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Olech-types lemma and Visintin-types theorem 
in Pettis integration and L~,[E] 

Abdelhamid BOURRAS (Rabat), Charles CASTAING (Montpellier) 

Mohamed GUESSOUS (Casablanca) 

Summary. We present several versions of Olech's lemma and Visintin's theorem in 
Pettis integration and L~t[E] in the same vein as Amrani-Castaing-Valadier [4] and 

Benabdellah-Castaing [12] . 

l. Introduction. In the framework of Pettis integration (see, for instance, [2, 

17, 23, 25, 29]), Arnrani-Castaing-Valadier [4] stated a Visintin-type theorem and 

presented a version of Olech's lemma as a consequence. Using a recent weak com-
pactness result in the space L~, [E](~, Jr, /~) of scalarly integrable functions deflned 

on a probability space (~, ~r, kt) taking values in the dual E/ of a separable Banach 

space E, Benabdellah-Castaing [12] stated a version of Visintin's theorem and also 
gave a version of Olech's lemma in L~, [E] (~, f, /h) via the subspace L~p[E] (~, f, /~) 

associated to a lifting p in ,C~ (~, f, ph) . In the present paper we aim to present some 

Olech-types lemma and Visintin-types theorem in L~, [E] (~, f, p;) and Pettis int~~ 

gration. 

This paper is divided in two parts. The first part is devoted to the study of 

Olech-types lemma and Visintin-types theorem under denting point condition in 

Pettis integration by exploiting some new properties of the denting points of the 

Pettis integral of a closed convex valued measurable multifunction. In the second 
part we present a Visintin-type theorem in L~, [E](~, f, kt) via the recent results in 

[12j. Our results shed a new light on the problem of "norm convergence is implied 

by the weak" in both L~, [Ej(~, f~, kb) and Pettis integration setting. For more on 

Olech-types lemma and Visintin-types theorem in Bochner integration we refer to 
[1, 3, 5, 6, 7, 8, 9, lO, 28, 30, 31, 32, 33, 36]. 

2. Notations and terminology. We will use the following notions and nota 
tions and summarize some useful facts. 

- E is a separable Banach space, BE is the closed unit ball and ~E(x, r) the open 

ball of center x with radius r. 

- E/ is the topological dual of E and BE, is the closed unit ball of E!. 

- (~,ir, kL) is a probability space. 

- L~(/~) := Lk(~,Jr, kt) is the Banach space of (equivalent classes of) Bochner 

integrable E-valued functions. 

AMS Classification : 46 E 30, 28 A 20, 60 B 12 

Key words : convergence, compactness, denting point, extreme point, strong extreme point, 
Pettis, Pettis uniformly integrable, weak Talagrand property. 
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- PEl(ph) := PEl(~, Jr, pt) is the normed space of (equivalent classes of) Pettis inte~ 

grable E-valued functions f : ~ '~ E, endowed with the Pettis norm (see, for in-

stance, [23, 25, 29]) Ilfjlpe := supllx'll~1 f~ ! (xf, f(cu))1 11(dcu). Let us recall that 

the Pettis norm jl.[Ipe is equivalent to the norm f H> supAef ll fA f(~)) u(dcv)ji. 

Indeed let x! ~E E/ with llx/ll ~ 1. We have 

~~~ fA(x', f(~))) u(d~) ~ J~ I(x', f(~)))1 f);(dcv) 

(x" f (cv)) kt(deu) 

<",f>~o 

- f (x"f~c~))u(dcu) 
J<",f><0 

Aef ~ ~ 2 sup jj (x" f(~))) he(dcv)' 

It follows that 

Aef ~ f (x', f(~))) kL(dcv) sup jlJj f(a))kt(d(~)ll = sup sup Aef II"II~1 JA 

~
 

f
 sup sup (x',f(a)))/h(d(J) 

I*'11~1 Aef jA 

sup f l(x',f(cu)) Ipt((la)) 

"il~1 J~ 

j f llp. 

f
 ~ 2 sup sup (x',f(~)))'J;(d~J) 

"I ~1 Aef JA 

= 2 sup sup f (x',f(~)))kh((ho) 
Aef II"II~1 JA 

Aef ~ = 2 sup jI JA f(~))11(da))ll. 

- By ck(E) (resp. cwk(E)) (resp. ccb(E. )) (resp. Lwc(E)) (resp. cc(E)) (resp. 

c(E)) we denote the collection of all nonempty convex col~rpact (resp. convex 

weakly compact) (resp. closed convex bounded) (resp. Iine free closed convex 

locally weakly compact [18]) (resp. closed convex) (resp. closed ) subsets of E. 

- If K is a subset of E, we denote by cl(K) (resp. 6'(x/, K)) the closure (resp. 

the support function) of K. 

- An element e of a convex subset K in a Hausdorff locally convex space F is an 
extreme point of K if , for any x, y e K, e = -12 (x + y) => x = y = e. 

- An element e of a convex subset K in a Hausdorff locally convex space F is 

a weak denting point of K if, for any weak neighbourhood V of e, one has 
e ~ ~~;(K ¥ V). If e is a weak denting point of K, e is an extreme point of K. 
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Indeed, if e is not extremal, there are x and y in K with x ~ y such that 
e = 1_2 (x + y). By HahnBanach theorem, there is x! in the dual F/ of F such 

that a (x/,x - e) > o. Let V be the weak neighbourhood of e defined by 

V := {z e F : l(x/,z - e)1 < ~}･ Then e ~ ~~;(K ¥ V) because both x and y 
belong to K ¥ V. 

- An element e of a convex subset K in E is a strong extreme point of K if for 
any sequences (xn) and (yn) in K, Iim~_oo I I ~ (xn + yn) ~ ell = O implies that 

limn-oo i iyn ~ ell = O. It is easy to check that e is a strong extreme point of 

K iff the following holds. Vi > o, there exists n > o, such that : x,~/ e K and 
lle - ~:t~+2 Il < n => Ilx - ell < c and l!y - ell < c. Indeed we can suppose e = O. 

Let c > o. put 

x+y n := inf{ll 2 Il : x,y e K, llxll ~ e or llyll ~~ c} 

Since O is extremal, Ii2j:3L+_2 Il > o whenever llxll ~ c or liyll Z e. We claim that 

n > o. If n = O there are sequence (xn) and (yn) in K with llxnll Z c or 
l lynll Z c for every n such that 11 22~t~-2+_ " Il -~ O. Since O is a strong extreme point, 

Ilxnll -~ O and liynli -> O. A contradiction. 

- A point e of a convex subset K in E is a point of continuity (shortly pc) of K 

if the identity mapping (K, weak) -~ (K, I i .li) is continuous at the point e. 

- A point e of a convex subset K in E is a denting point (resp. weak denting point) 

of K if, for any e: > o, e ~ ~~;(K ¥ 13E(e,c)) (resp. for any weak neighbourhood 

V of e, e ~ ~~(K ¥ V)). 

- If K is a convex subset of E, we will denote by ae(K) (resp. ase(K)) (resp. 

apc(K)) (resp. awd(K)) (resp. ad(K)) the set of extreme points (resp. strong 

extreme points) (resp. pc points) (resp. weak denting points) (resp. denting 

points) of K. The following inclusions hold: 

(a) a..(K) C a~(K), 

(b) a..(K) C a"(cl(K)), 

(c) ad(K) C a**(K) n ap.(K), if K is closed, 

(d) ad(K) c awd(K). 

(a) iS obvious. Let us prove (b). Suppose that e ~ ase(K). Let (xn) and (yn) in 

cl(K) such that lim~_oo ll-12(xn + yn) ~ ell -~ O. Let us consider the sequences 

(x~) and (yn) m K wlth llx~ - x! 11 < * and llyn ~ y~ll < * for every n. Since 
n 

l
 (x~ + ~/~) - e = ~(xn + yn) ~ e + 2 (x~ - xn) + ~(y~ - yn) 
2
 

we have that lim~_oo ll~(x~ + y~) - ell -H' O. It follows that llx~ - ell -+ O and 

Similarly I y~ - e!1 -+ O. Since Ilx~ - eil ~ IIX~ - ell + Iix~ - x~li, we have that 
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Ilx~ - ell - O and Ily~ ejl -~ O Whence e ~ a..(cl(K)) (d) rs obvrous while 

(c) follows from [ll] and [28]. ' 
- A multifunction r : ~ -> E is measurable if its graph belongs to fRB(E) where 

~(E) denotes the Borel tribe of E. A ccb(E)-valued measurable multifunction is 

s6alarly measurable (resp. integrable) if, for every x/ in the topological dual El 

of E, the real valued function cv H> 6' (x!, r(~))) is measurable (resp. integrable). 

For more on measurable multifunction, see [18]. Given a measurable multifunc-
tion r : ~ -~ E, we denote by Sfe the set of Pettis-integrable selections of r. If 

S~e is not empty, the Pettis multivalued integral of r is defined by 

f~ r(cv) /~;(d~)) := { f~ f(cv) kt(dcv) : f e Sfe}. 

A subset ~( of PE1(kL) is scalarly Pettis uniformly integrable if the set {(x!, u) . 

Ilx/!i ~ l, u e 7~} is uniformly integrable in L~(kt), 7~ is Pettis uniformly inte~ 

grable (PUl) if, for every c > o, there is 5 > o, such that 

~h(A) < 6 => sup lllAullp･ ~ c. 
*e7~ 

By [4] we have the Implicatron "scalarly Pettis uniformly mtegrable" =~ "Pet-

tis uniformly integrable>' . 

- A scalarly integrable ccb(E)-valued multifunction r is Pettis integrable, if the set 

{6' (x!, r(.)) : I Ix/1 i ~ l} is uniformly integrable in L~(~, f, ,1). By definition Sf' 

is scalarly Pettis uniformly integrable. The multivalued integral of a cwh(E)-

valued Pettis integrable multifunction is convex weakly compact in E because 
the set SrP' of all Pettis integ"rabl9 selections of r is nonempty convex and sequen-

tially (T(PE1(kc), L= R E/) compact by [2, Prop. 3.4]- If f : ~ -~ E is a scalarly 

integrable function, then f e pEl(/~) <~ {(x!,f) : jlx/II ~ l} is 'weakly com-

pact in L~(~, f, ~). Indeed => follows from the sequential weak compactness of 

the unit ball BE, and Eberlein-Smulian theorem while ~= follows from Banach-
Dieudonn6 theorem; so a Pettis integrable function f is scalarly Pettis uniformly 

integrable. Ivlore generally, Iet (fl' "'f~) be a flnite sequence in PEl(~, ~r, p;) and 

let K ~ Lwc(E), then the multifunction r : cu H> co({fl(cv), ..f*(~))}) + K is a 

Lwc(E)-valued measurable multifunction with S~' ~ ~; if K is convex weakly 

compact, r is a cwk(E)-valued Pettis integrable multifunction according to the 
preceding definition and S~' is scalarly Pettis uniformly integrable. 

- A sequence (u*) in PEl(pt) is ck(E)-tight if, for every c > o, there exlsts a 

ck(E)-valued Pettis-integrable multifunction re satisfying: 

sup fd;({~) C ~ : u~(~)) ~ r=(c~)}) ~ c. 

" 

- For all undefined statement.s and notations in Convex analysis and Measurable 
multifunctions we refer to [18]. 

2. Olech-types lemma. In this section we provide several vanants of Olech s 
lemma in Petti_* integration. 
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We will need first two easy lemmas. 

LEMMA 2.1. Let jVi be a decomposable set of vector E-valued measures,that 
Is, for every pair m, n in jV, and for every ir_measurable set A, the vector measUre 

IA m + l~¥An belongs to jv!, and let K be a convex subset of E. Suppose that 
m(~) e K for every m e jvf and e is an extreme point of K, then there exists at 

most one m c )vf such that m(~) = e. 

Proof. Let ml, m2 e JV with ml(~) = m2(~) = e. For any fixed f-measurable 

set A and for any f:-measurable set B, Iet us denote 

ml,2(~) := ml(~~ n A') + m2(B n A) 

and 
m2,1(1~) := m2(B n Ac) + ml(B n A). 

As JV is a decomposable, ml,2 and m2,1 belong to JV. Then ml,2(~) e K and 
m2,1(~) e K and we have that e = '-'12 (ml,2(~) + m2,1(~)). Since e is an extreme 

point of K, we deduce that e = ml,2(~). Whence ml,2(~) = ml(~) and m2,1(~) = 

m2(~) which imply ml(A) = m2(A). 

REMARK. If r : ~ -> E is a convex valued measurable multifunction such that 
the set S~e of Pettis integrable selections is not empty and e is an extreme point 

of f~ r(eJ) u(d~)), then there is a unique f e S~e such that f~ f((~) ~(dcv) = e. It 

is enough to apply lemma 2.1 to A/t = {ff~ : f ~ S~e} and K = f~ r(~)) ke(d~). 

LEMMA 2.2. Let JV be a decomposable set of E-valued ve.,ctor measures and K 
a convex subset of E. Suppose that m(~) e K for every m ~ )/! and e is a strong 

extreme point of K, then, for every c > o, there is n > o such that 

sup Ilml(A) - m2(A)II ~ c 
AeiF 

whenever ml,m2 ~E Jv! and I]mi(~) - ell < n for i = l, 2. 

Proof. Let c > o. As e c ase(K), there is O < n < ~ such that x,y e K and 

Ile - ~:t~+_2 Ii < n => jlx - eli < ~ and liy - ejl < ~･ Now let ml'm2 e J¥/( and 

tlmi(~) - ell < n for i = 1,2 and let A be a fixed f-measurable set. For any 

f-measurable set ~~ Iet us denote 

ml,2(~) := ml(B n A') + m2(B n A) 

and 
m2,1(L~) := m2(B n Ac) + ml(B n A). 

As )v( is decomposable, ml,2 and m2,1 belong to JV{. FLtrthermore we have 

Ile ml,2(~) + m2,1 (~) 11 lle ml(~) + m2(~) 

~ ~(Ile - ml(~)li + Ile - m2(~)ll < n. 
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Therefore we get liml'2(~) - ell < ~･ Whence 

lim2(A) - ml(A)Ii = Ilml,2(~) - ml(~)ji 

c
 ~ ~ +n < e. 

As the preceding inequality holds for all A C f, we have 

sup llml(A) - m2(A)ll < c 

Aef 

Now we proceed to state some Olech-types lemma. 

THEOREM 2.3. Suppose that r : ~ -> E is a convex valued measurable multi-
function and (fn) is a sequence in Sfe satisfying: 

(i' Iimn-= Il f~ f~(~))~(dcu) - ell = O, 

(ii) e e as'(f~ r(cv) kt(dcv)) 

then (f~) converges in the normed space (PEl(p;), ll.llpe) to the unlque selectlon 

f ~ Sfe with f~ f(cv) kt(d~)) = e. 

Proof. Let c > o. Applying lemma 2.2 to 

: f~r(~))kt(da)) and JV {m gkt g c S~e} 
K= 

provides n > o such that 

sup jlml(A) - m2(A)1! ~ c 

Aef 

whenever ml' m2 ~E A/! and Ilmi(~) - eli < n for i = l, 2 

such that 

By (i) there is N ~ N 

n>N=>llf~ f'(~))~c(d~J) ell<n 

Now set mn := fn /~ for n ;~ N. It is clear that 

llm'(~) - ell = 11 J~ f~(ev) pt(da)) - ell < n' 

By lemma 2.1 there is a unique f ~ Sf' with f~ f(a)) ,x((la)) = e. 

that Im(~) - ej 

that iS 

= O < n. Therefore we get 

sup limn(A) - m(A)jl ~ e, 

Aer 

Set m := f ht so 

Aef ~ sup 11 jA (f~(~)) - f(~))) pt(dcv)ll ~ c' 

whence lim ilfn ~ fllpe ~~ O' 
n - oo 
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Combining the preceding theorem with the results obtained in [4] we obtain the 

following. 

PROPOSITION 2.4. Let r : ~ -> E be a cwk(E)-valued Pettis-integrable multi-

function. Then the following hold: 

(a) The set Sfe ofPettis integrable selections ofr in nonempty, convex sequen-

tially compact for the topology of pointwise convergence on LaQ R E!. 

(b) If (fn) is a sequence in Sfe such that limn-oo f~ fn(e~') p;(d~') = e strongly 

and that e c ase(f~ r(cv) /x(dev)), then (fn) converges in the normed space PEl(lJ;) 

to the unique extreme selection f e S~e (that is f(cv) e ae(r(ev)) a.e) with 
f~ f(~)) /J;(do)) = e. 

(c) Ifr is ck(E)-valued, then 

a-( j~ r(') u(c~)) = a'( J~ r(') ~(c~)) = ad( J~ r(') ~((ho))' 

Proof. (a) is in [4, Theorem 1.1]. (b) follows from Theorem 2.3 and the argu-

ments given in [4, Theorem 2.5] by noting that 

a-( j~ r(') pb(c~J)) c a'( j~ r(eu) pt(dev)' 

(c) follows from the norm compactness of f~ r(cv) ;~(d~)). See again [4> page ll]. 

The following is a characterization of strong extreme points of a closed convex 

subset in E. See also [4, 28, 33] for related results. 

THEOREM 2.5. Let K be a closed convex subset of E and e an element of K. 
Let us cousider the following conditions. 

(i) e e ase(K). 

(ii) If (fn) is a sequence in S~e such that lim li f~ fn(~)) ~(d~) - ell = O, then 
n - co 

limn-oo Ilfn ~ elipe = O. 

(iil) If(fn) is a sequence in S~e such that limn-oo 11 f~ fn((~) kt(da)) - el{ = O then 

limn-oo il fA(fn(~)) - e) I~(d(~)ll = O for every A e f. 

Then (i) => (ii) ==> (iii). Suppose there exist C ~ f with kt(C) = ~, then 

(iii) =~ (i). 

Proof. Note that fA f dpc c pc(A)K for every f C S~e and for every A ~ f. Now 

(i) =~ (ii) follows from Theorem 2.3 by taking r(.) = K, while (ii) =~> (iii) is 
obvious. Now suppose there exists C ~E ir with pL(C) = i. Let us prove that (iii) => 
(i). Let (xn) and (yn) be sequences in K such that lim2n-oo ll~(xn + yn) ~ ell = O. 

Set fn = xnlc + ynl~¥c' Then we have that fn e S~ and 

lim IIJC f*(c~)kl(d(~) -ell = ' 
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By (iii) we have 

fc fn(~)) f~(dcu) - ell = nli__moo ~Ilxn ~ 

n - oo 

Therefore e e ase(K). 

We finish this section with an Olech-type lemma in L~(p;) via the pc-point 

cond ition. 

PROPOSITION 2.6. Suppose that K be a closed convex subset of E a;nd e e 
apc(K), (un) is a sequence in L~(/1) with un(cc)) e K for all n and a.e cv e ~ such 

that, Vx/ ~ E/, Iimn-oc f~ l(x!, un(~)) - e)1 /d;(dc~)) = O, then 

~-= ~ lim Jc llu*(~)) - ell kt(dcv) = o' 

Proof. We can suppose that e = O. It is enough to show that every subsequence 

(vn) of (un) admj:ts a subsequence (wn) such that limn-oo llwn ~ elll = O. Since 

O C apc(K), for every m e N', there exist eT, ... em in E/ and am > o such that 
, "~ 

W~ := {x e K : sup l(er,x)1 <am} C BE(O ~) 

1<_i<_v~ 

As limn-oof~ I<e~,un(cv)1/x(dLv) = O, for I < i ~ vl' there is a subsequence 

(v~) of (vn) such that (e~,v~) -+ O a.e, for I ~ i ~ l/1' Hence we have that 
limn-e<) supl<i<vl i(e~, v~)1 = O a.e. Repeating this argument, we see that for ev 

ery m ~: N', t~here is a subsequence (v~+1) of (v~~) such that 

lim sup I (er+1 , v~+1) I = O 
n-c<) l<e~'~+* 

~L e Set wn = v~. Then for every m c N', we have 

lim sup l(er,w~)j = O 
~-oo I ~i<v_ 

a.e, thus for almost all cv and for every m e N', there is km e N' such that 

k Z km =~ sup I(ei ,wk(~)))1 ~ o~m => jlwk(a))II < -. 

Therefore I wnll -~ O a.e. Let m c N' be fixed. For every n c N, set 

A~ :={u) ~ ~ : sup I(er,wn(cv))1<0im} 
l<i<v~ 

As I!wn(~)))ll --> O a.e, 111A~w*lll - O because 111A~w~(~))II < L . ae But O e K 
and K is convex, for every x ~ K, we get 

ai~ x e W~ 
supl<i~'~ i (er, x) l 
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so that 

Ilxll < -. 
supl~i~._ I (er, x) l 

Therefore we have 

l!wnill = illA-wnlll + Ill~¥A~w lll 

~ IllA~wnlll + I f sup l(er,w~(~)))lkt(dev) 
mam J~¥A~ 1~i~v~ 

~ ilIA~~wnlll + ma~ l~i~.~ f~ l(er, wn(cv)>1 11(du) l
 sup 

It follows that jlwnlll -> O. 

3. Visintin-types theorem in Pettis integration. We begin with a lemma. 

LEMMA 3.1. Let r : ~ -~ E be a cwk(E)-valued measurable multifunction 
and (fn) a sequence of Pettis integrable functions such that fn(cv) ~ r(cv) for all 

n and a.e ~) e ~. Suppose that (fn) converges in the Pettis norm to f e plE(~). 

Then there is a subsequence (gm) of (fn) such that (gm) converges weakly almost 

everywhere to f. Consequently f(~)) e r(~)) a.e. 

Proof. Let (e~) be a dense sequence in ~E, for the Mackey topology. By the 
deflnition of Pettis norm, it is obvious that, for each k, the sequence ((ek, fn>)n con-

verges to (ek, f) for the norm in L~(~, f, ,~). By an appropriate diagonal procedure 

we find a subsequence (gm) of (fn) such that 

Vk, Iim (ek,gm) = (ek,f) a.e. 
m - oo 

It follows that 

Vk, (ek, f(a))) < 6'(e~,r(u)) a e 

By [18, Lemma 111.34] we have f((~) ~ r(cv) a.e. Using a routine density argument 

we see that (gm) converges weakly almost everywhere to f. 

REMARK The proof of the precedmg lemma shows that the set SrPe of all 
Pettis integrable selections of a 'Cwc(E)-valued measurable multifunction is a convex 

closed subset of the normed space (PEl(/1) , Il･1 IPe)' 

Using the preceding lemma we are able to establish the relationship betweeh 
Sa~er and ad(S~e) where r is a cwk(E)-valued Pettis integrable multifunction and 
adf : ~) H> ad(r(c~)). 

PF~OPOSITION 3.2. Suppose that r : ~ -~ E is a cwk(E)-valued Pettis integrable 

multifunction and u is a; Pettis integrable function such that u((4)) e ad(r((k,)) a;.e, 

then u e ad(S~e). 

Proof. Without lost of generality we may suppose u E O. Assume by contradic-
tron that O ~ ad(Sfe) Then there exrst 6: > o (An)l~i~v. with O ~ A~ ~ I and 
~i"...__~lA~ = I and (u~)l~i~.~ in Sfe such that 

Ilu~llpe ~ c, Vn ~ N and Vi e {1, ...v~} 
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and 
lim II~~ IA~u~llpe =0. 

* - oo 

Since O is also a pc point of r(cv) by hypothesis, using lemma 3.1 and the weak 

compactness of r(~)), we may suppose that 

lim li~) IA~1Jc~(cv)Ii =0a.e. 
n - oc 

As O e ad(r(~))) a.e, it follows from [28] that 

lim ~e IA~Ilun(cv)ll = O a.e. 
n - oc 

As r is Pettis integrable, Sfe rs Pettis umformly mtegrable Hence there exrst 

n > o, such that 

kl(A) < n=~> sup [11Avjlpe ~ ~' 

ves~' 2 
By Egorov's theorem, there is a subsequence still denoted (~"~__~1A~llu~(･)1 I)n which 

converges almost uniformly. So there is a Jr_mesurable set B with kt(~ ¥ ~) < n 

such that ~~t~_..__"IA~llu~(ev)l{ -> O uniformly on ~. Hence there exists no ~ N such 

that Vn > n ~]t IA~llun(cu)I{ < uniformly on B. An easy computation gives 

~; IA~illBu"Ilp < JC~~~~"" A?liu?(cv)lld/d; < c 

i=1 * * - . 2
 

As pt(~ ¥ J~) < n we have 111~¥Bu"Ilp < for all n and for all ~ e {1 ..1/*}' That 

implies 
c
 Vn ~), IA~lll~¥Bunjlp. ~ ~' 

Whence we have 
~]"~_lA~ Ilu~llp* ~ ~,~_...*1A~(i llBu~ Ilp. 

+ Ill~¥Bu~llp<) 

~ ~,~__*lA~I!1Bu~llpe 

+ ~)i=1A~ ! I l~¥~u~ I i pe 

<_ c' 

that contradicts the inequalities 

llu~jlp >c Vn ~ NandVz ~ {1,...1/*}' [] 

The following is a version of Kornl6s-Visintin type theorem in Pettis integration. 

See also [7] for other related results in L~(pt). 

THEOREM 3.3. Suppose that r : ~ -~ E is a cwk(E)-valued measurable multi-
function, (u~) is a sequence in Sfe satisfying : 

(i) the set {(x/,un) : Iix/II ~ l, n e ~} is uniformly integrable, 
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(ii) (un) Pointwise converges on Loo ~) E! to u e pEl(~,f, /1) with u(~)) e 
apc(r(u))) a.e, 

then there is a subsequence (v) of (un) such that 

l
 lim li-~.~-lwt ulipe O 

n-oo n ~ 

for every subsequence (wl) = (vml) of (vm)' 

Proof. Let us recall that the scalarly Pettis uniformly integrable condition (i) 

implies that (un) is Pettis uniformly integrable [4]. Let (e~) be a dense sequence 

in BE, for the Mackey topology of E/. By (i) and (ii) the sequence ((ek,un))n is 

uniformly integrable for each k and converges cr(Ll, LOO) to <ek, u), using Koml6s 

theorem [26j and an appropriate diagonal procedure, we find a subsequence (vm) 

of (un) such that 
1
 Vk, Iim -~in=1(ek,w ) i = (ek,u) a.e. 

~-oO n 

for every subsequence (wl) = (v~s) of (vm)' By density argument, we see that 
(sn)n (~~s~-1wi)n weakly converges to u a.e. As u((J) is a pc point of r(a)) for 

a.e (~ e ~ by our assumption, it follows that 

lim lisn ull = O 
n - oo 

a.e. Since (un) is scalarly Pettis uniformly integrable so is (sn)' Hence (sn) is Pettis 

uniformly integrable. By Vitali theorem for Pettis uniformly integrable functions 
[4, Proposition 2.l] we have that 

lim lls~ ullpe = O, 
n - oo 

thus completing the proof. 

By combining Proposition 3.2 and Theorem 3.3 we obtain the following version 

of Visintin's theorem in Pettis integration. 

THEOREM 3.4. Suppose that r : ~ -> E is a cwk(E)-valued Pettis integrable 
multifunction and (un) is a sequence in S~e which converges (T(PEl(ke), LOO R E!) to 

u ~ S~e with u(cv) C ad(r(cu)) a.e, then limn-oo ilun ~ ullpe i O. 

Proof. Without lost of generality we may suppose u = O. Assume by contra-
diction that limsup~_oo I iu~llpe := c > o. By extracting a subsequence we may 

suppose that jlunllPe > ~ for all n. By Theorem 3.3 there is a subsequence (vm) of 

(un) such that 
l
 lim ll-~)e~=1villPe = O. 

n-oo n 
As llv~Ilpe > ~ for all m, we deduce that 

(*) O ~ co[S~e ¥ Bp~(p) (O, ~)] 
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where B~~(u)(O. ~) denotes the open ball of center O and radius ~ of the normed 

space PEl(pt). Since O is a denting point of r(cv) for a.e c~ ~ ~, by Proposition 3.2 

the null function O is a denting point of the closed convex subset S~e of the normed 

space PEl(kt) that contradicts (*). 

REMARK. Using the arguments of the proof of Theorem 3.3 Ieads to a second 
version of Koml6s-Visintin type theorem. We omit the proof. 

THEOREM 3.5. Suppose that the strong dual E! ofE is separable, r : ~ -> E 
is a ccb(E)-valued measurable multifunction, (un) is a sequence in Sfe satisfying : 

(i; the set {(x/, u~) : llx!li ~ 1, n c N} is uniformly integrable, 

(ii) (un) POintwise converges on Lcx) R E! to u e S~e with u(ev) ~E apc(r(~))) a.e, 

then there is a subsequence (vm) of (u~) such that 

l
 lim II-~in=1wi - ujlpe = O 

n-oo n 

for every subsequence_ (wt) = (vm~ ) of (vm)' 

Now we want to show that in some special situations Theorem 2.3 follows from 

Visintin-types theorem. We will need the following property of the denting points 

of the integral of a Lwc(E)-valued measurable multifunction. 

PROPOSITION 3.6. Suppose that r : ~ -+ E is a Lwc(E)-valued measurable 
multifunction and u e S~e such that f~ udhL e ad(f~ r(~;)/~(dLv)), then u is a 

denting point of the closed convex set Sfe of the normed space (PEl(ke), ll･llpe)' 

Proof. Let us observe that S~e is a closed convex set of the normed space PEl(,~) 

(cf. the remark of lemma 3.1). Suppose that u ~ ad(S~e). There is c > o such that 

u c ~~(Sf e ¥ L~p~(p) (u, c)) where Bp~(,t) (u, c) denotes the open ball of center u and 

radius c in the normed space PEl(1~). Since the application f ~: pEl(,1) H> f f dkt e E 

is linear and continuous for the norm topologies of PE1(/1) and E, we have that 

(3.6.1 ) 
f~ u(~)) kL(d~)) C ~~{ f(~)) /x(do)) : f ~: Sf' ¥ BpE'(u)(u, c)}' 

f
~
 

Now we claim that 

(3.6.2) 
{J~ f(') kt(da)) = f e Sf' ¥ Bp.(~)(u c)} n BE(1(u) (~) ~ R 

for every o~ > o, where I(u) := f~ udkt. For simplicity set 

f
~
 

K := r(cv)/h(deJ) 

and 
H := { f~ f(~))~(d(~) f C SP' ¥~p (u)(u c)} 
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It is obvious that (3.6.2) is equivalent to 

(3.6.3) H ~ K ¥ BE(1(u), a). 
Assume by contradiction that 

H C K ¥ ~~E(1(u), oi). 

Then 
~~~(H) C ~~:[K ¥ BE(1(u), ce)]. 

But 
I(u) ~ ~~7~[K ¥ ~E(1(u), c~)] 

because I(u) is a denting point of K. Therefore I(u) ~ 

(3.6.1). By (3.6.2) there exist a sequence (u~) in the 
Bp~(u) (tl., c) in PE1(pt) such that 

Z~5:(H) 

norm 

that 

closed 

contradicts 

set S~' ¥ 

lim 11 J~ un((4)) '~(du)) - f~ u(c()) Ix(cku)II O 

n-oQ 

Since I(u) e ase(f~ r(ce;)/~(du))), by Lemma 2.1 and 2.2 we deduce that 

lim liun ~ullp O 
n - oo 

Pe ¥ Bp (l/) Whence we have u ~ Sr ~ (u, c). That is impossible. 

In. the same vein as Theorem 3.3 and 3.5 we present a convergence result in Pettis 

norm via a vector-valued version of Koml6s theorem (see, for instance, [14, 22, 24]) . 

ensuring Koml6s convergence for the Pettis norm of Ll_bounded PUl sequences in 

L~(/h) where E is a B convex reflexive separable Banach space. 

THEOREM 3.7. Suppose that E is a B convex reflexive separable :Banach 
space (un) is a Ll-bounded and PUI sequence in L~(~,Jr,l~)' then there exist 
u ~ L~(~? f, pt) and a subsequence (vm) of (un) such that 

lim ll I ~)~ Iwt ullpe = O 

n-cx) n ~ 

for every subseqUence (wt) = (vm~ ) of (vm)' 

Proof. Since (un) is bounded in L~(~, F, IJ;) and E is B convex reflexive Banach 

space, by [14] there is u ~ Lk(~,T, kL) such that (un) Koml6s converges to u a.e, 

that is, there exists a subsequence (vm) of (1~n) such that 

1
 lim jl-~;t~-lwt ull O 

n-oo n ~ 
almost everywhere, for every subsequence (wl) = (vmt ) of (vm)' As (un) is Pettis 
uniformly integrable, so is the sequence (sn) = ( l_n~~r~=1wi). By Vitali theorem for 
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Pettis integrable functions [4, Proposition 2.1] , we have that limn-oc I Isn ~ ul l?e = 

O. The proof is complete. 

COROLLARY 3.8. Suppose that E is a 13 convex reflexive separable jBanach 
space, r : ~ -~ E is a convex valued measurable multifunction and (un) is a 
Ll_ bounded and PUI sequence in S~ which converges cT(PEl(,1), LOO R E/) to u ~ 

PEl(~, T, pL) with u ~ ad(S~e), then u e L~(~, f, kt) and limn-c<) Ilun ~ ullpe = O. 

Proof. Assume by contradiction that limsupn-oo llun ~ u]lpe := c > o. By 
extracting a subsequence we may suppose that I Iun ~ ullpe > ~ for all n. As (un) 

is PUl, applying Theorem 3.7 provides a subsequence (v~) of (un) and v c L~(/1) 

such that 
1
 lim ll-~)e~-1vi - vllpe = O 

n-oo n ~ 
Since (un) converges (T(PEl(kt), Loo RE!) to u, we have u = v a.e. But llvm ~ullpe > 

e_2 for all m, so we deduce that 

u C ~~[S~e ¥ Bp~(u) (u, ~)] 

where ~p~(u)(u, ~) denotes the open ball of center u and radius ~ of the normed 

space PEl(,~). That is impossible. 

Combining Proposition 3.6 and the arguments of Corollary 3.8 we get easily a 
version of Olech's lemma in L~(,1). 

PRoposlTroN 3.9. Suppose that E is a ~ convex reflexive separable ~anach 
space, r : ~ -~ E is a Lwc(E)-valued measurable multifunction and (un) is a L1_ 
bounded and PUI sequence in S~ which converges (7(PEl, Loo R E/) to u e S~e with 

f udkh e ad(f r dkt), then ILb e L~(/~) and limn-oo llun ujlpe = O. 

There is another denting property of the Pettis integral of a ccb(E)-valued Pettis 

integrable multifunction. 

PRoposlTroN 3.lO. Suppose that r : ~ -~ E is a Pettis integrable ccb(E)-
valued multifunction and u c S~e such that f~ ud~ ~ ad(f~ r(cu)~t(dc~)), then 

u(~)) e awd(r(~))) a.e. 

Proof. We may suppose that u s O. Let V be a weak neighbourhood of O in E. 

There exist el, e~, ･･e~ in I~E, and ?7 > o such that 

W := {x e E : sup (e; ,x) < n} C V. 
l<-i<k 

Then we have 
~~(r(~)) ¥ V) C ~~(r(cu) ¥ W) 

so that we need only to prove that 

O ~ ~~~(r(~)) ¥ W) a.e. 
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As O is a denting point of f~ r(ev)kt(d~)), we have O ~ ~~~(f rdpc¥77BE). Hence there 

exist x' e 1~E, such that 

I
f
~
 

a := 5'(x , rdpt ¥ nBE)) < O' 

Set A := {~) C ~ : 6'(x', r(~)) ¥ W) Z ~}･ Since W is open in (E, (7(E, E/)), it is not 

difficult to check that A e f. We claim that kL(A) = O. Assume by contradiction 

that u(A) > o. Let us consider the multifunction A defined on A by 

A((J) := {x c r(~)) ¥ W : (x',x) ~ a_2 }' 

Then ~ is a c(E)-valued measurable multifunction. By [18] A admits a measurable 

selection v : A - E. By the Pettis integrability assumption on r, v is Pettis 
integrable. Set Ai = {~' C A : (e;,v(~))) Z n} for i = l, 2, ...k. Set Bl = Al and for 

2 < i ~ k, ~i = Ai ¥ U;~~ Aj' Then (Bi)l~i~k is a mesurable partition of A. There 

is a mesurable set ~i with /h(Bi) > o. By integrating on 1~i we get 

il fB. v duII Z fB, (e,' v) dkL ~ nl~(B ) 

and 
(x!, fBi V dkt) = f~i (X ' V) dkt Z -Qi2 pL(Bi)' 

As llx!ll ~ I and a < O, we get 

Il J~, vdu1! ~ -~kt(Bi)' 

It follows that n < - a_2 which contradicts the definition of a. Hence we conclude 

that O ~ ~~(r(e~) ¥ W) a.e. 

The variations of our techniques allow to obtain other variants in L~(/h)' Let us 

mention only the following. Let us recall that a subset 7~ in L~(,~) has the weak 

Talagrand property (shortly WTP) [1l] if, given any L1_bounded sequence (un) in 
7~ there is a sequence (~n) with ~n e co{um : m > n} such that (~n) converges 

weakly a.e in E. Any bounded and weak tight sequence in L~(~) has the WTP 
[11, Theorem 2.8]. Lk(/~) has the WTP iff E is reflexive. For more on WTP sets 

in L~(/x), we refer to [11, 24]. Now we proceed to a variant of Theorem 3.7. 

PROPOSITION 3.ll. Suppose that E is separable I~anach space (un) is an Ll_ 
bounded, WTP and PUI sequence in L~(~, f, ~'), then there exist u e pEl(~, f, ,1) 

and a sequence (v~) with vn C co{um : m Z n} such that 

lim livn ~ ulipe = O 
n - oo 
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Proof. Since (u~) is bounded WTP in L~(~, J:, 11), by [11, Theorem 2.9j there 

is a sequence (vn) in L~(~,f, kt) with vn ~ co{um : m ~~ n} such that (vn) 
converges strongly a.e to a function u e L~(~, Jr, 11). As (un) is Pettis uniformly 

integrable, so is the sequence (v~). By Vitali theorem for Pettis integrable functions 

[4, Proposition 2.1], we have that limn-Qo I Ivn ~ u{Ipe = O. The proof therefore is 

complete. 

Using Proposition 3.11 and Proposition 3.6 we get easily another version of 
Olech's lemma in L~(,1). We omit the proof since it follows from the arguments 

given in Corollary 3.8. 

PRoposrrroN 3.12. Suppose that E is a separable 13anach space, r : ~ -> 
E is a Lwc(E)-valued measurable multiii2nction and (un) is a Ll_bounded and 
PUI sequence in S~ which converges cr(PEl, LOO R E/) to u e S~e with f~ ud,1 e 

ad(f~ rd~), then u e L~(pe) and limn-= !Iu~ - ullpe = O. 

It is enough to observe that (un) has the WTP by [11, Theorem 2.9] so that 

Proposition 3.12 is a direct consequence of Proposition 3.6 and Proposition 3.ll. 

Now let us mention some remarks concerning Olech-types lemma under extreme 
point condition. 

REMARKS. l.- If E is ~d the techniques given in the proof of Theorem 2.3 

allow to recover easily Olech's lemma [30]. Firstly, if ~ is atomless, the multivalued 

integral of closed valued multifunction is always convex. Secondly, an extreme point 
of a closed convex subset of Rd is a denting point [33, Lemrna 1, page 5.4] so that 

if one suppose in Theorem 2.3, kL is atomless, E is I~d and e e ae Cl(f~ r(cv) u(du))) 

where r : ~ -~ ~d is a closed valued measurable multifunction, then by [33, Lemma 

2, page 5.5] asserting that 

Aef ~ vd'~llR" vv ~ L~.(~,f,kt), Ilvl[L. ~ 2d Sup li JA 

we get an alternative proof of Olech's lemma. We refer to [5, 8] for other related 

results-

2.- The next version of Olech's lemma in PEl(/1) is based essentially on the 

following Visintin-type theorem. 

PRoposrrroN 3. 13. Suppose that E is a separa;ble 13anach space, ~~ : ~ -> E is a 

Lwc(E)-valued measurable multifunction, (un)neN is a Pettis uniformly integrable 
and ck(E)-tight sequence in Sge which converges cr(PIE(,h), Loo R E/) to 1~e ~ Sge 

with u(cv) C ae(~(~))) a.e, then llun ~ ullpe ~+ O. 

Proof. See [4, Theorem 2.4]. 

Using the preceding result we get 

PROPOSITION 3.14. SUppose that E is a separable 13anach space, ~ : ~ --~ E is a 

Lwc(E)-valued measurable multifunction, (un)ne~ is a Pettis uniformly integrable 
and ck(E)-tight sequence in S~e which converges (7(PEl(pt), LOO R E!) to u e pEl(kt) 

with f~ IJ;(ev) fh(du)) ~ ae(f~ ~)(~))pt(d~))), then !ItLn ~ ullpe ~> O. 
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Proof. Note that u ~ S~･ because tb~ -~ tL for the a(PIE(kt), L= R E/) topology 

and ~ is Lwc(E)-valued (see e.g. [4]). In view of Proposition 3.13, it is enough to 

check that u((~) e a.(~)(cu)) a.e. But this fact follows easily from the arguments 

given in [4, Theorem 2.4]. Suppose not. Then there exist a fT_measurable set A 

such that 

A C {~) e ~ : u(~)) ~ ae(~(~J)} 

with /1(A) > o. As in [4, Theorem 1.3j, it is easy to find two Pettis integrable 

selections g and h of ~) such that 

1
 9 ~ h and u = ~(9 + h) 

Let us consider a Jr_measurable set B C A of positive measure such that 

j~ 9 d~ ~ j~ h du 

and set 

g IBg + 1~¥Bu and g2 = IBh + l~¥Bu. 

Then we have 

e=f~ = ~ ( f gl d'L + f~ 1
 udu ~ g2dkt) 

with f~ gl dkb ~ f~ g2 dpt, thus contradicting the extreme nature of e. 

4. Visintin-type theorem in L~,[E]. Let E be a Banach space. For the sake 

of completeness we will recall the following notations and notions and summarize 
some useful results [12] in the space L~, [E] before we state the main result in this 

section. We denote by L~,[E] the vector space of scalarly measurable functions 

f : ~ -~ E/ such that there exists a positive integrable iuction h (depending on f) 

such that V~) e ~, }]f(a))Ii ~ h(ev). A semi-norm on Lb, [E] is defined by 

= f, Ilf(eJ)Il'l(d~') = inf{ hdkt : h integrable; h Z Ilfll}' Nl ( f ) f~ 
Two functions f, g e L~,[E] are equivalent (shortly f ; g (w')) if, (f(.),x) F 

(g(.),x) a.e. for every x ~ E. The equivalence class of f is denoted by f. The 
quotient space L~. [E] is equipped with the norm Nl given by 

N (f) mf{N1(g) : g e f}. 

Let p [12] be the lifting in LEao, [E] assoclated to a liftmg p m L~ (/x) We denote 

by L~p[E] the vector space of all mappmgs f e L~,[E] such that there exists a 

sequence (A~)~ZI in ir satisfying : 

U = A~ ~ and Vn > I IA f e )CEoo,[E] and p(lA~f) = Ip(A~) f. 

~>_1 
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If f C L~p[E], Ilf(.)II is measurable [12, Prop. 2.4 (6)] and the quotient space 

Ll,P[E] is equipped with the norm 
E' 

N1'p(T) = Nl(ilfll) = f~ Ilfll dkt' 

By [12, Theorem 2.5] there is a linear isometric isomorphism ~ : (L~,[E], Nl) -> 

(Ll~f[E], Nl,p) so that L~, [E] and L~P[E] can be indentified. In this identification 

f e Lb,[E] is identifled with ~(f) and for notational convenience, f is identified 

with a function f C Ll~f[E]. Let ck(E/) (resp. cwk(E/)) be the set of all nonempty 

convex norm compact (resp. cr(E/, E ) compact) subsets of the Banach space E!. A 

cwk(Ef)-valued multifunction r : ~ ~ E/ is scalarly measurable (resp. integrable) 

if, for every x ~ E, the function 6'(x, r(.)) is measurable (resp. integrable), where 

6'(x, K) denotes the support function of K ~ cwk(E!). 

PRoposlTroN A [12, Proposition 4.1, page 30]. Suppose that r : ~ -+ El 
is a cwk(E/)_valued multifunction and (fn) is a uniformly integrable sequence in 
Lb.[E] such that fn((J) ~ r(cv) for a.e u) C ~ and for all n, then (fn) is relatively 

(T(L~, [E](u), (L~, [E](kh))!) (weakly) compact in L~, [E]. 

We only sketch the proof. By Theorem 3.9 in [12] there are a sequence (gn) with 

gn ~ co{fm : m ~ n} and two measurable sets A and ~ in ~ with u(A U B) = l 
such that 

(a) V(1) ~: A, (gn((~))) is cr(E!, E ) Cauchy m E 

(b) V~) e B, there exists k e N such that the sequence (gn(~))n~k is equivalent to 

the vector unit basis of ll. 

As r(c~) is (r(E/, E )-compact for all ~) e ~, using (b) one has ~(~) = O. Hence 

there is a sequence (gn) in L~,[E] with gn ~ co {fm : m Z n} such that (gn(~))) is 
'' 

(T(E!, E )-convergent a.e. By Theorem 3.5 in [12] (gn) rs ~(LE [E](ke) (LE [E](/~)) ) 
convergent in L~, [E]. Hence ( fn) is relatively weakly compact in L~･ [~] by a general 

criterion for weak compactness in Banach spaces. 

In the remainder of this section we shall suppose that E is a separable Banach 

space. Using Proposition A and the separability of E we have ' 

COROLLARY B. Suppose that r : ~ -~ E/ is a scalarly measurable cwk(E!)_ 
valued multifunction and there is g c L~+ such r(cv) c g(~))~E, for all c() in ~, 

then the set Sr of all scalarly integrable selections of r is convex weakly compact 
in L~, [E] . 

PRooF. See [12, Corollary 4.2]. 

For notational convenience such a multifunction r is said to be integrably 
bounded. Unlike the space L~(kt), the preceding results are not standard and rely 

on a deep result involving the Talagrand decomposition in L~P[E] (//) [12, Theorem 

3 .9] . 
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A uniformly integrable sequence (un) in L~, [E](,x) is norm-tight if for every c > 

O there is a scalarly ck(E/)_valued measurable and integrably bounded multifunction 

~>e : ~ -> E/ with O e ~)c(~)) for all (~' C ~ such that 

sup kh({a) e ~ : un(~)) e ~)e(cv)}) < c 

n 

It rs easily seen that un can be wntten as un IA un + l~¥A un where An e J: and 
IA un e S~ and lil~¥A.un I iLl , [E] ~ c, so that a uniformly integrable normtight 

sequence (un) in L~,[E](fJ;) is relatively weakly compact in view of Proposition A 

and Grothendiek lemma, see e.g [3, page 183] for details. 

Now we are able to present a version of Visintin theorem in L~, [E] (kc) in same 

style as in [3, Lemme 10 and Th60r~me ll] and [3l]. Since the proof follows the 

same lines, we don't want to give details so much. Yet this needs a careful look. In 
the following by weakly converges we mean cr(L~, [E] (/~), (L~, [E] (~h))f) converges. 

THEOREM 4.1. Suppose that (un) is uniformly integrable norm-tight sequence 
in Lb, [E] (ph) weakly converging to th e L~, [E] (/h) such that 

u(a)) e ae(n~eN~1~ [{uk(c~) : k Z n}]) a.e, 

then f~ Ilun(~)) - u(~))ll kt(d~)) -~ O. 

Proof. We will divide the proof in two steps. 

Step l. We will prove the theorem in the particular case when (un) is a uniformly 
integrable sequence in L~, [E] (/~) weakly converging to u e L~, [E] (/h) and satisfying: 

(a) there is a convex norm compact multifunction r : ~ -> E/ such that un(cv) ~ 

r(~)) for all n and all ~) e ~, 

(b) u(a)) e ae(nne~~~;[{uk(~)) : k Z n}]). 

For every r > o, Iet us denote by BE, (O, r) the open ball 

1~E,(O,r) := {x/ e E! : Ilxlll < r} 

in the Banach space E/. Since (llunll)n is uniformly integrable it sufiices to prove 

that jlun ~ ujl ･~ O in measure. We may suppose u E O. Suppose not. Then there 
exist c > o and n > o such that 

(4.1.1) 11({~) ~ ~ : un(~)) ~ ~E.(O,c)}) Z n. 

(') for infinitely many n; namely there exists an infinite subset Sl C N such that 

the preceding inequality holds for all n ~ Sl ' For every ~) ~ ~, Iet 

~~(ev) := ~~~[uk(~)) : k ~ n}] and ~((~) := nneN~n(a)) 

Since the function x/ h~ Ilx!II is lower semicontinuous on E~･ , BE,(O, r) is a Borel 

subset of E~･･ As E~. is a Lusin space and any scalarly integrable multifunction 

(') The measurabihty of {(v e ~ : u*(a)) ~ ~E'(o,c)} win be demonstrated later. 
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from ~ to the set ck(E~.) of nonempty convex compact subsets of E!". has its 

graph in f R ~(E~･ ) where B(E~･ ) is the Borel tribe of E~･ ･ Now set 

A := {(J ~ ~ : ~]((~) ¥ BE,(O, c) ~ R} 

B := {~) e ~ : ~(eJ) C I~E'(O,C)} 

B~ := {~) e ~ : ~)~(~)) C BE,(O,c)}. 

As the graph of the multifunctions ~] and ~)~ belong to Jr R B(EL･ ) and BE, (O, r) 

is a Borel subset of EL･ , by a classical mesurable projection theorem [18, Theorem 

III.23] we see that {w ~E ~ : u*(~)) ~ BE,(O,c)}, A, L~~, B are fT_measurable. 

Furthermore we have L~~ T I~ because if~) e B we have that nn ~]~(~))¥BE, (O, c) = ~ 

so that by finite intersection property of compact spaces there is an integer m such 

that n~>~ ~~(a)) ¥ I~E,(O, c) = ~. Pick Nl such that n Z Nl implies /1(~¥ E;~) < ~. 

Since 

{~) ~ B : u~(cv) ~ BE,(O,c)} C 1~ ¥ B~ 

we get 

(4.1.2) n > N ==> Ix({~) ~ B u (cv) ~ 13E (O c)} < n 
4' 

Let us write u~ = v* + w~ where 

vn := 1{.e~=*~(~)~BB, (o,=)}u~ 

and 
wn := l{~e~=**(-)eBi~'(o,e)}u~. 

Then the sequence (vn) is relatively sequentially (7(L~, [E], (L~, [E])/) compact in 

view of Proposition A and EberleinSmulian theorem. There is a subsequence 
(vn)~es2 where S2 is an infinite subset of Sl such that (vn)nes2 converges to v c 

L~,[E](A n T, ~) for this topology. It follows that (wn)neS2 weakly converges to 

u - v. Using a version of Mazur's theorem in L~,[E] [12, Lemma 3.12] and [3, 

Lemma 4] we get 

v(cv) ~E nnes2 ~~; [{vk(cv) : k Z n, k C S2}] C ~](~') a.e. 

Similarly we have w(cv) e ~)(cv) a.e. Since O e aext(~((~)) a.e and un weakly con-

verges to O, we get v = w = O. As ~)(~)) is norm compact and convex in E/ we have 

that ae(~(a))) = ad(~(cv)) in view of [3, Lemme l]. So we have 

O ~ ~~ [~(~)) ¥ BE,(O, c)] a.e. 

It is obvious that ~~i [~(a)) ¥ BE, (O, c)] is nonempty convex norm compact (a fortiori 

(T(E/, E) compa.ct in E/) whenever ~) C A. Hence the multifunction ~f deflned from 
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λwith　no鵬㎜pty　vahes　in　the　c王osed　unit　ba118亙ofE（thanks　to　the　Hahn－Banach

Theor飢n）：

　　　　　　　　　ψ（ω）：二｛妊Bポδ＊（z，剛Σ（ω）＼助（O，ε）1＜0｝

h鵬its箏脇ph三nλ∩⑳13（3E）μ8，Le㎜m＆III．141．Byμ8，Theore㎜II．221，Ψad㎜its

げ一㎜・棚・・b1…1・・ti・・σ：λ→8亙・Si…Σ犯（ω）＼8E・（O，ε）↓Σ（ω）＼助（O，ε）

We　get

（4．！．3）　　　δ堵（σ（ω），面エΣれ（ω）＼3E。（0，ε）］）→δ＊（σ（ω），εδ［Σ（ω）＼BE。（0，ε）］）一

By〔3，Le㎜m－a3］，there飢eα＜0an（i　lV2such　th就

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　η（4工4），れ≧N・⇒μ（／ω・λ：δ＊（σ（ω），剛Σ（ω）＼3厄・（0，ε）1）・α／）・τ

As伽is　either二0or　be1ongs　to〔Σ：れ（ω）＼B〃（O，ε）〕，we　have玉i㎜supn〈σ（ω），りれ（ω）〉≦

0－Now　since伽→0forσ（五も。回］，（ムち∫lE］）1）a巫dム冒（μ）C（五ち。〔到）’in　view　of

〔12，page18〕，for　everyんξ工置（λ∩ア，μ）we　get

（4工5）
か（一）／1（一），ψ）／！（ぬ）一・・

Therefore　by〔3，Co亙．D］，〈σ（．），伽（．）〉一→0h㎜e＆sure．Consequent1y　there　exist

！V3such　that

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　η
（4工6）　れ≧N・1（“3・）⇒μ（／ω・λ：／σ（ω）1ψ）／≦α／）・互・

Now　observe　that
　　　　　　　　　　　　　　　　　　｛ω∈λ：ηれ（ω）≠O｝

　　⊂｛ω∈λ：りれ（ω）≠O・nd／σ（ω），η。（ω）／＞α｝∪｛ωd：／σ（ω），りれ（ω）／≦α｝

　⊂｛ωd：δ＊（σ（ω），剛Ση（ω）＼助（O，ε）1＞α｝U｛ω∈λ：／σ（ω），・れ（ω）／＞α｝・

By（4工5）and（4工6）we　get

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　η
（4・1・7）　れ≧狐・・（N・lN・）⇒μ（｛ω∈λ：ψ）≠0／）＜夏・

B砒

　　　　　　　　　　　　　　　　｛ω∈Ω：秘れ（ω）φ3E・（O，ε）｝

　　　　　　二｛ωξλ：泌。（ω）φ助（0，ε）｝U｛ω∈B：批η（ω）¢BE・（0，ε）｝

　　　　　　　　＝｛ω∈λ：伽（ω）≠O｝U｛ω∈8：αれ（ω）¢B〃（O，ε）｝・

So　by（4．1．4）＆nd（4．1．7）and　forれ≧㎜ax（！V1，！V2，N3），we　get

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　η　　η
　　　れ≧m弧（州，N・lN・）⇒μ（／ωξλ：ψ）¢3週・（01ε）／）く夏十5＝η・

That　contradicts（4．1．！）．
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Step 2. Now we pass to the general case. We suppose that (un) is norm-tight. 
Let e > o. There is a scalarly ck(E/)_valued measurable and integrably bounded 

multifunction ~>e : ~ -> E/ with O ~E ~)c(u)) for all ev ~ ~ such that un can be 

written as 

un = IA~u* + 1~¥A~un 

where An ~ J' and IA un ~ S~ and lll~¥A unllLl,[E] ~ e. By Corollary B we 

Pe may suppose that (vn) = (lA*1hn) weakly converges to v e S~ , by extracting a 

subsequence if necessary. Hence we have 

O weak lim un = weak- Iim [vn + wn] = v + w 

n - oo n - oo 
with wn = 1~¥A.un and w e S~e similarly. By Mazur's theorem in L~, [E] [12, 

Lemma 3.12] and [3, Lemma 4] we have 

(4 1 8) v(cv) e nne~;co[{vk(~)) k > n}] c nneN~~[{uk((J) : k ~~ n}] a.e. 

Similarlly 

(4.1.9) w(cv) ~ n~eN~Z~[{1Ltk(~)) : k Z n}] a.e. 

As O C ae(nn~E~~~:[{uk(a)) : k Z n}]) by hypothesis, applying the arguments of 

Step I to vn and wn gives v = w = O. Again by [3, Lernma 4] we get 

(4.1.lO) O = v(~)) e ae(nneN~~[{vk(ev) : k ~ n}]) a.e. 

By (4.1.10) we can apply the results stated in Step I to the sequence (v~)n Showing 

that llvnilL~,[E] -~ O. Since 

Ilu~llL [E] < IlvnIIL~,[E] + l!wnllL~,[E] ~ Ilv~IIL [E] +c 

for all n ~ N and ~ is arbitrary > o, llunIIL~,[E] -~ O. 

To finish the paper let us mention an easy variant of Theorem 4.1. 

PROPOSrrroN 4.2. Suppose that E is a ~anach space with strong separable dual, 
r : ~ -~ E is a closed convex measurable multifunction and (un) is a sequence in Srl 

which converges cr(Ll, LOO) to u e S~ with,u(~)) e apc(r(cv)) a.e, then Ilun~uIILI -~ 
O
.
 

Proof. Using the separability of the dual of E/, it is easy to check that (un) 

has the weak Koml6s property. Namely there there exist u ~ L~(~,f, /1) and a 
subsequence (vm) of (un) such that for all e' ~ E/ and almost all u) C ~ 

nli._,moo(e , ~~]j=1wj(cv)> = (e',u(~))) 

a e for each subsequence (wl) = (v ). Since u(~)) G; apc(r(~))) a.e we have 
m~ 

l
 lim -~)3=1wj(cv) = u(~)) 

~-oo n 
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a.e and strongly in L~(~). 

COMMENTS. (1) Visintin-types theorem were extensively studied by classi-
cal methods [36, 33, 5], Young measures [32, 6], Truncation methods [3, 4], K-

convergence (alias Koml6s convergence) [6, 7] . Several reflnements of this problem 

were stated in [6, 7] as well as the connection between Olech-types lemma and 

Visintintypes theorem [8]. A good synthesis of this problem is in Valadier's exp0~6 
[3 3] . 

Visintintypes theorem and Olech-types lemma in Pettis integration have been 
studied recently in [4]. 

(2) The present paper is a continuation of the preceding studies, mainly we give 

several variants of the problem of " norm convergence is implied by the weak"' 

under denting point conditions in both Bochner and Pettis integration as well we 

provide a characterization of strong extreme points in the same vein as in [28]. 

So it is worth to mention the characterization of the denting points of the convex 

set of Bochner integrable selections [10, 19, 27]. Unfortunately we are unable to 

give a complete characterization for the analoguous ones in Pettis integration [see 

Proposition 3.2]. That is an open problem. Theorem 4.1 is related to the problem 

of " norm convergence is implied by the weak" under extreme point condition in 
L~, [E] extending Lemma 3 and Theorem ll in [3] and Theorem 4.3 in [12]. Yet the 

proof is based upon the truncation techniques developped in [3] and several delicate 

results in [12]. Actually we are unable to derive Theorem 4.1 from the theory of 

Young measures [6, 9, 32, 33] or Koml6s convergence [6, 7, 9]. The problem of 

"norm convergence is implied by the convergence in ~)/ " under strict convexity 

was stated by Brezis [15] using a quite different technique. An other approach of 

the problem of "norm convergence is implied by the weak" under strict convexity 
is in [13]. 

(4) It is worth to pose the following question. Suppose that (un)n is a se~ 
quence in Lb(kL) which converges (T(Lb(pL),LEoo,(u)) to u e L~(kt) with u(~)) e 

ad(nn~o~~~{uk(eu) : k Z n}) a.e. Does liun ~ ullLl -> O. The answer is negative 

by considering the following example (see also an analogous one in [3 , page 180]) 

which has been kindly communicated to us by M. Valadier. Let (e~)n denotes the 

orthonormal basis of a separable Hilbert space H. Set 

~:{ek : k Z n} = {~)ko0=nAkek, : Ak Z O and ~;k~~=nAk ~ 1}. 

We have 
nn>0 ~~{ek : k Z n} = {O}. 

Set un = en and u ~ O. Then un ~~ u for (7(L~(/~),L~(~)) using the domi-
nated convergence theorem while I Iu~ IILI does not tend to O. But now suppose 

that E is a separable reflexive Banach space and r : ~ -~ E is a closed con-
vex valued measurable multifunction, (un) is a sequence in L~(,1) which converges 

cr(L~(/~),LEoo,(,t)) to u e L~(kL) with ttn(cu) c r(aJ) for all n and all cv e ~ and 

u(u)) e ad(r(~))) a.e, then limn~oo liun ~ uIILI = O. Namely that version of Vis-

intin's theorem is valid in separable reflexive Banach spaces. See e.g [33, Theorem 

7] using Hahn-Banach theorem and measurable selection theorem as in [3, Lemma 
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10] and [4, ･Lemma 2.21･ An extension of this result to separable Banach space 
has been obtained in [7] under weak tightness assumption using Koml6s conver-

gence. It turns out that the above mentioned example does not satisfy the as-
sumption of the preceding version of Visintin's theorem. See also [7, Corollary 

3.6] and Proposition 4.2. Indeed u((~) is not a denting point of r(~)) when r(c4)) 

is a closed convex multifunction satisfying Vn,un((J) ~ r((/)) because, for every 

c C]O, 1[, O ~ ~~{en : n ~ O} C ~~[r(~)) ¥ BE(O, c)]. 

Apart from the use of truncation method and Koml6s arguments, we stress the 

fact that most techniques employed here are elementary. 

ACKNOWLEGMENTS. We wish to thank M. Valadier for a careful reading of this 

paper . 
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