 4. Braiding matrices

In this case, B1 =

(
e−

4iπ
5 0

0 e
3iπ
5

)
, B2 =

1

g

(
e

4iπ
5

√
ge−

3iπ
5

√
ge−

3iπ
5 −1

)
.

5. Universal quantum gates

In quantum information theory, 1qubit is 2-dimensional complex unit vector

α|0⟩+ β|1⟩ ∼=
(
α

β

)
( |α|2 + |β|2 = 1). The quantum computer can be realized by

the complicated circuits which are combinations of quantum gates. Typical 1qubit

quantum gates are expressed by Pauli matrices:

X =

(
0 1

1 0

)

bit flip

, Y =

(
0 i

−i 0

)
, Z =

(
1 0

0−1

)

phase flip

.

A typical 2-qubits quantum gate is CNOT(conditioned NOT) one

CN =

(
I O

O X

)
= P ⊗ I + P⊥ ⊗X (P = |0⟩⟨0|, P⊥ = |1⟩⟨1|).

For any 1qubit |x⟩, the CNOT gate works:

CN |0⟩ ⊗ |x⟩ = (P ⊗ I)(|0⟩ ⊗ |x⟩) = |0⟩ ⊗ |x⟩

CN |1⟩ ⊗ |x⟩ = (P⊥ ⊗X)(|1⟩ ⊗ |x⟩) = |1⟩ ⊗X|x⟩.

Thus, 1-st qubit is the control bit, which is not changed: For |1⟩, the 2-nd qubit

is changed by ‘bit flip’, and for |0⟩ it is not changed.
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If a set of quantum gates yields any other quantum one, it is called universal

set of gates. It is known that the set of the gates

Hadamard gate

1√
2

(
1 1

1−1

)
,

π
8 gate(

e−
iπ
8 0

0 e
iπ
8

)
,

CNOT gate(
I O

O X

)
=

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)

is universal, see [13]. It is remarkable that the Fibonacci set of gates B = {B1, B2}
is indeed universal, see [2]. It suffices to show that the CNOT gate can be approx-

imated by combinations in B.
First we give an approximation for iX:

Φ(X) : B−2
1 B−4

2 B4
1B

−2
2 B2

1B
2
2B

−2
1 B4

2B
−2
1 B4

2B
2
1B

−4
2 B2

1B
−2
2 B2

1B
−2
2 B−2

1 ≈ iX

Next we give an approximation of the identity matrix which changes the string;

it is used as ‘injection’ or ’ejection’ of particles:

Φ(I) : B3
1 B

−2
2 B2

1 B
2
2 B

−2
1 B2

2 B
4
1 B

−2
2 B−4

1 B−4
2 B−2

1 B−2
2 B2

1 B
4
2 B

2
1 B

−4
2 B−2

1 B3
2 ≈ I

Combining these approximations, we obtain the CNOT approximately:

Φ(I)−1Φ(X)Φ(I).

As for a picture of a higher-oerder approximation of iX by Solovay-Kitaev, see

[8], which is an improvement with an accuracy of O(10−4).
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