Quantum gates and TQC

Jun Ichi Fujir

Abstract

The TQC theory based on non-abelian anyons is one of remarkable approaches to realize quantum computer. Surveying this theory, we observe how to construct quantum gates by a Fibonacci anyon, a typical non-abelian one.

1. Introduction

There are many approaches to realize quantum computers as in the following figure:

Figure 1.
Among others, we are interested in the topological quantum computing (TQC) method supported by Microsoft, which is related to many mathematical and physical fields; knot theory, braid theory, quantum groups, conformal field theory(WZW model or Chern-Simons theory), string theory and so on. In this method, the main concept is non-abelian anyon, which is quasi-particle related to quantum Hall effects or quantum vortex. These particles are paraphrased in the following way:

- Boson: $|y\rangle \otimes|x\rangle \sim|x\rangle \otimes|y\rangle \quad$ - Fermion: $|y\rangle \otimes|x\rangle \sim-|x\rangle \otimes|y\rangle$
- (abelian) anyon: $|y\rangle \otimes|x\rangle \sim e^{i t}|x\rangle \otimes|y\rangle$
- (non-abelian) anyon: $|y\rangle \otimes|x\rangle \sim e^{i H}(|x\rangle \otimes|y\rangle)$

[^0]Making use of this non-abelian property, topological quantum computing is done by braiding strings as world lines of (quasi)particles as in the picture on the front page in [3].

In this paper, surveying TQC, we observe how quantum gates are constructed in the above way.

2. Modular category as a model of TQC

TQC theory is based on various mathematical theories. Here we give one of models; modular tensor category (MTC), see [15, 17] for direct relation between TQC and MTC, see also [1, 4, 5, 10](see [11] for categorical basics).

A MTC $\mathcal{C}=(\mathcal{C}, \mathcal{V})$ is a semisimple Ribbon category with the nondegenerate modular S-matrix S :

- The direct sum \oplus as the biproduct and the dual X^{*} of a object X are defined:

The dual is determined by morphisms e_{X} and i_{X}

- The objects are generated by the simple objects $\left\{V_{j} \mid j \in J\right\}$;

$$
X=\oplus_{j \in J} N_{j} V_{j} \quad\left(N_{j}=\operatorname{dim} \operatorname{Hom}\left(X, V_{j}\right)\right)
$$

The set $\mathcal{V}=\left\{V_{j}\right\}$ is finite and self-dual: $V_{j}^{*} \in\left\{V_{j}\right\}$.
The vacuum V_{0} exists in $\mathcal{V} ; V_{0} \otimes A=A \otimes V_{0}=A$.

- The following isomorphisms are equipped:
braiding $\sigma_{V, W} \bigwedge_{V} \bigwedge_{W}$, twist $\theta_{V} \bigodot_{V} \theta_{V \otimes W}=\theta_{V} \otimes \theta_{W} \sigma_{W, V} \sigma_{V, W}$
- Morphisms $\operatorname{Hom}(A, B)$ are finite dimensional \mathbb{C} vector space. In particular, $\operatorname{Hom}\left(V_{i}, V_{j}\right)=\{0\}$ if $i \neq j$ and $\operatorname{End}\left(V_{j}\right)=\operatorname{Hom}\left(V_{j}, V_{j}\right)=\mathbb{C}$.
- modularity: $S=\left(s_{i j}\right)$ is invertible;

By the above definition, for $X=\oplus_{j} N_{j} V_{j}$, we have

$$
\operatorname{Hom}\left(X, V_{k}\right)=\bigoplus_{j} \operatorname{Hom}\left(V_{j}, V_{k}\right)^{N_{j}}=\operatorname{Hom}\left(V_{k}, V_{k}\right)^{N_{k}}=\mathbb{C}^{N_{k}},
$$

and also $\operatorname{Hom}\left(V_{k}, X\right)=\mathbb{C}^{N_{k}}$. In particular, for simple objects,

$$
N_{i j}^{k} \equiv \operatorname{dim} \operatorname{Hom}\left(V_{i} \otimes V_{j}, V_{k}\right)=\operatorname{dim} \operatorname{Hom}\left(V_{k}, V_{i} \otimes V_{j}\right) .
$$

This guarantees the fusion (or splitting) property:

$$
V_{i} \otimes V_{j}=\bigoplus_{k} N_{i j}^{k} V_{k}
$$

and $N_{i j}^{k}$ is called the fusion coefficient. Thus MTC is equipped with braidings and fusion structure. The anyons in TQC is considered as a simple object V_{j} or its morphism id $V_{V_{j}}$ as a string (or its representation) in MTC.

The term 'Ribbon' comes from the following fact: We can use the framed string (called ribbon) instead of string in TQC to see braidings and twists. For example, we show the following formula for the rotation $R_{V W}^{Z}$:

THEOREM 2.1 (monodromy equation). $\quad R_{W V}^{Z} R_{V W}^{Z}=\frac{\theta_{Z}}{\theta_{V} \theta_{W}} I$.
Proof. By $\theta_{V}=\square=$, transforming $V, W, Z \mapsto A, B, C$ as framed strings, we have

which shows the monodromy equation.

3. Fusion in TQC

In this section, the references are $[7,4,2,12,14,16,18]$. Afterwards, let \mathcal{F} be the finite self-dual set of particles, $\mathbf{0}$ the vacuum one ($N_{a \mathbf{0}}^{x}=N_{\mathbf{0} a}^{x}=\delta_{a, x}$.), \bar{a} the dual of $a \in \mathcal{F}$ which is considered as the anti-particle of a.

Then the fusion structure is expressed as (where $\oplus_{\mu=1}^{0} x=0$ for convenience)

$$
\begin{equation*}
a \otimes b \rightarrow \bigoplus_{x \in \mathcal{F}} N_{a b}^{x} x=\sum_{x \in \mathcal{F}} N_{a b}^{x} x=\sum_{x \in \mathcal{F}} \bigoplus_{\mu=1}^{N_{a b}^{x}} x \quad N_{a b}^{x} \in \mathbb{N} \cup\{0\} . \tag{1}
\end{equation*}
$$

Moreover the fusion coefficients satisfy $N_{b a}^{c}=N_{a b}^{c}=N_{b \bar{c}}^{\bar{a}}$ by the following identification since \bar{a} can be expressed as the reversed arrow for a :

For the pair of a and its dual \bar{a}, the fusion for pair annihilation is $a \otimes \bar{a} \rightarrow \mathbf{0}$ and the splitting for pair creation is $\mathbf{0} \rightarrow a \otimes \bar{a}$; $\bigcirc_{a}^{a}>0$, which defines the scalar quantum trace $d_{a} \equiv \operatorname{Tr} a=\bigcirc^{\vdots}$. Taking trace for $a \otimes b=\sum_{x} N_{a, b}^{x} x$, we have

Theorem 3.1.

$$
d_{a} d_{b}=\sum_{x} N_{a, b}^{x} d_{x}=\sum_{x}\left(\mathbf{N}_{a}\right)_{b x} d_{x}
$$

As a consequence, we can take d_{a} as a positive number by virtue of PerronFrobenius theorem for nonnegative matrix \mathbf{N}_{a}.

Note that the above fusion tree has the multiplicity as in (1), so we must express it in an exact discussion:

To see some important formulas, we introduce θ-net $\Theta(a, b, x)=$
 (It is 0 if it cannot be defined); $N_{a, b}^{x}=0 \Longleftrightarrow \Theta(a, b, x)=0$. For convenience, we define $N_{a, b}^{x} / \Theta(a, b, x)=0$ in this case. Moreover, observing θ-net in 3 dimensions as 3 half-circles, we may consider

$$
\Theta(a, b, c)=d \square b=\sqrt{d_{a} d_{b} d_{c}} .
$$

Then we have the following fusion formula

Theorem 3.2.

$$
\left.\left.\right|_{a}\right|_{b}=\sum_{x} \frac{N_{a, b}^{x} d_{x}}{\Theta(a, b, x)} \bigodot_{a}^{\underbrace{}_{b}}=\sum_{x, \mu} \sqrt{\frac{d_{x}}{d_{a} d_{b}}} \underbrace{\mu}_{a} x .
$$

Proof. Observing the following circled parts in red at both ends;

$$
=d_{a} d_{b}=\sum_{x} N_{a, b}^{x} d_{x}=\sum_{x} \frac{N_{a, b}^{x} d_{x}}{\Theta(a, b, x)}
$$

we have the required formula.
Next we also the bubble-removing formula:

Theorem 3.3.

$$
{ }_{a} \overbrace{c}^{c^{\prime}} \underbrace{\mu^{\prime}}_{\mu^{\prime}}=\delta_{c, c^{\prime}} \delta_{\mu, \mu^{\prime}} \sqrt{\frac{d_{a} d_{b}}{d_{c}}}
$$

Proof. We have the non-zero quantum trace for the left hand of the above if and only if $c=c^{\prime}$ and $\mu=\mu^{\prime}$. In this case we see

which implies the required formula.
LEmma 3.4. $\quad \theta_{a} \theta_{b} s_{a, b}=\operatorname{Tr} \theta_{a \otimes b}=\sum_{x} N_{a, b}^{x} \theta_{x} d_{x}$.

$$
\begin{aligned}
& \text { Proof. } \operatorname{Tr} \theta_{a \otimes b}=\bigcap_{a}=\sum_{x} \frac{N_{a, b}^{x} d_{x}}{\Theta(a, b, x)} \underbrace{x}_{a}=\sum_{x} \frac{N_{a, b}^{x} d_{x}}{\Theta(a, b, x)} \\
& =\sum_{a} \frac{N_{a, b}^{x} d_{x} \theta_{x}}{\Theta(a, b, x)}
\end{aligned}
$$

On the other hand,

So we have the S-matrix formula:
THEOREM 3.5 (balancing equation). $\quad s_{a, b}=\sum_{x} N_{a b}^{x} \frac{\theta_{x}}{\theta_{a} \theta_{b}} d_{x}$.

4. Fibonacci anyon and its braiding

Fibonacci anyon $\boldsymbol{\tau}$ is determined the following situation:

$$
\mathcal{F}=\{\mathbf{0}, \boldsymbol{\tau}\}, \quad \tau \otimes \tau \rightarrow \mathbf{0}+\tau, \quad N_{\boldsymbol{\tau} \boldsymbol{\tau}}^{\boldsymbol{\tau}}=1, \quad N_{\boldsymbol{\tau} \boldsymbol{\tau}}^{\mathbf{0}}=1, \quad N_{\boldsymbol{\tau} \mathbf{0}}^{\mathbf{0}}=0 .
$$

To consider the braiding matrices, we define the following vectors $[6,4]$:
DEFINITION 4.1. fusion vectors (fusion trees, conformal blocks)

The vector $|N\rangle$ is negligible since it plays the vacuum role. In the below, we discuss the 2-dimensional space for $|0\rangle$ and $|1\rangle$.

Now we define two matrices F, R as:

Then, by Mac Lane's coherence theorem [11], F-matrix satisfies the following equation:

Pentagon equation:

$$
\left(F_{12 c}^{5}\right)_{a}^{d}\left(F_{a 34}^{5}\right)_{b}^{c}=\sum_{x}\left(F_{234}^{d}\right)_{x}^{c}\left(F_{1 x 4}^{5}\right)_{b}^{d}\left(F_{123}^{b}\right)_{a}^{x} .
$$

It is illustrated as:

Figure 2. Pentagon axiom

By the above equation, we obtain F-matrix. For example, in the Fibonacci case, F acts on the space $V_{\mathbf{0}} \oplus V_{\boldsymbol{\tau}}$ and $F_{\boldsymbol{\tau} \boldsymbol{\tau} \boldsymbol{\tau}}^{\boldsymbol{\tau}}=\frac{1}{g}\left(\begin{array}{cc}1 & \sqrt{g} \\ \sqrt{g} & -1\end{array}\right)$ where $g=\frac{1+\sqrt{5}}{2}$ is the golden number.

Also, R-matrix satisfies the following equation:

Hexagon equation

$$
R_{13}^{b}\left(F_{213}^{4}\right)_{a}^{b} R_{12}^{a}=\sum_{x}\left(F_{231}^{4}\right)_{x}^{b} R_{1 x}^{4}\left(F_{123}^{4}\right)_{a}^{x}
$$

It is expressed as:

Figure 3. Hexagon axiom
For the Fibonacci, we have $R_{\boldsymbol{\tau} \boldsymbol{\tau}}=\left(\begin{array}{cc}R_{\boldsymbol{\tau} \boldsymbol{\tau}}^{0} & \\ 0 & R_{\boldsymbol{\tau} \tau}^{\boldsymbol{\tau}}\end{array}\right)=\left(\begin{array}{cc}e^{-\frac{4 i \pi}{5}} & 0 \\ 0 & e^{\frac{3 i \pi}{5}}\end{array}\right)$ on $V_{\mathbf{0}} \oplus V_{\boldsymbol{\tau}}$.

So we define the braiding matrices B on the 2-dimensional space $\mathbb{C}|0\rangle \oplus \mathbb{C}|1\rangle$ by the following figure:

Figure 4. Braiding matrices
In this case, $B_{1}=\left(\begin{array}{cc}e^{-\frac{4 i \pi}{5}} & 0 \\ 0 & e^{\frac{3 i \pi}{5}}\end{array}\right), \quad B_{2}=\frac{1}{g}\left(\begin{array}{cc}e^{\frac{4 i \pi}{5}} & \sqrt{g} e^{-\frac{3 i \pi}{5}} \\ \sqrt{g} e^{-\frac{3 i \pi}{5}} & -1\end{array}\right)$.

5. Universal quantum gates

In quantum information theory, 1qubit is 2-dimensional complex unit vector $\alpha|0\rangle+\beta|1\rangle \cong\binom{\alpha}{\beta} \quad\left(|\alpha|^{2}+|\beta|^{2}=1\right)$. The quantum computer can be realized by the complicated circuits which are combinations of quantum gates. Typical 1qubit quantum gates are expressed by Pauli matrices:

A typical 2-qubits quantum gate is CNOT(conditioned NOT) one

$$
C_{N}=\left(\begin{array}{cc}
I & O \\
O & X
\end{array}\right)=P \otimes I+P^{\perp} \otimes X \quad\left(P=|0\rangle\langle 0|, P^{\perp}=|1\rangle\langle 1|\right) .
$$

For any 1qubit $|x\rangle$, the CNOT gate works:

$$
\begin{aligned}
& C_{N}|0\rangle \otimes|x\rangle=(P \otimes I)(|0\rangle \otimes|x\rangle)=|0\rangle \otimes|x\rangle \\
& C_{N}|1\rangle \otimes|x\rangle=\left(P^{\perp} \otimes X\right)(|1\rangle \otimes|x\rangle)=|1\rangle \otimes X|x\rangle .
\end{aligned}
$$

Thus, 1 -st qubit is the control bit, which is not changed: For $|1\rangle$, the 2 -nd qubit is changed by 'bit flip', and for $|0\rangle$ it is not changed.

If a set of quantum gates yields any other quantum one, it is called universal set of gates. It is known that the set of the gates

$$
\begin{aligned}
& \text { Hadamard gate } \\
& \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right),
\end{aligned} \quad\left(\begin{array}{cc}
\begin{array}{cc}
\frac{\pi}{8} \text { gate }
\end{array} & \left.\quad \begin{array}{cc}
\text { CNOT gate } \\
0 & e^{\frac{i \pi}{8}}
\end{array}\right),
\end{array} \quad\left(\begin{array}{ccc}
I & O \\
O & X
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\right.
$$

is universal, see [13]. It is remarkable that the Fibonacci set of gates $\mathcal{B}=\left\{B_{1}, B_{2}\right\}$ is indeed universal, see [2]. It suffices to show that the CNOT gate can be approximated by combinations in \mathcal{B}.

First we give an approximation for $i X$:

$$
\Phi(X): B_{1}^{-2} B_{2}^{-4} B_{1}^{4} B_{2}^{-2} B_{1}^{2} B_{2}^{2} B_{1}^{-2} B_{2}^{4} B_{1}^{-2} B_{2}^{4} B_{1}^{2} B_{2}^{-4} B_{1}^{2} B_{2}^{-2} B_{1}^{2} B_{2}^{-2} B_{1}^{-2} \approx i X
$$

Next we give an approximation of the identity matrix which changes the string; it is used as 'injection' or 'ejection' of particles:
$\Phi(I): B_{1}^{3} B_{2}^{-2} B_{1}^{2} B_{2}^{2} B_{1}^{-2} B_{2}^{2} B_{1}^{4} B_{2}^{-2} B_{1}^{-4} B_{2}^{-4} B_{1}^{-2} B_{2}^{-2} B_{1}^{2} B_{2}^{4} B_{1}^{2} B_{2}^{-4} B_{1}^{-2} B_{2}^{3} \approx I$
Combining these approximations, we obtain the CNOT approximately: $\Phi(I)^{-1} \Phi(X) \Phi(I)$.

As for a picture of a higher-oerder approximation of $i X$ by Solovay-Kitaev, see [8], which is an improvement with an accuracy of $O\left(10^{-4}\right)$.

Acknowledgements. This work was supported by Grant-in-Aid for Scientific Research (C), JSPS KAKENHI Grant Number JP 16K05253.

References

[1] B.Bakalov and A.Kirillov, "Lectures on Tensor Categories and Modular Functor", Amer. Math. Soc., 2000.
[2] N.Bonesteel, L.Hormozi, G.Zikos and S.H.Simon, Braid topologies for quantum computation, Phys. Rev. Lett., 95(2005), 140503.
[3] G.P.Collins, Computing with Quantum Knots, Scientific American, April, 2006, 56-63.
[4] S.Eliëns, "Anyon Condensation", Master Thesis in Univ. Amsterdam 2010.
http://dare.uva.nl/document/206602
[5] P.Etingof, S.Gelaki, D.Nikshych and V.Ostrik, "Tensor Categories", Math. Surveys and Mono. 205, 2015, Amer. Math. Soc..
[6] J.I.Fujii, TQC in Fibonacci anyon (in Japanese), Osaka J. Math. Edu., 44(2015), 151-164.
[7] J.I.Fujii, Modular S-matrix in TQC theory (in Japanese), Mem. Osaka Kyoiku Univ., 64/2(2015), 15-33.
[8] L.Holmozi, "Topological Quantum Compiling", Thesis in Florida Univ., 2007.
[9] L.Hormozi, G.Zikos, E.Bonesteel and S.H.Simon, Topological quantum compiling, Phys. Rev. B75(2007), 165310.
[10] A.Kitaev, Anyons in an exactly solved model and beyond, Ann. of Phys., 321(2006), 2-111.
[11] S.Mac Lane, "Categories for Working Mathematician" 2nd Ed., 1998, Springer.
[12] C.Nayak, S.H.Simon, A.Stern, M.Freedman and S.D.Sarma, Non-Abelian anyons and topological quantum computation, Rev. Modern Phys., 80(2008), 1084-1159.
[13] M.A.Nielsen and I.L.Chuang, "Quantum Computation and Quantum Information", Cambridge Univ. Press, 2010.
[14] J.K.Pachos, "Introduction to Topological Quantum Computation", Cambridge, 2012.
[15] P.Panangaden and E.O.Paquette, A categorical presentation of quantum computation with anyons, in "New Structures for Physics", Lecture Notes in Physics 813(2011), 983-1025.
[16] J.K.Slingerland and F.A.Bais, Quantum groups and non-abelian braiding in quantum hall systems, Nuc. Phys., B612(2001), 229-290.
[17] V.G.Turaev, "Quantum Invariants of Knots and 3-Manifolds, 2nd ed.", Walter de Gruyter Inc., 2010.
[18] Z.Wang, "Topological Quantum Computation", American Mathematical Society, 2008.

Jun Ichi FujiI

Department of Educational Collaboration (Science, Mathematics, Information), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.
E-mail: fujii@cc.osaka-kyoiku.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 81P45; Secondary 81T45, 81U20.
 Key Words and Phrases. Topological quantum computing, quantum gates, Fibonacci anyon.

