
Josai Mathematical Monographs
Vol. 11 (2018) pp. 105–120

A shrinking projection method for generalized firmly

nonexpansive mappings with nonsummable errors

Takanori Ibaraki and Shunsuke Kajiba

Abstract. In this paper, we study an approximation method

for mappings of type (P) [2], (Q) [2, 20], and (R) [2, 12] in a Banach
space. Using the technique developed by Kimura and Takahashi [18]
and Kimura [14], we prove strong convergence of iterative schemes gen-

erated by the shrinking projection method with errors by using the
generalized projection. Moreover, using our results, we consider the
problem of finding a zero of a maximal monotone operators in a Ba-
nach space.

1. Introduction

Let E be a real Banach space and let C be a nonempty closed convex subset of

E. We say a mapping T : C → E is firmly nonexpansive [4] if

∥t(x− y) + (1− t)(Tx− Ty)∥ ≥ ∥Tx− Ty∥

for every x, y ∈ C and t ≥ 0. If E is a Hilbert space, then one can show that T is

firmly nonexpansive if and only if

⟨(x− Tx)− (y − Ty), Tx− Ty⟩ ≥ 0

for every x, y ∈ C. One of the most important examples of this class of mappings in

a real Hilbert space H is a resolvent operator Jλ : H → H of a maximal monotone

operator A ⊂ H × H for λ > 0 defined by Jλ = (I + λA)−1. Moreover, the

metric projection PC of H onto a nonempty closed convex subset C of H is also an

example of firmly nonexpansive mappings since PC is a resolvent operator of the

subdifferential of iC , the indicator function with respect to C.

As a generalization of the resolvent operator defined on a Hilbert space, some

different types of resolvents defined on a Banach space have been proposed and
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studied. These notions correspond to variations of nonlinear mappings on a Ba-

nach space including firmly nonexpansive mappings. Following [2], we call them

mappings of type (P) [2], (Q) [2, 20], and (R) [2, 12]; see the next section.

In the metric fixed point theory, approximation method of a fixed point of a

nonlinear mapping is one of the most important topics and it has been rapidly

developed in the recent research. In particular, the shrinking projection method

proposed by Takahashi, Takeuchi, and Kubota [27] is a remarkable result (see

also [23, 24]).

Theorem 1.1 (Takahashi-Takeuchi-Kubota [27]). Let H be a real

Hilbert space and let C be a nonempty closed convex subset of H. Let T be a nonex-

pansive mapping of C into itself such that F (T ) = {z ∈ C : z = Tz} is nonempty.

Let {αn} be a sequence in [0, a[, where 0 < a < 1. For a point x ∈ H chosen

arbitrarily, generate a sequence {xn} by the following iterative scheme: x1 ∈ C,

C1 = C, and

yn = αnxn + (1− αn)Txn,

Cn+1 = {z ∈ C : ∥z − yn∥ ≤ ∥z − xn∥} ∩ Cn,

xn+1 = PCn+1x

for n ∈ N. Then, {xn} converges strongly to PF (T )x ∈ C, where PK is the metric

projection of H onto a nonempty closed convex subset K of H.

We note that the original result of this theorem is a convergence theorem to a

common fixed point of a family of nonexpansive mappings. Later, many researchers

proposed various types of generalized result of this method (see [3, 6–9, 14–18]

and others). In 2009, Kimura and Takahashi [18] obtain a strong convergence

theorem for finding a common fixed point of relatively nonexpansive mappings in a

Banach space by using the shrinking projection method. The method for its proof

is different from the original one and it shows that the type of projection used in

the iterative method is independent of the properties of the mappings.

On the other hand, in the original shrinking projection method, we needs to

obtain the exact value of metric projection to generate sequence in every step and

it is a task of difficulty. In 2012, Kimura [14] considers an error for obtaining the

value of metric projections and prove that the sequence still has a nice property

for approximating a fixed point of a mapping. Recently, Ibaraki and Kimura [9]

prove strong convergence of iterative schemes for mappings of type (P), (Q), and

(R) by using the technique developed by Kimura [14].

In this paper, we study an approximation method for mappings of type(P),
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(Q), and (R) in a Banach space. Using the technique developed by Kimura and

Takahashi [18] and Kimura [14], we prove strong convergence of iterative schemes

generated by the shrinking projection method with errors by using the generalized

projection. The generalized projection is different type of projection used in Ibaraki

and Kimura [9]. Moreover, using our results, we consider the problem of finding a

zero of a maximal monotone operators in a Banach space.

2. Preliminaries

Let E be a real Banach space with its dual E∗. The normalized duality mapping

J : E → E∗ defined by

Jx = {y∗ ∈ E∗ : ∥x∥2 = ⟨x, y∗⟩ = ∥y∗∥2}

for x ∈ E. If E is smooth, strictly convex and reflexive, then J is a single-valued

bijection. Let C be a nonempty subset of a smooth Banach space E. A mapping

T : C → E is said to be of type (P) [2] if

⟨Tx− Ty, J(x− Tx)− J(y − Ty)⟩ ≥ 0

for each x, y ∈ C. A mapping T : C → E is said to be of type (Q) [2, 20] if

⟨Tx− Ty, (Jx− JTx)− (Jy − JTy)⟩ ≥ 0

for each x, y ∈ C. A mapping T : C → E is said to be of type (R) [2, 12] if

⟨JTx− JTy, (x− Tx)− (y − Ty)⟩ ≥ 0

for each x, y ∈ C. We denote by F (T ) the set of all fixed points of T . A point p

in C is said to be an asymptotic fixed point of T if C contains a sequence {xn}
such that xn ⇀ p and xn − Txn → 0. The set of all asymptotic fixed points of

T is denoted by F̂ (T ). It is clear that if T : C → E is of type (P) and F (T ) is

nonempty, then

⟨Tx− p, J(x− Tx)⟩ ≥ 0

for each x ∈ C and p ∈ F (T ). We also know that if T : C → E is of type (Q) and

F (T ) is nonempty, then

⟨Tx− p, Jx− JTx⟩ ≥ 0
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for each x ∈ C and p ∈ F (T ). If T : C → E is of type (R) and F (T ) is nonempty,

then

⟨JTx− Jp, x− Tx⟩ ≥ 0

for each x ∈ C and p ∈ F (T ).

The following results describe the relation between the set of fixed points and

that of asymptotic fixed points for each type of mapping.

Lemma 2.1 (Aoyama-Kohsaka-Takahashi [3]). Let E be a smooth Banach

space, let C be a nonempty closed convex subset of E and let T : C → E be a

mapping of type (P). If F (T ) is nonempty, then F (T ) is closed and convex and

F (T ) = F̂ (T ).

Lemma 2.2 (Kohsaka-Takahashi [20]). Let E be a strictly convex Banach

space whose norm is uniformly Gâteaux differentiable, let C be a nonempty closed

convex subset of E and let T : C → E be a mapping of type (Q). If F (T ) is

nonempty, then F (T ) is closed and convex and F (T ) = F̂ (T ).

The mappings of types (Q) and (R) are strongly related to each other; it is

a kind of duality in the following sense. Let E be a smooth, strictly convex and

reflexive Banach space, let C be a nonempty subset of E and, let T be a mapping

form C into E. Define a mapping T ∗ as follows:

(2.1) T ∗x∗ := JTJ−1x∗

for each x∗ ∈ JC, where J is the duality mapping on E and J−1 is the duality

mapping on E∗. We know that JF (T ) = F (T ∗) (see [5,28]). Further, we have the

following result.

Lemma 2.3 (Aoyama-Kohsaka-Takahashi [2]). Let E be a smooth, strictly

convex and reflexive Banach space, let C be a nonempty subset of E and let T :

C → E be a mapping of type (R). Let T ∗ : JC → E∗ be a mapping defined by

(2.1). Then T ∗ is of type (Q) in E∗.

Let E be a smooth Banach space and consider the function V : E × E → R
defined by

V (x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2

for each x, y ∈ E. We know the following properties (see [1, 11, 13,21]);
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1. (∥x∥ − ∥y∥)2 ≤ V (x, y) ≤ (∥x∥+ ∥y∥)2 for each x, y ∈ E;

2. V (x, y) + V (y, x) = 2⟨x− y, Jx− Jy⟩ for each x, y ∈ E;

3. V (x, y) = V (x, z) + V (z, y) + 2⟨x− z, Jz − Jy⟩ for each x, y, z ∈ E;

4. if E is additionally assumed to be strictly convex, then V (x, y) = 0 if and

only if x = y.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a

nonempty closed convex subset of E. It is known that for each x ∈ E there exists

a unique point z ∈ C such that

V (z, x) = min
y∈C

V (y, x).

Such a point z is denoted by ΠCx and ΠC is called the generalized projection

of E onto C (see [1]). We know that the generalized projection is a mapping of

type (Q) (see [2, 20]). For a nonempty subset C ⊂ E and a point u ∈ E, define

V (C, u) = inf{V (y, u) : y ∈ C} and V (u,C) = inf{V (u, y) : y ∈ C}.
In 2003, Ibaraki, Kimura and Takahashi [10] prove the following result for the

generalized projection in a Banach space. For the exact definition of Mosco limit

M-limn Cn (see [22]).

Theorem 2.4 (Ibaraki-Kimura-Takahashi [10]). Let E be a smooth Ba-

nach space and Let E∗ have Fréchat differentiable norm, let {Cn} be a sequence

of nonempty closed convex subset of E. If C0 = M-limn Cn exists and nonempty,

then for each x ∈ E, {ΠCnx} converges strongly to ΠC0x.

One of the simplest examples of the sequence {Cn} satisfying the condition in

the theorem above is a decreasing sequence with respect to inclusion; Cn+1 ⊂ Cn

for every n ∈ N. In this case, M-limn Cn =
∩∞

n=1 Cn.

Let E be a smooth Banach space and let C be a nonempty subset of E. A

mapping R : C → E is said to be generalized nonexpansive if F (R) is nonempty

and V (Rx, u) ≤ V (x, u) for all x ∈ C and u ∈ F (R). A mapping R : E → C is

said to be a retraction if R2 = R. A mapping R : E → C is said to be sunny if

R(Rx + t(x − Rx)) = Rx for each x ∈ E and t ≥ 0. If E is smooth and strictly

convex, then a sunny generalized nonexpansive retraction of E onto C is uniquely

decided. Then, such a sunny generalized nonexpansive retraction of E onto C

is denoted by RC . We know that the sunny generalized nonexpansive retraction

is a mapping of type (R) (see [2, 11] for more details). The following lemma is

well-known.
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Lemma 2.5 (Kohsaka-Takahashi [19]). Let E be a smooth, strictly convex

and reflexive Banach space and let C∗ be a nonempty closed convex subset of E∗.

Let ΠC∗ be the generalized projection of E∗ onto C∗. Then the mapping R defined

by R = J−1ΠC∗J is a sunny generalized nonexpansive retraction of E onto J−1C∗.

The following results show that the existence of mappings g
r
, gr, g

∗
r
, and g∗r ,

related to the convex structures of a Banach space E and its dual space. These

mappings play important roles in our result. For r > 0, define Br = {x ∈ E :

∥x∥ ≤ r}.

Theorem 2.6 (Xu [29]). Let E be a Banach space and let r ∈ ]0,∞[. Then,

(i) if E is uniformly convex, then there exists a continuous, strictly increasing

and convex function g
r
: [0, 2r] → [0,∞[ with g

r
(0) = 0 such that

∥αx+ (1− α)y∥2 ≤ α∥x∥2 + (1− α)∥y∥2 − α(1− α)g
r
(∥x− y∥)

for all x, y ∈ Br and α ∈ [0, 1];

(ii) if E is uniformly smooth, then there exists a continuous, strictly increasing

and convex function gr : [0, 2r] → [0,∞[ with gr(0) = 0 such that

∥αx+ (1− α)y∥2 ≥ α∥x∥2 + (1− α)∥y∥2 − α(1− α)gr(∥x− y∥)

for all x, y ∈ Br and α ∈ [0, 1].

From this theorem, we can show the following result.

Theorem 2.7 (Kimura [16]). Let E be a uniformly smooth and uniformly

convex Banach space and let r ∈ ]0,∞[. Then the functions g
r
and gr in Theorem

2.6 satisfies

g
r
(∥x− y∥) ≤ V (x, y) ≤ gr(∥x− y∥)

for all x, y ∈ Br.

Similar results for the mappings g∗
r
and g∗r also hold as follows:

Theorem 2.8 (Ibaraki-Kimura [9]). Let E be a uniformly smooth and

uniformly convex Banach space and let r ∈ ]0,∞[. Then there exists continuous,

strictly increasing and convex functions g∗
r
, g∗r : [0, 2r] → [0,∞[ with g∗

r
(0) =
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g∗r(0) = 0 such that

g∗
r
(∥Jx− Jy∥) ≤ V (x, y) ≤ g∗r(∥Jx− Jy∥)

for all x, y ∈ Br.

3. Approximation theorem for the mappings of type (P)

In this section, we propose an approximation theorem for a mapping of type

(P), which includes the metric projections onto nonempty closed convex subset of

a uniformly convex Banach space.

Theorem 3.1. Let E be a smooth and uniformly convex Banach space, let

C be a nonempty bounded closed convex subset of E, and let r ∈ ]0,∞[ such that

C ⊂ Br. Let T : C → E be a mapping of type (P) such that F (T ) is nonempty.

Let {δn} be a nonnegative real sequence and let δ0 = lim supn→∞ δn. For a given

point u ∈ E, generate a sequence {xn} by x1 = x ∈ C, C1 = C, and

Cn+1 = {z ∈ C : ⟨Txn − z, J(xn − Txn)⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : V (z, u) ≤ V (Cn+1, u) + δn+1} ∩ Cn+1,

for all n ∈ N. Then,

lim sup
n→∞

∥xn − Txn∥ ≤ g−1
r

(δ0).

Moreover, if δ0 = 0, then {xn} converges strongly to ΠF (T )u.

Proof. Since Cn includes F (T ) ̸= ∅ for all n ∈ N, {Cn} is a sequence of nonempty

closed convex subsets and, by definition, it is decreasing with respect to inclusion.

Let πn = ΠCn
u for all n ∈ N. Then, by Theorem 2.4, it follows that {πn} converges

strongly to π0 = ΠC0u, where C0 =
∩∞

n=1 Cn. For the sake of simplicity, we may

assume that δ1 is so large that V (x1, u) ≤ V (π1, u) + δ1. Then, since V (Cn, u) =

V (πn, u), it follows that

V (xn, u) ≤ V (πn, u) + δn

for every n ∈ N. Since Cn is closed and convex, from Theorem 2.6 (i), we have for

α ∈ ]0, 1[,

V (πn, u) ≤ V (απn + (1− α)xn, u)
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= ∥απn + (1− α)xn∥2 − 2⟨απn + (1− α)xn, Ju⟩+ ∥u∥2

≤ α∥πn∥2 + (1− α)∥xn∥2 − α(1− α)g
r
(∥πn − xn∥)

− 2α⟨πn, Ju⟩ − 2(1− α)⟨xn, Ju⟩+ ∥u∥2

= αV (πn, u) + (1− α)V (xn, u)− α(1− α)g
r
(∥πn − xn∥)

and thus

αg
r
(∥πn − xn∥) ≤ V (xn, u)− V (πn, u) ≤ δn.

Tending α → 1, we have g
r
(∥πn − xn∥) ≤ δn and thus

∥πn − xn∥ ≤ g−1
r

(δn).

Using the definition of πn, we have πn+1 ∈ Cn+1 and thus

⟨Txn − πn+1, J(xn − Txn)⟩ ≥ 0,

or equivalently,

⟨xn − πn+1, J(xn − Txn)⟩ ≥ ∥xn − Txn∥2.

Hence it follows that

∥xn − Txn∥ ≤ ∥xn − πn+1∥
≤ ∥xn − πn∥+ ∥πn − πn+1∥
≤ g−1

r
(δn) + ∥πn − πn+1∥

for every n ∈ N. Since limn→∞ πn = π0 and lim supn→∞ δn = δ0, we have

lim sup
n→∞

∥xn − Txn∥ ≤ g−1
r

(δ0).

For the latter part of the theorem, suppose that δ0 = 0. Then, it follows that

lim sup
n→∞

∥xn − Txn∥ ≤ g−1
r

(0) = 0

and

lim sup
n→∞

g
r
(∥xn − πn∥) ≤ lim sup

n→∞
δn = 0.
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Therefore, we obtain

lim
n→∞

∥xn − Txn∥ = 0 and lim
n→∞

∥xn − πn∥ = 0.

Then, by Lemma 2.1 and since πn → π0, we have xn → π0 ∈ F̂ (T ) = F (T ). Since

F (T ) ⊂ C0, we get that π0 = ΠC0u = ΠF (T )u, which completes the proof. □

4. Approximation theorem for the mappings of type (Q)

We next consider an approximation theorem for a mapping of type (Q). This

type of mappings includes the generalized projections onto nonempty closed convex

subset of a uniformly convex Banach space.

Theorem 4.1. Let E be a uniformly smooth and uniformly convex Banach

space, let C be a nonempty bounded closed convex subset of E, and let r ∈ ]0,∞[

such that C ⊂ Br. Let T : C → E be a mapping of type (Q) such that F (T ) is

nonempty. Let {δn} be a nonnegative real sequence and let δ0 = lim supn→∞ δn.

For a given point u ∈ E, generate a sequence {xn} by x1 = x ∈ C, C1 = C, and

Cn+1 = {z ∈ C : ⟨Txn − z, Jxn − JTxn⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : V (z, u) ≤ V (Cn+1, u) + δn+1} ∩ Cn+1,

for all n ∈ N. Then,

lim sup
n→∞

∥xn − Txn∥ ≤ g−1
r

(gr(g
−1
r

(δ0))).

Moreover, if δ0 = 0, then {xn} converges strongly to ΠF (T )u.

Proof. Since Cn includes F (T ) ̸= ∅ for all n ∈ N, {Cn} is a sequence of nonempty

closed convex subsets and, by definition, it is decreasing with respect to inclusion.

Let πn = ΠCnu for all n ∈ N. Then, by Theorem 2.4, it follows that {πn} converges

strongly to π0 = ΠC0u, where C0 =
∩∞

n=1 Cn. For the sake of simplicity, we may

assume that δ1 is so large that V (x1, u) ≤ V (π1, u) + δ1. Then, since V (Cn, u) =

V (πn, u), it follows that

V (xn, u) ≤ V (πn, u) + δn

for every n ∈ N. Since Cn is closed and convex, from Theorem 2.6 (i), we have for
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α ∈]0, 1[,

V (πn, u) ≤ V (απn + (1− α)xn, u)

= ∥απn + (1− α)xn∥2 − 2⟨απn + (1− α)xn, Ju⟩+ ∥u∥2

≤ α∥πn∥2 + (1− α)∥xn∥2 − α(1− α)g
r
(∥πn − xn∥)

− 2α⟨πn, Ju⟩ − 2(1− α)⟨xn, Ju⟩+ ∥u∥2

= αV (πn, u) + (1− α)V (xn, u)− α(1− α)g
r
(∥πn − xn∥)

and thus

αg
r
(∥πn − xn∥) ≤ V (xn, u)− V (πn, u) ≤ δn.

Tending α → 1, we have g
r
(∥πn −xn∥) ≤ δn and thus ∥πn −xn∥ ≤ g−1

r
(δn). Using

the definition of πn, we have πn+1 ∈ Cn+1 and thus

⟨Txn − πn+1, Jxn − JTxn⟩ ≥ 0

From the property of the function V , we have

0 ≤ 2⟨Txn − πn+1, Jxn − JTxn⟩
= 2⟨πn+1 − Txn, JTxn − Jxn⟩
= V (πn+1, xn)− V (πn+1, Txn)− V (Txn, xn)

≤ V (πn+1, xn)− V (Txn, xn).

By Theorem 2.7, it follows that

V (Txn, xn) ≤ V (πn+1, xn)

= V (πn+1, πn) + V (πn, xn) + 2⟨πn+1 − πn, Jπn − Jxn⟩
≤ V (πn+1, πn) + gr(∥πn − xn∥) + 2∥πn+1 − πn∥

(
∥Jπn∥+ ∥Jxn∥

)

≤ gr(∥πn+1 − πn∥) + gr(g
−1
r

(δn)) + 4r∥πn+1 − πn∥.

Since limn→∞ πn = π0 and lim supn→∞ δn = δ0, we have

lim sup
n→∞

V (Txn, xn) ≤ gr(g
−1
r

(δ0)).

Therefore, by Theorem 2.7, we have

lim sup
n→∞

∥xn − Txn∥ ≤ lim sup
n→∞

g−1
r

(V (Txn, xn)) ≤ g−1
r

(gr(g
−1
r

(δ0))).
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For the latter part of the theorem, suppose that δ0 = 0. Then, it follows that

lim sup
n→∞

∥xn − Txn∥ ≤ g−1
r

(gr(g
−1
r

(0))) = 0

and

lim sup
n→∞

g
r
(∥xn − πn∥) ≤ lim sup

n→∞
δn = 0.

Therefore, we obtain

lim
n→∞

∥xn − Txn∥ = 0 and lim
n→∞

∥xn − πn∥ = 0.

Then, by Lemma 2.2 and πn → π0, we have xn → π0 ∈ F̂ (T ) = F (T ). Since

F (T ) ⊂ C0, we get that π0 = ΠC0u = ΠF (T )u, which completes the proof. □

5. Approximation theorem for the mappings of type (R)

The mappings of type (R) is, in a sense, the dual of the mappings of type

(Q). By using this fact, we obtain the following an approximation theorem for this

mapping.

Theorem 5.1. Let E be a uniformly smooth and uniformly convex Banach

space and let C be a nonempty bounded subset of E with JC is closed and convex

and r ∈]0,∞[ such that C ⊂ Br. Let T : C → E be a mapping of type (R) such

that F (T ) is nonempty. Let {δn} be a nonnegative real sequence and let δ0 =

lim supn→∞ δn. For a given point u ∈ E, generate a sequence {xn} by x1 = x ∈ C,

C1 = C, and

Cn+1 = {z ∈ C : ⟨JTxn − Jz, xn − Txn⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : V (u, z) ≤ V (u,Cn+1) + δn+1} ∩ Cn+1,

for all n ∈ N. Then,

lim sup
n→∞

∥xn − Txn∥ ≤ g−1
r

(g∗r(g
∗
r

−1(g∗r(g
∗
r

−1(δ0)))).

Moreover, if δ0 = 0, then {xn} converges strongly to RF (T )u.

Proof. From Lemma 2.3, it follows that T ∗ : JC → E∗ is of type (Q) in E∗ with

F (T ∗) ̸= ∅, where T ∗ is defined by (2.1). Put x∗
n = Jxn and C∗

n = JCn for each

n ∈ N. Then T ∗ and {x∗
n} satisfy the conditions of Theorem 4.1 in E∗. Therefore,
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it follows that

(5.1) lim sup
n→∞

∥x∗
n − T ∗x∗

n∥ ≤ g∗
r

−1(g∗r(g
∗
r

−1(δ0)))

where the functions g∗
r
and g∗r in Theorem 2.8. Moreover, if δ0 = 0, then {x∗

n}
converge strongly to ΠF (T∗)Ju, where ΠF (T∗) is the generalized projection of E∗

onto F (T ∗) = JF (T ). From Theorems 2.7 and 2.8, we have

(5.2) g
r
(∥Txn − xn∥) ≤ V (Txn, xn) ≤ g∗r(∥Jxn − JTxn∥).

From (5.1) and (5.2), we obtain

lim sup
n→∞

∥Txn − xn∥ ≤ lim sup
n→∞

g−1
r

(g∗r(∥Jxn − JTxn∥))

≤ g−1
r

(g∗r(g
∗
r

−1(g∗r(g
∗
r

−1(δ0)))).

Finally, we show that {xn} converges strongly to RF (T )u. Since E is uniformly

smooth and uniformly convex, it follows that the duality mapping J−1 on E∗ is

continuous and xn = J−1x∗
n for each n ∈ N. Since x∗

n → ΠF (T∗)Ju, it follows that

xn = J−1x∗
n → J−1ΠF (T∗)Ju = RF (T )u.

This completes the proof. □

6. Deduced results

In the case where E is a Hilbert space, the functions g
r
, gr, g

∗
r
and g∗r become

g
r
= gr = g∗

r
= g∗r = | · |2 for every r ∈ ]0,∞[. Therefore, as a direct consequence

of Theorems 3.1, 4.1 and 5.1, we obtain the following result.

Corollary 6.1. Let H be a Hilbert space and let C be a nonempty bounded

closed convex subset of H. Let T : C → E be a firmly nonexpansive mapping

such that F (T ) is nonempty. Let {δn} be a nonnegative real sequence and let

δ0 = lim supn→∞ δn. For a given point u ∈ H, generate a sequence {xn} by

x1 = x ∈ C, C1 = C, and

Cn+1 = {z ∈ C : ⟨Txn − z, xn − Txn⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ C : ∥u− z∥2 ≤ d(u,Cn+1)
2 + δn+1} ∩ Cn+1,
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for all n ∈ N. Then,

lim sup
n→∞

∥xn − Txn∥ ≤
√

δ0.

Moreover, if δ0 = 0, then {xn} converges strongly to PF (T )u, where PF (T ) is the

metric projection of H onto F (T ).

We next consider the problem of finding a zero of a maximal monotone operator;

Let E be a smooth, strictly convex, and reflexive Banach space. Then a operator

A ⊂ E × E∗ with domain D(A) = {z ∈ E : Az ̸= ∅} is said to be a monotone

if ⟨x − y, x∗ − y∗⟩ ≥ 0 for all (x, x∗), (y, y∗) ∈ A. A point u ∈ E is satisfying

that 0 ∈ Au is called a zero of A and the set of such points is denoted by A−10.

A monotone operator A ⊂ E × E∗ is said to be maximal if A = A′ whenever

A′ ⊂ E×E∗ is monotone operator such that A ⊂ A′. Let A ⊂ E×E∗, B ⊂ E∗×E

be maximal monotone operators. Then, it is known that

R(I + λJ−1A) = J−1(R(J + λA)) = R(I + λBJ) = E

for all λ > 0. We also know that D(A) and D(B) are convex, where K is the

closure of K. The following three single-valued mappings are well-defined for all

λ > 0:

Pλ = (I + λJ−1A)−1 : D(A) → E;

Qλ = (J + λA)−1J : D(A) → E;

Rλ = (I + λBJ)−1 : J−1D(B) → E.

These mappings are called the resolvents of A or B. It is known that F (Pλ) =

F (Qλ) = A−10 and F (Rλ) = (BJ)−10. We also know that Pλ, Qλ and Rλ for

λ > 0 are mappings of type (P), (Q) and (R), respectively (see [2, 6, 8, 11, 25, 26]

and others). Therefore, as a direct consequence of Theorems 3.1, we obtain the

following result;

Theorem 6.2. Let E be a smooth and uniformly convex Banach space and

let A ⊂ E × E∗ be a maximal monotone operator with D(A) being bounded. Let

λ ∈ ]0,∞[ and let r ∈ ]0,∞[ such that D(A) ⊂ Br. Let {δn} be a nonnegative real

sequence and let δ0 = lim supn→∞ δn. For a given point u ∈ E, generate a sequence

{xn} by x1 = x ∈ D(A), C1 = D(A), and

Cn+1 = {z ∈ D(A) : ⟨Pλxn − z, J(xn − Pλxn)⟩ ≥ 0} ∩ Cn,
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xn+1 ∈ {z ∈ D(A) : V (z, u) ≤ V (Cn+1, u) + δn+1} ∩ Cn+1,

for all n ∈ N. If A−10 is nonempty, then

lim sup
n→∞

∥xn − Pλxn∥ ≤ g−1
r

(δ0).

Moreover, if δ0 = 0, then {xn} converges strongly to ΠA−10u.

Simlarly, the following resut is a direct consequence of Theorem 4.1.

Theorem 6.3. Let E be a uniformly smooth and uniformly convex Banach

space and let A ⊂ E × E∗ be a maximal monotone operator with D(A) being

bounded. Let λ ∈ ]0,∞[ and let r ∈ ]0,∞[ such that D(A) ⊂ Br. Let {δn} be a

nonnegative real sequence and let δ0 = lim supn→∞ δn. For a given point u ∈ E,

generate a sequence {xn} by x1 = x ∈ D(A), C1 = D(A), and

Cn+1 = {z ∈ D(A) : ⟨Qλxn − z, Jxn − JQλxn⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ D(A) : V (z, u) ≤ V (Cn+1, u) + δn+1} ∩ Cn+1,

for all n ∈ N. If A−10 is nonempty, then

lim sup
n→∞

∥xn −Qλxn∥ ≤ g−1
r

(gr(g
−1
r

(δ0))).

Moreover, if δ0 = 0, then {xn} converges strongly to ΠA−10u.

Finally, we can show the following result from Theorem 5.1.

Theorem 6.4. Let E be a uniformly smooth and uniformly convex Banach

space and let B ⊂ E∗ × E be a maximal monotone operator with D(B) being

bounded. Let λ ∈ ]0,∞[ and let r ∈ ]0,∞[ such that D(BJ) ⊂ Br. Let {δn} be a

nonnegative real sequence and let δ0 = lim supn→∞ δn. For a given point u ∈ E,

generate a sequence {xn} by x1 = x ∈ D(BJ), C1 = D(BJ), and

Cn+1 = {z ∈ D(BJ) : ⟨JRλxn − Jz, xn −Rλxn⟩ ≥ 0} ∩ Cn,

xn+1 ∈ {z ∈ D(BJ) : V (u, z) ≤ V (u,Cn+1) + δn+1} ∩ Cn+1,

for all n ∈ N. If B−10 is nonempty, then

lim sup
n→∞

∥xn −Rλxn∥ ≤ g−1
r

(g∗r(g
∗
r

−1(g∗r(g
∗
r

−1(δ0)))).
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Moreover, if δ0 = 0, then {xn} converges strongly to R(BJ)−10u.

Proof. In the setting of Theorem 6.4, it is easy to see that J−1D(B) = D(BJ)

and J−1D(B) = D(BJ) (see, for example, [8]). So, we obtain the desired result by

Theorem 5.1. □
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