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1. Introduction

In this note we discuss a recent nonlinear ergodic theorem for amenable semigroups [6]
and introduce the notion of an ergodic sequence for semigroups of non-expansive mappings
on a non-empty closed convex subset of a Hilbert space. It contains part of my talk given
during the third symposium on Nonlinear Analysis and Applications held in July, 1998, at
Josai University, Japan. I would like to thank the organizers of this symposium for their

kind invitation to speak and their warm hospitality during the conference.

2. An Ergodic Theorem for Amenable Semigroups
A semigroup S is called amenable if there is a linear functional m on £¢°°(S), the

Banach space of all bounded real-valued functions on S with supremum norm such that

(i) m(f)>0 forall fe£>(S), f>0.

(@) m(1)=1

(iii) mfaf) = mraf) = m(f) for all f € £°(S) where ({uf)(t) = f(at) and
(rof)(t) = f(ta) forall t€S.

A linear functional m on £oo(S) satisfying (i) and (i) is called a mean; m satisfying

(i), (i), (iii) is called an invariant mean. As well known, any commutative semigroup is

" 1This research is supported by an NSERC-grant.
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amensble. A finite semigroup S is amenable if and only if S has a (unique) minimal
ideal. However, the free group (or semigroup) on two generators is not amenable (see [3]
and [4]).

A well-known result of Day [2] (see also [4]) asserts that if S is an amenable semi-
group, then whenever S = {Ti; s € S} is a bounded representation of S as bounded
linear operators on a Banach space E, there exists a net of finite averages A, of &
(i.e. for each z € E, A,(z) is in the convex hull of {T,(z); s € S}) such that
lim lAa(Ts —I)(z)]| =0 and lién”(Ta —I)A.(z)|| =0, for each z € E.

In this case, if E(S) = F(S) + D(S), where F(S) is the fixed point set of S,
and D(S) is the closed linear span of {7,z —z;s € S and z € E}, then there is a
projection P onto F(S) along D(S) and PT, =T,P =P forall s € S. Furthermore,
if z € E(S), then P(z) is the unique common fixed point in <o {Tsz; s € S}, where
co A is the closed convex hull of A.

The first nonlinear ergodic theorem for nonexpansive maps was established in 1975
by Baillon [1]: Let C be a closed convex subset of a Hilbert space and T’ a nonexpansive
mapping of C into itself. It the fixed point set F(T) of T is non-empty, then for each

z € C, the Cesario means
1 n-—1
_ 4 k
Su(z) = - kgle z

converges weakly to some y € F(T). In this case, putting y = Pz foreach z € C, P
is a nonexpansive retraction of C onto F(T) such that PT = TP = P and Pz €
to{T"z;n=1,2,...} foreach z € C. In [8], Takahashi proved:

Theorem 1([8]). Let S be an amenable semigroup, C be a non-empty closed convex
subset of a Hilbert space H, and S = {T,; s € S} be a representation of S as non-
expansive mappings from C into C. Assume that F(S) = fixed point set of S is
nop-empty. Then there is a non-expansive retraction P of C onto F(S) such that

TsP =PI, =P forevery s€ S, and Pz € {T,z; s € S} for every z € C, where
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©0.A is the closed convex full of A.

Takahashi’s result was extended to uniformly convex Banach space with a Fréchet
differentiable norm when S is commutative by Hirano, Kido and Takahashi [5]. However,
it has been an open problem for some time (see [9]), whether Takashi’s result can be fully
extended to such Banach spaces for amenable semigroups. Recently this problem was
answered by Lau, Shioji and Tekahashi in [6]:

Theorem 2 ([6]). Let C be a closed convex subset of a uniformly convex Banach space
E, let S be an amenable semigroup, let S = {Ti;t € S} be a nonexpansive semigroup
on C such that F(S)# 0. Then there exists a net {A,} of finite averages of S such
that for each t € S and for each bounded subset B of C, 1'1‘]):‘[1 |AaTiz — Apz|| =0 and
lim |ITtAaz — Aaz|| = 0 uniformly for each z € B.

3. Ergodic Sequences
Let S be a semigroup and ¢*(S) denote the Banach space of all f:S — IR such
that [|fi = £ |f(z)] < co. Let (£1(S)); = all 8 € £(S) such that 6 > 0 and

6]l =1 (countable means). There is a natural convolution on £}(S):
(61 % 82)(s) = ) _{6(s1)6(s2); s152 = s}
Then (£!(S),*) is a Banach algebra, i.e.
1162 % B2} < [|6:]] [}62]].

Let H be a Hilbert space, C be a closed convex subset of H, and S = {T}; s € S}
be a representation of S as non-expansive mappings from C into C such F(S) #0.

Let z € C. For each y € H, consider the bounded real-valued function on S
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s+ (Toz,y). Let 8 be a meanon £°(S), define

<T9($)1 y) =0, ((Tg.’l?, y))

= {{Tuz,1)0(s); s€ 8} if 6 (£())].

Then Ty is a non-expansive mapping from C — C (see [7]).

Call a sequence (net) {6,} of means on S an ergodic sequence (net) for non-
expansive mappings if for any representation S = {T,; s € S} of S as non-expansive
mappings on a closed convex subset C of a Hilbert space into C such that F(S) # 0,
then for each z € C, the sequence (net) Tp,(z) converges weakly to a fixed point of S.

A net of means {puo} on £°(S) is called “asymptotically invariant” if

i (4a(tef) ~ pa() =0 end

1131 (ta(rsf) — pa(f)) =0 forall seS&.

Theorem ([7]). Let S be an amenable semigroup. Then any “asymptotically invariant

net” of means is an ergodic net for non-expansive mappings.

Note:
(1) Every invariant mean on £(S) is asymptotically invariant.
(2) If m is an invariant mean on £=(S), then there is a net 8, € (£1(S ))f such that

n
0~ has finite support i.e. 84 = ) Aid,, (convex combination) such that
i=1

B4 > m. In particular the net {6} is asymptotically invariant. Hence {6,} is

an ergodic net of finite means on S for non-expansive mappings.

Example ([7]): S =({0,1,2,...},+)

1 n—1
Gn = E };Z:O(Sk,
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then {6.} is an asymptotically invariant sequence of finite means on S. Consequently,

{6.} is an ergodic seguence of finite means on S for non-expansive mappings.

Problem 1: Given an amenable semigroup S, when does there exist a ergodic sequence

of countable (or finite) means on S for non-expansive mappings?

Problem 2: When can the net {A,} of finite average of S in Theorem 2 be chosen to

be a sequence dependent on the semigroup S7
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