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Semidefinite Programming Approach to Combinatorial

Optimization

Hiroshi Miyashita

Abstract. The semidefinite programming is an optimization
approach where optimization problems are formulated as optimizing a

linear function of matrix variable, subject to finitely many linear equali-
ties or inequalities of this matrix variable, and the positive semidefinite-
ness for the matrix variable. In this paper, we survey the formulation

of semidefinite programming compared with linear programming. Fur-
thermore an application method to maximum cut problem known as
Goemans-Williamson algorithm is also examined.

1. Introduction

Linear programming problem is a mathematical model where we minimize or

maximize real-valued linear cost function subject to linear equality or inequality

constraints on finite-dimensional Euclidean space. Since the invention of the sim-

plex method by George B. Dantzig in 1947, linear programming has been used effec-

tively in various fields such as operations research, economics, and engineering [2].

On the other hand, nonlinear programming has been applied to more complicated

problems where nonlinearity affects the quality of the optimization results [1][7].

For example, in computer aided design of integrated circuits, nowadays nonlinear

optimization is indispensable to overcome large-scale and high-complexity of the

circuits [10].

Recently, optimization methods based on semidefinite programming attract

much interest because of its wide domain of applicability, especially combinato-

rial optimization[8]. Inspite of its ability, most interior-point methods for linear

programming can be generalized to semidefinite programs [9].

This paper gives a survey of the formulation of semidefinite programming and

its application to maximum cut problem as a typical problem of combinatorial

optimization, mainly on the basis of [4][5].
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2. Semidefinite Programming Formulation

At first we start to show the concept of linear programming. A linear program

is the optimization problem that aims to maximize (or minimize ) a linear function

called objective function in n variables subject to linear equality or inequality

constraints. In equality form, a linear program can be formulated as

maximize cTx

subject to Ax = b

x ≥ 0

Here, let x = (x1, x2, . . . , xn) be a column vector in Rn. This is because n-tuple

notation is easy to write compactly. Also c = (c1, c2, . . . , cn) is the coefficient

vector of linear objective function, and b = (b1, b2, . . . , bn) is the right-hand side

of the equality constraints. The matrix A ∈ Rm×n is the constraint matrix whose

components are the coefficients of constraint linear inequalities. The bold zero 0

is the zero vector having all of zero components. From now on, inequality x ≥ 0

indicates that the inequality holds every component. Thus linear programming

is summarized as follows: within all those x ∈ Rn satisfying the linear equality

constraints Ax = b and nonnegative constraints x ≥ 0, which are called feasible

solutions, we find an x∗ with the maximum value cTx∗.

Next, to formulate a semidefinite programming, vector space Rn is replaced

with another vector space

Sn =
{
X ∈ Rn×n : xij = xji, 1 ≤ i < j ≤ n

}

of symmetric n× n matrices. The matrix A is also replaced with a linear mapping

A : Sn → Rm

The standard inner product < x,y > on Rn is replaced with the inner product

on Sn

X • Y =
n∑

i=1

n∑
j=1

xijyij

It should be noted that X • Y can be also written Tr(XTY ). In the semidefinite

programming, a symmetric matrix is considered as a variable instead of a vector

x ∈ Rn in linear programming. Consequently, we replace nonnegative constraint
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x ≥ 0 by

X ⪰ 0.

Here, X ⪰ 0 denotes positive semidefiniteness of a matrix X.

3. Positive Semidefinite Matrices

A matrix A ∈ Sn is said to be positive semidefinite if its associated quadratic

form xTAx is nonnegative for all x ∈ Rn.

Here are several equivalent statements for a symmetric matrix A as follows:

Proposition 3.1. The following statements are equivalent for a symmetric

matrix A ∈ Sn.

(i) A is positive semidefinite,

(ii) all eigenvalues of A are nonnegative, and

(iii) there exists a matrix B ∈ Rn×n such that A = BTB.

The statement (iii) in Proposition 3.1 gives a representation of A = (aij) in a

form of aij = vT
i vj for all i, j for some vectors vi ∈ Rn.

4. Cholesky Factorization

Given a symmetric positive semidefinite matrix A, a matrix B which satisfies

Proposition 3.1 (iii) can be obtained in O(n3) time by Cholesky factorization [6] as

follows: If A = (α) ∈ R1×1, we can set B = (
√
α) since α ≥ 0 by the nonnegativity

of eigenvalues. Otherwise, since A is symmetric, we can denote it in the following

manner:

A =

(
α pT

p U

)

From the statement (i) in Proposition 3.1, α = eT1 Ae1 ≥ 0, where ei is the i-th

unit vector in Rn.

Here we classify succeeding discussion into two cases of α > 0 and α = 0. If

α > 0, we can describe A as

A =

( √
α 0T

1√
α
p In−1

)(
1 0T

0 U − 1
αpp

T

)(√
α 1√

α
pT

0 In−1

)
.
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Thus, the matrix U − 1
αpp

T is itself positive semidefinite. Consequently, we

can recursively obtain a Cholesky factorization

U − 1

α
ppT = V TV.

Setting matrix B as

B =

(√
α 1√

α
pT

0 V

)
,

easy calculation leads to A = BTB. So we obtain a Cholesky factorization.

In the other case of α = 0, vector p turns out to be 0 because we can choose

a vector x ∈ Rn such that xTAx < 0 if vector p has nonzero component. Since

xTAx ≥ 0 for x = (0, x2, . . . , xn), the matrix U is itself positive semidefinite. Thus

we can recursively obtain a matrix V such that U = V TV . Choosing the matrix

B such that

B =

(
0 0T

0 V

)
,

we lead to the Cholesky factorization A = BTB.

5. Semidefinite Programming Problem

Definition 5.1. A semidefinite programming problem subject to constraints

of equation system is defined as follows:

maximize
n∑

i,j=1

cijxij

subject to
n∑

i,j=1

aijkxij = bk (k = 1, . . . ,m)(1)

X ⪰ 0

where

X = (xij)
n
i,j=1 ∈ Sn

i.e., xij are n2 variables with symmetry constraints xij = xji for all i, j, and cij,

aijk, bk are all real coefficients.
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As the simpler form than Definition 5.1, the semidefinite program can be de-

scribed as

maximize C •X
subject to A1 •X = b1

A2 •X = b2
...(2)

Am •X = bm

X ⪰ 0,

where C = (cij)
n
i,j=1 is the coefficient matrix of the objective function, and

Ak = (aijk)
n
i,j=1 (k = 1, 2, . . . , m). Furthermore we can describe the system of m

linear constraints Ai •X = bi (i = 1, . . . ,m) as a whole much more compactly as

A(X) = b,

where b = (b1, . . . , bm), and A : Sn → Rm is a linear mapping. In a similar way to

the linear programming case, we call the semidefinite program (2) feasible if there

exists some feasible solution, which is defined by X̃ ∈ Sn such that A(X̃) = b,

X̃ ⪰ 0. The value of a feasible semidefinite program is

sup{C •X |A(X) = b, X ⪰ 0}.

If the value of a feasible semidefinite program is∞, we call the program unbounded.

Otherwise, we call it bounded. An optimal solution is a feasible solution X∗ that

satisfies C •X∗ ≥ C •X for all feasible solution X.

6. Maximum Cut Problem (MaxCut)

Given an undirected graph G = (V,E) as the input, we define a cut in the graph

as a partition of the vertex set V into two disjoint subsets S and its complement

V \ S = S for S ⊂ V , as shown in Fig 1. We denote the cut by (S, S). The edge

set of the cut (S, S) denoted by E(S, S) is defined as a set of edges with one vertex

in S and the other in S as follows:

E(S, S) =
{
e = {i, j} ∈ E | i ∈ S, j ∈ S

}
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The number of edges in E(S, S) described as |E(S, S)| is called the size of cut

(S, S). The maximum cut problem (MaxCut) is that of finding the set of vertices

S ⊂ V such that the size of cut (S, S), i.e., |E(S, S)| is maximized.

Figure 1. Cut (S, S)

7. The Goemans-Williamson Algorithm

First the MaxCut problem is formulated as a constrained optimization problem.

Let G = (V,E) be a given graph, where assume that vertex set V = {1, 2, . . . , n}.
Next we define variables z1,z2,. . .,zn ∈ {−1, 1}. Any n-tuple (z1, z2, . . . , zn) ∈
{−1, 1}n corresponds to a cut (S, S), where S = {i ∈ V | zi = 1}. Conversely, for

any cut (S, S), we can obtain the corresponding n-tuple (z1, z2, . . . , zn) ∈ {−1, 1}n
by zi = 1 (if i ∈ S), zi = −1 (otherwise) for i = 1, . . . , n. The contribution of edge

{i, j} to a cut (S, S) is easily calculated by (1− zizj)/2. Finally we can formulate

the MaxCut problem as follows:

maximize
∑

{i,j}∈E

1− zizj
2

(3)

subject to zi ∈ {−1, 1} (i = 1, . . . , n)

The maximum value of this problem denoted by Opt(G) is the size of a maximum

cut. To solve exactly this optimization problem in polynomial time cannot be

expected because of NP-completeness of MaxCut problem [3].
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8. Semidefinite Programming Relaxation

We replace each real variable zi with a vector variable ui ∈ Sn−1 = {x ∈
Rn | ∥x∥ = 1}. With this replacement, we formulate a semidefinite program whose

value can be used as an upper bound for the value Opt(G) of (3) as follows:

maximize
∑

{i,j}∈E

1− uT
i uj

2
(4)

subject to ui ∈ Sn−1 (i = 1, 2, . . . , n).

Since the set {−1, 1} can be embedded into Sn−1 by the mapping {−1, 1} ∋ x �→
(0, . . . , 0, x), for every solution of (3), we can find a solution of (4) having the same

value. This indicates that program (4) is a relaxation of (3). Thus the program (4)

has value at least Opt(G), while this value is finite because uT
i uj ≥ −1 holds for

all i, j.

Furthermore, another variable substitution by xij = uT
i uj leads to a semidefi-

nite program:

maximize
∑

{i,j}∈E

1− xij

2

subject to xii = 1 (i = 1, 2, . . . , n)(5)

X ⪰ 0

Proposition 8.1. [4]

Problem (4) is equivalent to semidefinite program (5).

Proof. First assume that u1, . . . ,un is a feasible solution to (4). Let the matrix

U to be an n×n matrix whose columns are u1,u2, . . . ,un. They are unit vectors.

Setting xij = uT
i uj , we have X = (xij) = UTU . Such a matrix X is positive

semidefinite, and xii = 1 because of ui ∈ Sn−1 for all i. Thus X is a feasible

solution to (5) having the same value.

Conversely, every feasible solution X to (5) yields a solution to (4) with the

same value. First it should be noted that positive semidefinite matrix X can be

represented by X = UTU as described in Section 4. For a feasible solution X to

(5), the columns u1, . . . ,un of matrix U yield a feasible solution to (4) because

they are unit vectors by xii = 1. This concludes the proof. □
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Accordingly, the semidefinite program (5) has the same finite value

SDP(G) ≥ OPT(G) as (4). So we can find a matrix X∗ ⪰ 0 satisfying x∗
ii = 1 and

∑
{i,j}∈E

1− x∗
ij

2
≥ SDP(G)− ε,

for every ε > 0 in polynomial time. Also we can obtain a matrix U∗ such that X∗ =

(U∗)TU∗ using a Cholesky factorization of X∗ in polynomial time; see Section 4.

Finally the columns u∗
1, . . . ,u

∗
n of U∗ are unit vectors that are optimal solution of

(4) satisfying

(6)
∑

{i,j}∈E

1− u∗T
i uj

2
≥ SDP(G)− ε ≥ Opt(G)− ε

9. Rounding Method

We are actually required to solve problem (3) where n variables zi = 1, or

−1 ∈ S0 (i = 1, . . . , n). From the solution, a cut (S, S) can be determined through

S = {i ∈ V | zi = 1}. We have an almost optimal solution of the relaxed problem (4)

which n vectors u1, . . . ,un ∈ Sn−1 constitute. So we must map vectors ui ∈ Sn−1

back to S0 so that the loss of the optimality is as small as possible. Since it is

required to classify vectors u1, . . . ,un into 1 or −1, choosing p ∈ Sn−1, we define

the mapping as follows:

(7) u �→
{
1 if pTu ≥ 0,

−1 otherwise.

As ilustrated in Fig. 2, p divides Sn−1 into a closed hemisphere H = {u ∈
Sn−1 |pTu ≥ 0} and its complement Sn−1 \ H. Vectors ui ∈ H are mapped to

1, while vectors in the complement of H mapped to −1. We choose vector p at

random so that it is uniformly distributed on Sn−1. This is called randomized

rounding. A pair of vectors u∗
i and u∗

j having large value of (1−u∗T
i u∗

j )/2 is more

likely to yield a cut edge {i, j} than a pair of small value so as to maximize the size

of the cut. Since this contribution to the cut size depends on the angle between u∗
i

and u∗
j , the randomized rounding by the vector p should more likely to map pairs

with large angles to different values in {−1, 1} than pairs with small angles.

The lemma below validates this consideration.
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��

Figure 2. Rounding vectors in Sn−1 to {−1, 1} with a given vec-

tor p ∈ Sn−1

Lemma 9.1. For u,u′ ∈ Sn−1, the probability that mapping (7) maps u and

u′ to different values in {−1, 1} is

1

π
arccosuTu′

Proof. Let the angle between the unit vectors u and u′ be α ∈ [0, π]. So cosα =

uTu′ ∈ [−1, 1] or equivalently α = arccosuTu′.

If α = 0 or α = π, then u = u′ or u = −u′. So the statement is trivially holds.

Otherwise, let L be the linear span of u and u′, and r be the orthogonal projection

of p to that linear space. Thus pTu = rTu and pTu′ = rTu′ hold. This indicates

that u and u′ are mapped to different values if and only if r falls on a “half-open

double wedge” W with angle α as shown in Fig 3. Since the distribution of p

on Sn−1 is uniform, the distributuin of r on [0, 2π] is uniform. Consequently, the

probability of r falling on the double open-wedge is 2α/2π = α/π = arccosuTu′/π.

□
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Figure 3. Randomized rounding and half-open double wedge W .

10. Bounding Maximum Cut

Applying the randomized rounding described in Section 9, we can obtain the

expectation of the number of edges in the resultant cut as follows:

∑
{i,j}∈E

arccosu∗T
i u∗

j

π
,

which is immediately obtained from Lemma 9.1. Although we cannot evaluate

to what extent the expectation above itself reaches, we can estimate its degree of

approximation using the inequality below, which was previously described as (6).

∑
{i,j}∈E

1− u∗T
i u∗

j

2
≥ Opt(G)− ε

The following lemma enables us to compare two terms above.

Lemma 10.1. For all x ∈ [−1, 1],

arccos(x)

π
≥ K

1− x

2

holds for K = 0.8785672.
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Proof. For x=1, target inequality holds as right- and left-hand sides of it equal

0. It also holds for x = −1. For x ∈ (−1, 1), we define function f as follows:

f(x) =
2 arccos(x)

π(1− x)

For x ∈ (−1, 1), the derivative calculation of f(x) leads to

f ′(x) =
2

π
·
arccos(x)−

√
1−x
1+x

(1− x)2

Here, setting g(x) = arccos(x)−
√

1−x
1+x , we can obtain g′(x) as

g′(x) = − 1√
1− x2

· x

1 + x

Note that g′(0) = 0, g′(x) > 0 (−1 < x < 0) and g′(x) < 0 (0 < x < 1). Thus, at

x = 0, the function g(x) reaches the maximum g(0) = π/2−1 > 0 as shown in Fig.4.

Since g(1) = 0, g(x) → −∞ (x → −1+0) and g(0) > 0, the curve g(x) crosses x-axis

at some point x = x0 (−1 < x0 < 0). Applying Newton method to calculate the

cross point, we obtained x0 = −0.68915 . . ., where f(x0) = 0.8785672 . . .. Function

f(x) is monotone decreasing on [−1, x0], while it is monotone increasing on [x0, 1].

Thus, function f(x) has the minimum at x = x0 on [−1, 1) as shown in Fig.5

□
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Figure 4. The function g(x) = arccos(x)−
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From this lemma, the expected number of cut edges obtained by the algorithm

being discussed satisfies



142 H. Miyashita

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

f(
x)

x

f(x)

"outf.txt"

Figure 5. The function f(x) = 2 arccos(x)
π(1−x)

.

∑
{i,j}∈E

arccosu∗T
i u∗

j

2
≥ 0.8785672

∑
{i,j}∈E

1− u∗T
i u∗

j

2

≥ 0.8785672(Opt(G)− ε)

≥ 0.878Opt(G)

for 0 < ε ≤ 6 · 10−4.

Finally, the Goemans-Williamson algorithm for approximating the maximum

cut of a graph G = (V,E), where V = {1, 2, . . . , n} is summarized as follows:

(1) Find an almost optimal solution u∗
1,u

∗
2, . . . ,u

∗
n of the following problem:

maximize
∑

{i,j}∈E

1− uT
i uj

2

subject to ui ∈ Sn−1 (i = 1, 2, . . . , n).

in polynomial time using semidefinite programming and Cholesky factoriza-

tion. The solution satisfies

∑
{i,j}∈E

1− u∗T
i u∗

j

2
≥ SDP(G)− 6 · 10−4 ≥ Opt(G)− 6 · 10−4.

(2) Let p ∈ Sn−1 be chosen uniformly at random on Sn−1. The cut (S, S) is
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determined by

S = {i ∈ {1, 2, . . . , n} |pTu∗
i ≥ 0}

11. Conclusions

This paper reviewed semidefinite programming approach to combinatorial op-

timization, which centered not on solving algorithm but on its formulation and

application methods to combinatorial optimization problems. As an example, we

adopted the Goemans-Williamson maximum cut algorithm. This algorithm helps

us take a survey of application methods of semidefinite programming. To solve a

variety of combinatorial optimization problems, an effective formulation of them

as semidefinite programing is required more than ever.

References

[1] D.P. Bertsekas, Nonlinear programming, Second Edition, Athena Scientific, 1999.
[2] V. Chvátal, Linear programming, W.H. Freeman and Company, 1983.

[3] M.R. Garey and D.S. Johnson, Computers and intractability, A guide to the theory of
NP-completeness, W.H. Freeman and Company, 1979.
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