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Parallel hybrid methods for relatively nonexpansive

mappings

Koji Aoyama

Abstract. We prove strong convergence theorems by the par-
allel hybrid method proposed by Anh and Chung [2] for a family of
relatively nonexpansive mappings. We also deal with another parallel

algorithm which is based on the shrinking projection method given by
Takahashi, Takeuchi, and Kubota [18].

1. Introduction

In this paper, we study approximation methods for finding a common fixed

point of a family of relatively nonexpansive mappings in the sense of Matsushita

and Takahashi [13, 14].

One method is a parallel algorithm proposed by Anh and Chung [2], which is

called the parallel hybrid method. The parallel hybrid method is a generalization

of the hybrid method discussed in Matsushita and Takahashi [14]; see also Nakajo

and Takahashi [15].

In Section 3, we prove convergence of the parallel hybrid method for a sequence

of quasinonexpansive-like mappings (Theorem 3.2) by using a result established in

[7]. Then we obtain a strong convergence theorem for a finite family of relatively

nonexpansive mappings, which is a generalization of the main result in [2], as a

direct consequence of Theorem 3.2.

We also deal with another approximation method, which is called the paral-

lel shrinking method in Section 4. The parallel shrinking method is based on

the shrinking projection method developed by Takahashi, Takeuchi, and Kubota

[18]. Using a result obtained in [7], we establish strong convergence of the par-

allel shrinking method for a sequence of quasinonexpansive-like mappings (The-

orem 4.2). Then we show a strong convergence theorem for a finite family of

relatively nonexpansive mappings as a direct result of Theorem 4.2.
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2. Preliminaries

Throughout the present paper, E denotes a real Banach space, ∥ · ∥ the norm

of E, E∗ the dual of E, ⟨x, x∗⟩ the value of x∗ ∈ E∗ at x ∈ E, N the set of

positive integers, and R the set of real numbers. The norm of E∗ is also denoted

by ∥ · ∥. Strong convergence of a sequence {xn} in E to x ∈ E is denoted by

xn → x and weak convergence by xn ⇀ x. The (normalized) duality mapping of

E is denoted by J , that is, it is a set-valued mapping of E into E∗ defined by

Jx =
{
x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2

}
for x ∈ E.

Let UE denote the unit sphere of E, that is, UE = {x ∈ E : ∥x∥ = 1}. The

norm of E is said to be Gâteaux differentiable if the limit

(1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists for all x, y ∈ UE . In this case, E is said to be smooth. The norm of E is

said to be uniformly Fréchet differentiable if the limit (1) is attained uniformly for

x, y ∈ UE . In this case, E is said to be uniformly smooth. It is known that the

duality mapping J is single-valued if E is smooth; J is uniformly norm-to-norm

continuous on each bounded subset of E if E is uniformly smooth. A Banach space

E is said to be strictly convex if x, y ∈ UE and x ̸= y imply ∥x+ y∥ < 2; E is said

to be uniformly convex if for any ϵ > 0 there exists δ > 0 such that x, y ∈ UE and

∥x− y∥ ≥ ϵ imply ∥x+ y∥ /2 ≤ 1 − δ. It is known that E is reflexive and strictly

convex if E is uniformly convex; the duality mapping J of E is bijective and J−1

is the duality mapping of E∗ if E is smooth, strictly convex, and reflexive; see [17]

for more details.

Let E be a smooth Banach space. Then we can define a function ϕ : E×E → R
by

ϕ(x, y) = ∥x∥2 − 2 ⟨x, Jy⟩+ ∥y∥2

for x, y ∈ E; see [1]. We know that if {xn} and {yn} are bounded sequences in a

uniformly convex and uniformly smooth Banach space E, then

(2) ∥xn − yn∥ → 0 ⇔ ∥Jxn − Jyn∥ → 0;

see, for example, [8, p. 203].

Let E be a smooth, strictly convex, and reflexive Banach space and C a

nonempty closed convex subset of E. It is known that for each x ∈ E there

exists a unique point x0 ∈ C such that ϕ(x0, x) = min{ϕ(y, x) : y ∈ C}. Such a
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point x0 is denoted by ΠC(x) and ΠC is said to be the generalized projection of E

onto C; see [1, 12]. We know the following lemma:

Lemma 2.1. Let E be a smooth, strictly convex, and reflexive Banach space,

C a nonempty closed convex subset of E, x ∈ E, and z ∈ C. Then z = ΠC(x) if

and only if ⟨y − z, Jx− Jz⟩ ≤ 0 for all y ∈ C.

Let E be a smooth Banach space, C a nonempty subset of E, and T : C → E

a mapping. The set of fixed points of T is denoted by F(T ). A point p ∈ C is

said to be an asymptotic fixed point of T [16, 11] if C contains a sequence {xn}
such that xn ⇀ p and ∥xn − Txn∥ → 0. The set of asymptotic fixed points of

T is denoted by F̂(T ). A mapping T is said to be of type (r) [7, 8, 6, 5, 9, 3] if

F(T ) ̸= ∅ and ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ C and p ∈ F(T ); T is said to be

relatively nonexpansive [10, 14, 13] if it is of type (r) and F(T ) = F̂(T ). We know

that if C is a nonempty closed convex subset of a smooth strictly convex Banach

space E and T : C → E is of type (r), then F(T ) is closed and convex; see [14,

Proposition 2.4].

Let C be a nonempty subset of a Banach space E, {Tn} a sequence of mappings

of C into E, and F the set of common fixed points of {Tn}, that is, F =
∩∞

n=1 F(Tn).

Suppose that F is nonempty. We say that {Tn} satisfies the condition (Z) if every

weak cluster point of {xn} belongs to F whenever {xn} is a bounded sequence in

C such that ∥Tnxn − xn∥ → 0; see [3, 4, 5, 7, 8].

We need the following lemmas and theorems:

Lemma 2.2. Let E be a smooth Banach space, C a nonempty subset of E,

U : C → E a mapping, N a positive integer, and Si : C → E a mapping for i ∈ Λ,

where Λ = {i ∈ N : 1 ≤ i ≤ N}. Suppose that
∩

i∈Λ F(Si) is nonempty, and that

for any x ∈ C there exists k ∈ argmax{∥Six− x∥ : i ∈ Λ} such that Ux = Skx.

Then the following hold:

(a) ∥Six− x∥ ≤ ∥Ux− x∥ for all x ∈ C and i ∈ Λ;

(b) F(U) =
∩

i∈Λ F(Si);

(c) if Si is of type (r) for every i ∈ Λ, then U is of type (r).

Proof. Set F =
∩

i∈Λ F(Si) and M(x) = argmax{∥Six− x∥ : i ∈ Λ} for x ∈ C.

We first show (a). Let x ∈ C be given. By assumption, there exists k ∈ M(x)

such that Ux = Skx. Thus ∥Six− x∥ ≤ ∥Skx− x∥ = ∥Ux− x∥ for every i ∈ Λ.

We next show (b). Suppose that z ∈ F . By assumption, there exists k ∈ M(z)

such that Uz = Skz. Since z ∈ F(Sk), we have Uz = z, and hence F(U) ⊃



124 K. Aoyama

F . Conversely, suppose that z ∈ F (U). It follows from (a) that ∥Siz − z∥ ≤
∥Uz − z∥ = 0 for every i ∈ Λ. Thus F(U) ⊂ F .

Lastly, we show (c). By assumption and (b), we know that F(U) = F ̸= ∅. Let

x ∈ C and z ∈ F(U) be fixed. Then there exists k ∈ M(x) such that Ux = Skx.

Since z ∈ F(Sk) by (b) and Sk is of type (r), we have ϕ(z, Ux) = ϕ(z, Skx) ≤ ϕ(z, x).

Thus U is of type (r). □

Lemma 2.3. Let E be a smooth Banach space, C a nonempty subset of E,

{Un} a sequence of mappings of C into E, N a positive integer, and {Si,n} a

double sequence of mappings of C into E indexed by (i, n) ∈ Λ × N, where Λ =

{i ∈ N : 1 ≤ i ≤ N}. Suppose that
∩

(i,n)∈Λ×N F(Si,n) is nonempty, and that for

any x ∈ C and n ∈ N there exists k ∈ argmax{∥Si,nx− x∥ : i ∈ Λ} such that

Unx = Sk,nx. If {Si,n}n∈N satisfies the condition (Z) for every i ∈ Λ, then {Un}
satisfies the condition (Z).

Proof. Set F =
∩

(i,n)∈Λ×N F(Si,n), Fn =
∩

i∈Λ F(Si,n) for n ∈ N, Ki =∩
n∈N F(Si,n) for i ∈ Λ, and M(x, n) = argmax{∥Si,nx− x∥ : i ∈ Λ} for x ∈ C

and n ∈ N. It is clear that Ki ⊃ F for every i ∈ Λ. Lemma 2.2 shows that

F(Un) = Fn for every n ∈ N. Thus we have
∩

n∈N F(Un) =
∩

n∈N Fn = F ̸= ∅. Let

{xn} be a bounded sequence in C such that ∥Unxn − xn∥ → 0 and {xnm} a subse-

quence of {xn} such that xnm ⇀ z. Then Lemma 2.2 implies that ∥Si,nxn − xn∥ ≤
∥Unxn − xn∥ for every n ∈ N and i ∈ Λ. As a result, ∥Si,nxn − xn∥ → 0 as

n → ∞ for every i ∈ Λ. Since Ki is nonempty and {Si,n}n∈N satisfies the condi-

tion (Z), we see that z ∈ Ki for every i ∈ Λ. Hence Lemma 2.2 also implies that

z ∈
∩

i∈Λ Ki = F =
∩

n∈N F(Un). Therefore, {Un} satisfies the condition (Z). □

Lemma 2.4. Let E be a uniformly convex and uniformly smooth Banach space,

C a nonempty subset of E, T : C → E a mapping of type (r), {λn} a sequence in

[0, 1), and Sn : C → E a mapping defined by

Sn = J−1[λnJ + (1− λn)JT ]

for n ∈ N. Then Sn is of type (r) for every n ∈ N. Moreover, if T is relatively

nonexpansive and supn λn < 1, then {Sn} satisfies the condition (Z).

Proof. It is clear that F(Sn) = F(T ) ̸= ∅ for every n ∈ N and hence∩
n∈N F(Sn) = F(T ) ̸= ∅. Let n ∈ N, z ∈ F(Sn), and x ∈ C be fixed. Since

z ∈ F(T ) and T is of type (r), we have

ϕ(z, Snx) ≤ λnϕ(z, x) + (1− λn)ϕ(z, Tx) ≤ ϕ(z, x).
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Therefore, Sn is of type (r) for every n ∈ N. Next suppose that T is relatively

nonexpansive and supn λn < 1. Let {xn} be a bounded sequence in C such that

∥xn − Snxn∥ → 0 and {xnm} a subsequence of {xn} such that xnm ⇀ w. By

assumption, it follows that

(1− supn λn) ∥Jxn − JTxn∥ ≤ ∥Jxn − JSnxn∥

for every n ∈ N. Taking into account supn λn < 1 and (2), we conclude that

∥xn − Txn∥ → 0. Since T is relatively nonexpansive, w ∈ F̂(T ) = F(T ) =∩
n∈N F(Sn). Therefore, {Sn} satisfies the condition (Z). □

Using [7, Theorems 4.2 and 4.4], [3, Proposition 6], and [8, Lemma 4.3], we

obtain the following theorems:

Theorem 2.5. Let E be a uniformly convex and smooth Banach space, C a

nonempty closed convex subset of E, {Un} a sequence of mappings of C into E,

and F the set of common fixed points of {Un}. Suppose that Un is of type (r) for

every n ∈ N, F is nonempty, and {Un} satisfies the condition (Z). Let u be a point

in E and {xn} a sequence in C defined by x1 = ΠC(u) and




Hn = {z ∈ C : ϕ(z, Unxn) ≤ ϕ(z, xn)};
Wn = {z ∈ C : ⟨z − xn, Ju− Jxn⟩ ≤ 0};
xn+1 = ΠHn∩Wn(u)

for n ∈ N. Then {xn} converges strongly to ΠF (u).

Theorem 2.6. Let E, C, {Un}, F , and u be the same as in Theorem 2.5 and

{xn} a sequence in C defined by x1 = ΠC(u), C1 = C, and

{
Cn+1 = {z ∈ C : ϕ(z, Unxn) ≤ ϕ(z, xn)} ∩ Cn;

xn+1 = ΠCn+1(u)

for n ∈ N. Then {xn} converges strongly to ΠF (u).

3. Convergence theorems by the parallel hybrid method

In this section, we prove strong convergence of the parallel hybrid method for

a sequence of mappings of type (r). Then, applying the convergence result, we

obtain a strong convergence theorem for a finite family of relatively nonexpansive

mappings, which is a generalization of [2, Theorem 3.1].
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In what follows, we assume that E is a smooth, strictly convex, and reflexive

Banach space, C is a nonempty closed convex subset of E, u is a point in E,

N is a positive integer, and Si,n : C → E is a mapping of type (r) for i ∈ Λ

and n ∈ N, where Λ = {i ∈ N : 1 ≤ i ≤ N}. We also assume that F is the

set of common fixed points of {Si,n}(i,n)∈Λ×N, that is, F =
∩

(i,n)∈Λ×N F(Si,n).

Under these assumptions, we investigate convergence of a sequence {xn} defined

by x1 = ΠC(u) and




in ∈ argmax{∥Si,nxn − xn∥ : i ∈ Λ};
Hn = {z ∈ C : ϕ(z, Sin,nxn) ≤ ϕ(z, xn)};
Wn = {z ∈ C : ⟨z − xn, Ju− Jxn⟩ ≤ 0};
xn+1 = ΠHn∩Wn(u)

for n ∈ N.
We first show that the sequence {xn} is well-defined.

Lemma 3.1. Suppose that F is nonempty. Then Hn∩Wn is nonempty, closed,

and convex for every n ∈ N, and therefore, {xn} is well-defined.

Proof. It is clear from the definition that Hn ∩Wn is closed and convex for every

n ∈ N. Thus it is enough to show that Hn∩Wn is nonempty for every n ∈ N. Since
each Sin,n is of type (r) and F ⊂ F(Sin,n), it follows that F ⊂ Hn for every n ∈ N.
Lemma 2.1 shows that W1 = C. Hence we have H1 ∩ W1 ⊃ F ∩ C = F ̸= ∅.

We next suppose that there exists n ∈ N such that Hk ∩ Wk ̸= ∅ for every

k ∈ {1, . . . , n}. Then x1, . . . , xn+1 are well-defined. Since xk+1 = ΠHk∩Wk
(u),

Lemma 2.1 implies that Hk ∩ Wk ⊂ Wk+1 for every k ∈ {1, . . . , n}. Hence we

deduce that

Hn+1 ∩Wn+1 ⊃ Hn+1 ∩ (Hn ∩Wn) ⊃ · · ·

⊃
n+1∩
k=1

Hk ∩W1 =
n+1∩
k=1

Hk ⊃ F ̸= ∅.

Therefore, by induction on n, we conclude that Hn ∩ Wn is nonempty for every

n ∈ N. □

Using Theorem 2.5, Lemmas 2.2, 2.3, and 3.1, we can show convergence of {xn}.

Theorem 3.2. Suppose, in addition to the assumptions above, that E is uni-

formly convex, F is nonempty, and {Si,n}n∈N satisfies the condition (Z) for every
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i ∈ Λ. Then {xn} converges strongly to ΠF (u).

Proof. Lemma 3.1 shows that {xn} and {in} are well-defined. Set

(3) M(x, n) = argmax{∥Si,nx− x∥ : i ∈ Λ}

for x ∈ C and n ∈ N. Let Un : C → E be a mapping defined by

(4) Unx =

{
Sin,nxn if x = xn;

Sj,nx otherwise

for x ∈ C and n ∈ N, where j is the minimum element of the set M(x, n). We

also know that for any x ∈ C and n ∈ N there exists k ∈ M(x, n) such that

Unx = Sk,nx. Lemmas 2.2 and 2.3 imply that {Un} is a sequence of mappings

of type (r),
∩

n∈N F(Un) = F ,
∩

n∈N F(Un) is nonempty, and {Un} satisfies the

condition (Z). From the definition of Un, it is clear that Unxn = Sin,nxn for every

n ∈ N. Using Theorem 2.5, we conclude that {xn} converges strongly to ΠF (u). □

Applying Theorem 3.2 and Lemma 2.4, we can prove the following theorem:

Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach

space, C a nonempty closed convex subset of E, N a positive integer, {αi
n} a

double sequence in [0, 1) indexed by n ∈ N and i ∈ Λ, and Ti : C → E a relatively

nonexpansive mapping for i ∈ Λ, where Λ = {i ∈ N : 1 ≤ i ≤ N}. Suppose that

supn α
i
n < 1 for every i ∈ Λ and K is nonempty, where K =

∩
i∈Λ F(Ti). Let u be

a point in E and {xn} a sequence in C defined by x1 = ΠC(u) and




in ∈ argmax
{��J−1

[
αi
nJxn + (1− αi

n)JTixn

]
− xn

�� : i ∈ Λ
}
;

yn = J−1
[
αin
n Jxn + (1− αin

n )JTinxn

]
;

Hn = {z ∈ C : ϕ(z, yn) ≤ ϕ(z, xn)};
Wn = {z ∈ C : ⟨z − xn, Ju− Jxn⟩ ≤ 0};
xn+1 = ΠHn∩Wn(u)

for n ∈ N. Then {xn} converges strongly to ΠK(u).

Proof. Let Si,n : C → E be a mapping defined by

Si,n = J−1
[
αi
nJ + (1− αi

n)JTi

]

for n ∈ N and i ∈ Λ. Then it is clear that F(Si,n) = F(Ti) for every n ∈ N and
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i ∈ Λ, and hence

∩
(i,n)∈Λ×N

F(Si,n) =
∩
i∈Λ

F(Ti) = K ̸= ∅.

Lemma 2.4 shows that each Si,n is of type (r) and {Si,n}n∈N satisfies the condi-

tion (Z) for every i ∈ Λ. By definition, we see that

in ∈ argmax {∥Si,nxn − xn∥ : i ∈ Λ} and yn = Sin,nxn

for every n ∈ N. Therefore Theorem 3.2 implies the conclusion. □

Theorem 3.3 is a slight generalization of the main result in [2]. Indeed, in [2,

Theorem 3.1], it is assumed that Ti is continuous and α1
n = αi

n for every i ∈ Λ,

and that α1
n → 0 as n → ∞.

4. Convergence theorems by the parallel shrinking method

In this section, we prove strong convergence of the parallel shrinking method

for a sequence of mappings of type (r). Then, applying the convergence result, we

obtain a strong convergence theorem for a finite family of relatively nonexpansive

mappings.

In what follows, we assume that E, C, u, N , Si,n, Λ, and F are the same as in

Section 3. We investigate convergence of a sequence {xn} defined by x1 = ΠC(u),

C1 = C, and




in ∈ argmax{∥Si,nxn − xn∥ : i ∈ Λ};
Cn+1 = {z ∈ C : ϕ(z, Sin,nxn) ≤ ϕ(z, xn)} ∩ Cn;

xn+1 = ΠCn+1(u)

for n ∈ N.
We first show that the sequence {xn} is well-defined.

Lemma 4.1. Suppose that F is nonempty. Then Cn is nonempty, closed, and

convex for every n ∈ N, and therefore, {xn} is well-defined.

Proof. It is clear from the definition that Cn is closed and convex for every

n ∈ N. Thus it is enough to show that Cn ⊃ F holds for every n ∈ N. It clear that
C1 = C ⊃ F . Suppose that Cn ⊃ F for some n ∈ N. Since each Sin,n is of type (r)

and F(Sin,n) ⊃ F , it follows that Cn+1 ⊃ F ∩Cn ⊃ F . Therefore, by induction on
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n, we conclude that Cn ⊃ F for every n ∈ N. □

Using Theorem 2.6, Lemmas 2.2, 2.3, and 4.1, we can show convergence of {xn}.

Theorem 4.2. Suppose, in addition to the assumptions above, that E is uni-

formly convex, F is nonempty, and {Si,n}n∈N satisfies the condition (Z) for every

i ∈ Λ. Then {xn} converges strongly to ΠF (u).

Proof. Lemma 4.1 shows that {xn} and {in} are well-defined. Let M(x, n) be

a subset of Λ defined by (3) and Un : C → E a mapping by (4) for x ∈ C and

n ∈ N. We know that for any x ∈ C and n ∈ N there exists k ∈ M(x, n) such

that Unx = Sk,nx. Lemmas 2.2 and 2.3 imply that {Un} is a sequence of mappings

of type (r),
∩

n∈N F(Un) = F ,
∩

n∈N F(Un) is nonempty, and {Un} satisfies the

condition (Z). From the definition of Un, it is clear that Unxn = Sin,nxn for every

n ∈ N. Therefore, by Theorem 2.6, we conclude that {xn} converges strongly to

ΠF (u). □

Applying Theorem 4.2 and Lemma 2.4, we can obtain the following theorem.

We omit the proof because it is practically the same as that of Theorem 3.3.

Theorem 4.3. Let E be a uniformly convex and uniformly smooth Banach

space, C a nonempty closed convex subset of E, N a positive integer, {αi
n} a

double sequence in [0, 1) indexed by n ∈ N and i ∈ Λ, and Ti : C → E a relatively

nonexpansive mapping for i ∈ Λ, where Λ = {i ∈ N : 1 ≤ i ≤ N}. Suppose that

supn α
i
n < 1 for every i ∈ Λ and K is nonempty, where K =

∩
i∈Λ F(Ti). Let u be

a point in E and {xn} a sequence in C defined by x1 = ΠC(u), C1 = C, and




in ∈ argmax
{��J−1

[
αi
nJxn + (1− αi

n)JTixn

]
− xn

�� : i ∈ Λ
}
;

yn = J−1
[
αin
n Jxn + (1− αin

n )JTinxn

]
;

Cn+1 = {z ∈ C : ϕ(z, yn) ≤ ϕ(z, xn)} ∩ Cn;

xn+1 = ΠCn+1(u)

for n ∈ N. Then {xn} converges strongly to ΠK(u).
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