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On nOnlinear prOjections of vector fields 

L. L. STACHO 

ABSTRACT. Given a locally Ljpschitzjan bounded vector Leld X in a neighbor 

hood U of a closed domain D with Lipschitzian boundary and given a; contin-
uously dii~erentiable projection P of U onto a Cl submanifold of U , if X is 

complete in D then its projection P/X is complete in P(U) n D . We outline 

an application to the problem of contractive projections in Jordan theory. 

1. Introduction 

In 1985 W. Kaup [6j solved the longstanding problem of what type of algebraic struc-

ture characterizes the image of a C' -algebra by a contractive linear projection. One of the 

basic ingredients of his solution was the fact, established also by the author [8] in 1982, that 

the image of a complete holomorphic vector field in the unit ball of a (complex) Banach 

space is complete in the unit ball of the range by a contractive linear projection. I~ecently 

much interest is paid for the natural order-free generalizations of real O' -algebras, the 

socalled real JB ' -triples [4]. The problem if the range of a contractive linear projection 

of a real JB * -triple is a real JB * -triple is still open. 

In this paper we prove a theorem concerning possibly nonlinear projections of locally 

Lipschitzian bounded vector fields on domains in Banach spaces. Our result may have inde 

pendent interest in nonlinear real analysis even in finite dimensions besides its application 

to complete polynomial vector flelds on the unit ball of a real JB ' triple as a first step 

toward the solution of the problem of contractive projections in real Jordan theory. We 

organize the paper to be self-contained. 

2. Preliminaries, notations 

Throughout the whole work Do denotes an (arbitrarily fixed) open subset in a Banach 

space E with norm jl il and D is an open subset of Do such that its boundary aD is 

Lipschitzian of codimension I contained in Do . That is 

aD C Do , UanaD = {x e UO : ¥~a(x) = O}, UanD = {x ~E U ~~r (x) < O} (aeaD) 

for some family {~a : a c aD} of Lipschitzian functions of the form 

~ra : Ua ~IF~ , a~ Ua open c Do , I~f(~(x)- ~~a(y)1 ~ 1~allx-yli (x,y e Ua) ' 

~a(x + Aea) = ~ra(x) + A whenever x,x + Ae(~ C Ua 
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with suitable unit vectors ea e E (a ~ aD) . We regard any locally Lipschitzian bounded 

m a p 

X : Do ~~ E llX(a,t)jl ~ M , llX(a, t) - X(d,tl)ll ~ Mx,t(lla - dll + Ib - blj) 

for a, d e Do and t, t/ e IR with Ila - a!Ii , {t - t/1 < cx,t' 

as a time-dependent vector field on Do with the value X(a,t) at the point x and in the 

time t . By the classical Piccard-Lindel6f theorem on the existence and continuity of the 

maximal solution of ordinary differential equations [7, I], under our hypothesis there exists 

a unique open subset ~x C Do X IR along with a map sx : ~x ~ Do such that for each 
a ~ Do the section ~x,a := {t e Il~ : (a,t) e IR} is an interval containing O and 

d
 ~:sx(a, t) = X(sx(a,t),t) (t e ~a) ' sx(a, O) = a , 

(2.1) Iimttsup~. sx(a,t) exists and e aDO if sup~x < oo , } 
limt~int~. sx(a,t) exists and C aDO if inf~x > -oo 

where aDO stands for the boundary of Do ' In the sequel we reserve the notations 
sx,~x,~x,a for the maximal solution of the initial value problems d/dt x(a,t) = 
X(x(a,t),t) , x(a,O) = a e Do ' Given a subset S C Do , we say that the vector fleld 

= x,a for all a e S . By the boundary behaviour (2.1) we X is complete in S if IR ~ 
have 

X complete in D ~~> X cornplete in D ~~ X complete in aD 
(2.2) <~> for every a c aD there exists to > o with sx(a,t) ~ aD (Itl < to)' 

Recall that a map f : S ~ F where S C E and F is another Banach space (with 
norm 11 IIF) is differentiable (in Fr6chet sense) with derivative f(a) e ~C(E,F) := 

{linear maps E ~ F } at the point a ~ S if S is a neighborhood of the point a in 

E and 
~i~mo llf(a + h) - [f(a) + f/(a)h]llF llhll~1 = O . 

As usual, we regard L(E,F) as a Banach space with the operator norm IILjl := 
E,F 

sup{llLxliF/ Iixll : O ~ x e E} (L e L(E,F)) . ' 
A set S c Do is a Ck -submanifold of Do if there exists a closed linear subspace 

F C E such that for every point a e S one can find neighborhood Va open c Do of a 
along with a h -times continuously differentiable one-to-one map ~~a : Va ~~ E such that 

its range ran(~a(:= ~)a(Va) = {~~a(x) : x e Va}) is an open subset in E and its inverse 

(~~1 is also k -times continuously differentiable on ran~'a and S n Va = F n ran~~a ' 

By a projection of Do we mean a mapping P : Do ~ Do such that P(a) = a for 
a e ranP . 

With the standard techniques of differential geometry using local charts to describe 

the behaviour of curves tangent to vector fields we get the following. 
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2・肌e㎜㎜乱〃P加α地1ceco棚舳oα81μ蜥㈱棚αろ1θρブo畑差6oηoμ）oω1老肋oα肌棚
6ε向ηα伽・肋α・1・舵602一舳6肌α吻棚・ゾD。．λ舳m・X：D。・R→E1・α1・・α吻

助8C肋地れ0α曲れεC亡0ダ〃∂．肋θπ伽妙εC老0げε〃

　　　　　　　　　　　　　　γ：＝戸X：（α，オ）→戸（α）X（α，亡）

｛8α1301㏄α吻ム伽C肋滅αれα棚60απ棚ω肋

（2・4）　　　　　　　　8γ（α，左）∈峨n1＝）　　forα∈r鋤P狐d左∈Ωγ，、．

恥oo£We　haveμ：二sup、ξD．llp1（α）l1刃，亙＜oo狐dξ：＝sup（、，乏）ω。×R1lX（α，尤）ll＜◎c・

Then　llγ（α1オ）ll二11p1（α）x（α，左）ll≦llp1（α）1』，亙11x（α）ll≦μξ　（α∈1）o，右∈R）showing

the　boundedness　of　the　vector貧eユd　γ．

　　Given　any（α，オ）∈11）o　x］R，there　exist0くδ，λくoo　with　llX（α1ラt1）一X（α2，乏2）ll≦

λ（llαrα・1l＋ト1・1）・・dllp1（α・）一p’（α・）llく（llp”（α）l1刃，岬，亙）十1）1lαrα・1l

bぎ　llα1一αll，llα2一αll，！む一¢1，1君2一亡1＜　δ．Then　we　have　llγ（α1，苫1）＿γ（α2，¢2）li＝

llp1（α・）（X（α1・1・）一X（α・ll・））一（P1（α・）一P1（α・））X（α・ll・州≦（μ・2λ十11p”（α）l1亙，岬，亙）・

1）（llαドα。l1刊オr亡。1）wb・・・…1αドαll，llα。一αll，1右rll，llザll〈δ．Thi…t・b－

1ishes　the王oca11y　Lipschitzian　property　of　γ．

　　Fixα∈脇nP肌bi七r弧i1γSince　ranP　is　a　c1osed02－sub㎜包nifb1d　of．0◎，

　　　　　　　　　　　　　…P∩γ＝Φ’王（F∩γ），Φ（α）＝0

for　so㎜e　twicc　continuo泌sユy　d搬erentiable　one－to－one皿ap　Φ：γ→γ　whereγ，γ　a肥

op⑧n　sets　in　E，α∈γC　Do，0∈γ二r狐Φ＆双dΦ■1is　twice　co皿t虹uous1y　d一沮ere砒iab1e

㎝γ．We　can　chooseγto　be　so　s皿＆11thatΦ，Φ1，Φ”狐dγ㎝γ，resp㏄tive1y
Φ一1，［Φ■1，1Φ一11”㎝7飢・b…d・d・肌ip・・hit・i狐．Ch・…1。…hth・・w・h…

3γ（α，士）6γfo・1刈＜亡。。T・pm・・（2．4）。iもs・鼠…t・…th・t

　　す（左）6F　（1引＜差o）　　wh鉗e　　す（尤）：＝Φ（ひ（苫））andμ（亡）：二3γ（α，左）　（1舌1＜あc）。

si・㏄d／伽（1）＝［P’（州）／x（州，君）（lll＜1・）狐～（o）＝α。

　　　　　　d～　　　～　　　一
（。．。）　房炸［榊））］X（す（亡），工川一＜亡・い（O）＝0

　　　　　wh…P：＝Φ・P・Φ一五，X（到：＝［Φ1（Φ’1（到）lX（Φ一五（到）（頁∈γ）．

We　can　use　si㎜i1肌esもi皿ates1eading　to　the　bounde由ess狐d1oca1Lipschitzi＆nity　ofγ

to　prove　th就γis　bom（ied狐d　Lipschitzi狐．Thus，by　the　Pi㏄班d－Li皿de16f比eorem，

す三s　theα加脾6so1ution　of　the　in三tia1vahe　prob1e㎜（2．5）．O皿the　other　hand閉nP＝

Φ（ranP∩γ）C　F．Th泌s，since　F　is　a　c1osed1inear　subspace　of　亙，

　　　　　　　　　　　　　　・・nγ二・狐（P戸γ）C・狐P1⊂F。
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However, then we can solve the initial value problem (2.5) within the subspace F . By the 

uniqueness of the solution of (2.5) it follows ~(t) e F (It! < to) . Since also ~(t) e V 

(Itl < to) , hence y(t) = ~~1(~(t)) e (~-1(Fn V) = ranPn V . That is ~2.4) holds. C] 

2.6 Remark. In flnite dimensions the conditions of the Lemma can be weakened. Indeed 

if dimE < oo in the above Lemma it suffices to assume P to be continuously differentiable 

of and ranP to be a Cl _smooth submanifold of Do . In this case we can only assure that 

the vector field P!X is well-defined and ranges continuously in F . Then instead of using 

The Piccard-Lindel6f theorem to establish the existence and uniqueness of the solution of 

(2.5), we can argue as follows. By Peano's theorem [2] on ordinary differential equations 

with finite dimensional continuous vector flelds, (2.5) has a solution with values in F . 

For any solution ~ of (2.5) the function z := (~-1 o ~ is a solution of the initial problem 

z(O) = a , d/dt z(t) = P/(z(t))X(z(t),t) (jtl < to) . However, this latter is unique and 

coincides necessarily with y whence (2.4) is immediate. 

It is well-known [2] that Peano's theorem does not hold in general in infinite dimen-

sional Banach space setting. 

Question. What kind of weaker additional hypothesis are necessary for a continuously 

differentiable projection P and a locally Lipschitzian bounded vector field Z with the 

property P!(a)Z(a,t) = Z(a,t) (a c ranP, t e I~) to assure sz(a,t) c ranP (a ~ 
ranP, t ~ ~z,*) ? 

3. Mam result 

3.1 Theorem. Let E be a Banach space, D,Do open c E such that D C Do and aD 
is a Lipschitzian submanifold of codimension I in Do . Assume X : Do X I~ ~ E is a 
locally Lipschitzian bounded vectorfield which is complete in D and let P : Do ~> Do be 
a twice continuously differentiable projection such that ranP is a C2 submanifold of' Do . 

Then the projected vectorfield Y(a,t) := P'(a)X(a,t) (a e Do, t e lr~) is also complete 

in D n ranP . 

Proof. According to Lemma 2.3 and (2.2), it sufiices to establish that for any boundary 

point a e aD there exists to > o such that the solution y : (-to,to) ~ Do of the initial 

value problem 

d
 (3.2) ~~y(t) = Y(y(t) t) (Itl < t ) y(O) a 

ranges in aD . 

Fix a e aD arbitrarily. Since aD is a Lipschitzian submanifold of codimension I in 

Do , we can choose a bounded open convex subset U of Do along with a Lipschitzian 
function ~~ : U ~~ IR and a unit vector e c E such that 

~~(x+Ae) ~(x)+A (x x+Ae~ U) , aeUnaD= {xe U: ~~(x) =0} . 
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Observe that the mapping 

R(x) := x - ~(x)e (x c U) 

is a Lipschitzian projection of U onto U n aD . Therefore the vector fleld Z(x,t) := 

Y(R(x),t) (x e U, t e JR) is bounded and locally Lipschitzian on U . Thus, for a 
sufiiciently small value to > o which we fix henceforth, the initial value problem 

d
 -u(t) = Y(R(u(t)),t) , u(O) = a 
d t 

has a unique solution u : (-to, to) ~~ U . We are going to show that 

(3.3) ~~(u(t)) = O (It! < to) 
Remark that from (3.3) it follows R(u(t) = u(t) and hence d/dt u(t) = Y(u(t),t) (Itl < 

to) ' By the uniqueness of the solution of the initial value problem (3.2), we have necessarily 

y(t) = u(t) = R(u(t)) c ranR C aD which completes the proof of the theorem. 

We prove (3.3) as follows. Since u has the continuous (moreover locally Lipschitzian) 

derivative t H~ Y(R(u(t)) , the function t H~ ~~(u(t)) is locally Lipschitzian. Recall that 

(locally) Lipschitzian functions of one real variable are absolutely continuous [7] and hence 

differentiable Lebesgue-almost everywhere satisfying NewtonLeibniz rule. Thus for (3.3) 

it suffices to see that 

(3.4) Iimsup I [~r(u(t + c6)) - ~!(u(t))] ~ O (Itl < to, c = ~1) . 

6~o 6 

Fix t e (-to,to) and ~ e {~l} arbitrarily and write 

a := R(u(t)) , v :=Y(a,t) , x(6) := sx(a,5) (6 C ~x,*) ' 

Observe that for 6 ~ O we have 

- 1~y(u(t + 5)) - ~r(u(t) + 6v) : ~ Ilu(t + 5) - [u(t) + 6v]ll ~･ O , 

~(u(t) + 6v) - ~~(u(t)) = ~r([u(t) + 6v] - ~/(u(t))e) = ~r(R(u(t)) + 6v) = 

= ~f(a + 6v) = ~!(a + 6v) - ~r(a), 

~ [P(x(6)) - a] = ~ [P(x(6)) P(x(O))] ~ 1
 

~> P'(x(O)) = ddT I.=0x(T) = P'(a)X(a,t) = Y(a,t) = v , 

l 1~~(P(x(6))) - ~(a + 6v)1 < Ml61 Ilp(x(6)) - [a + 6v]ll ~ O 
{
5
1
 

where M is the Lipschitz constant of ~~ . LFrom these estimates it readily follows 

1
 

1
 limsup - [~ (u(t + c6)) - ~y (u(t))] = Iimsup ~~(P(x(c6))) (3.5) 
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By assumption, the vector field X is complete in D . Since x(O) = a e aD , we have 

x(5) e aD (6 e ~x,*) . By assumption, the projection P maps the domain D into itself. 

Hence also P(aD) c D . Therefore 

p(x(6)) e D that is ~f(P(x(8))) ~ o (6 ~ ~x,~) . 

Then (3 4) Is Immedlate by the observatron (3.5). CII 

4. Application in real Jordan theory 

Let E be a complex Banach space and let B(E) := {x ~ E : llxli < 1} be its 
unit ball. By a remarkable result of W. Kaup [5, 3Ch. 10] the following statements are 

equivalent: 

(i) ~(E) is (holomorphically) symmetric, 

(ii) for each vector e e E there exists a vector fleld X. : E ~ E of the form X.(x) = e+ 

Q*(x,x) (x ~ E) for some (necessarily unique) complex-bilinear continuous mapping 

Q* : E >< E ~' E, 

(iii) there exists a (unique) operation of 3 -variables on E denoted usually by {xy'z} 

which is complex-linear in the variables x,z , conjugate-linear in y and satisfles 
ll{xx'x}II = I:x!13 (x eE), 

Ilexp((L*IiEE 4_. I (ReC ~ O, e ~ E) for the linear operators L*(x) := {ee'x} , 

{xy'z} = {zy'x} (x,y,z c E) , 

{ab'{xx'x}} = {{ab'x}y'z} - {x{ba'y}'z} + {xy'{ab'z}} (a b x y z e E) . 
,,,, 

The Banach algebraic structures involving an operation of 3 variables with the properties 

described in (iii) are called Jordan-Banach triple *-algebras abbreviated usually as JB* -

triples. Any complex C' -algebra A can be regarded as a JB * triple with the triple 

product 

l . I . (x, y, z ~ A) {xy'z} := -2xy z+ 2zy x 

~From the equivalence (ii) <~ (iii) it follows that PE is a JB ' -triple whenever P is a 

linear projection with the triple product {xy'z} . Indeed, given any vector e e E , the 

vector field Y* := PX* is complete in B(PE)(= P(B(E))) with Y.'(O) = Pe . This is an 

immediate consequence of Theorem 3.1 by the following lemma which applies in real not 

only in complex Banach spaces. ' 
4.1 Lemma. Let E be a real Banach space with norm jl 11 , Iet P e L(E,E) be a 
projection with jIPIIE,E = I and let V : E ~ E be a polynomial vector field ' t!;hich 

is complete in B(E) . Then the vector field Y(x) := PX(x) (x e E) is complete in 

B(PE) . 

That ~s X(x) C + ~;~ ICk(~~3) (x e E) for some n < oo. Co e E and 

coT~tsnuous k linear mappcngs C E ~ E (h 1,.. . , T~) ' 
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Proo£Being1ine孤，for　the　projection　P　we　have　P’（”）二P　（”6E）．Thus　P　is

trivia11y　a　cont虹uo泌s1y　d逓釘e批iab王eコmapping　whose　r肌ge　is＆dosed1i鵬ar　and　hence

in　p弧ticu1ar　0ユーsub㎜狐ifo1d　in　E．since　llPl1刃刃　二　1，for　the　u泌it　ba11we　have

3（P万）二P（3（万））⊂3（万）．No尤ice　that　the　bound鉗y∂3（万）二｛”6万：帖！1＝1｝三s　a

Lipschitzian　sub㎜anifo1d　of　E　ofcodi鵬鵬i㎝1．We　prove　this1at廠f＆ct　as　fo11ows．Let

鋤y　unit　vectorα∈∂8（E）be　give公．By　the　Hah阯Banach　theore皿we　can　chose　a1ine肌

functio脇！φ∈£（亙，R）such　th就φ（α）二11φi1亙亙＝llαll＝！．De丘ne

　　　　　Q（岩）：二名一φ（忽）α　（名∈E），　F：…：Q（亙）二｛z∈E：φ（工）＝0｝，

　　　　　K：二｛”∈F：ll・ll＜1／3｝，σ：二｛・十λα：z∈K，λ＞o｝．

Re皿肌k　th眺ひis　an　open鵬三ghborhoo（i　ofαin万．Observe　th銚for　so皿e　Lipschitzi泳n

（狐d・㎝・胴）f㎜・ti㎝ψ：K→〕Rw・h…

　　　　　　σ∩∂B（E）簑｛z＋ψ（ω）α：zξK｝＝
（4．2）

　　　　　　　　　　　＝｛7∈σ：Ψ（z）＝0｝　where亜（z）：工φ（z）一ψ（Q（21））

and唖（■十入α）＝φ（z＋λα）一ψ（ρ（z＋λα））＝φ（z）十λ一ψ（ρ（z））二唖（名）十λ　（z，忽十入α∈

σ）．Tb一㎎we　can　app王y　Theore㎜3．1wiもh　1）o：二E，1）：＝・B（E），X（z，オ）：二γ（”）

（”ξ刃，を∈正し）　もo　conchde　that　the　vector丘e1d　γ　is　comp1ete　h　B（P刀）．

　　For七he　sake　of　se1仁cont包inedness　we　inc1ude　a　detai1ed　proof　of（4．2）、Given狐y　point

2∈ひwehavellρ（名州〈ヱ／3and－hencethefor比ebauof2K＋ρ（z）codi㎜ension1
and閉dius2／3we　have　K　c2一κ十Q（乃）c　B（亙）．Therefore，since3（E）is　convex＆nd

open，forth台cones

　　　O！’）芦・・（［2K＋Q（・）1U｛・｝）二｛・十λα：0くλくψ三一）（・），狂2K＋Q（・）｝

whereψ∫．）（z）：二φ（z）一（3φ（z）／2）llz－Q（岩）ll　and

　　　　　　　0≦十）：＝糾R（0≦‘L・）＝｛叶λα：λ＞ψ≦十）（・），・ξF｝

whereψ∫一）（”）：＝φ（■）一（3φ（z）／2）llz一ρ（名）ll　we　have

（43）　0！’）⊂3（E）ヨ0二斗）CE＼3（E）f・・狐yκひ∩∂8（E）

Sinceα∈1ブ∩∂B（E），it　fo11ows　in　part三cu1鉦

　　　　　　　　⑦≠｛z＋λα：O＜λ〈ψ∫’）（z）｝C3（E），
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　（狂K）．
　　　　　　　　⑦≠｛z＋λα　λ＞ψ二今）（ω）｝c　E＼3（刀）

H。。・・f…Wy妊K伽・・g㎜…恥）：＝／・十λα：ψ£一）（・）≦λ≦ψ£斗）（・）｝・・…i・・

・・肌・p・intf・o㎜∂3（亙）．○nth・・th・・h狐d，by（4．3），f…町zeKth・int㈱・・t1・・

咋）∩∂3（E）・㎝・i・t・・f・㎜iq・・p・int狐d

　　　　∫（・）∩∂耶）一∫（・）＼∪（0！一）・0！斗））一

　　　　　　　　　　　　　　　2∈σ○∂8（8）

　　　　　　　　　　　＝｛叶1・・pψ！一）（ω）1αト｛ω十［i・fψ！斗）（・）1α｝．

　　　　　　　　　　　　　　　従び〔∂8（亙）　　　　　　　　　　2∈ひ∩∂B（亙）
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Thus (4.2) holds with the function 

ip(x) := inf ip(+)(x) = ip~-)(x)]a} sup .eUnaB(E) ' .eUnaB(E) 

Given any x,y C K with ip(y) > ip(x) , by setting z := x + ip(x)a we have 

O ~ ip(y) - ip(x) = ip(y) - ip~+)(x) ~ ip(+)(y) - ip(+)(x) = ip(z) Ily - xll ~ lly - xli 

which shows the Lipschitzian property of ip . [] 

4.4 Remark. Though Jordan theory had its origins, inspired by early quantum mechanics, 

in the study of the algebraic structure of symmetric operators on a real Hilbert space, as far 

most investigations involving topology were carried out in the setting of complex Banach 

spaces and manifolds. The systematic study of real JB * -triples began perhaps just in 1995 

with the paper [4] . 

By a real JB * -triple we mean a real Banach space E equipped with a continuous 
operation {xy'x} of three variables such that the norm tl li of E and the triple product 

{xy'x} admits an extension to the complexification E~(iE) with the properties described 

in (iii). Lelnma 4.1 yields immediately the following. 

4.5 Corollary. If E is a real JB' -triple with norm ll ll and triple product {xy'z} , 

respectively, then for any contractive linear projection P : E ~ E the (time-independent) 

vector fi elds 

PX x H~ Pe - P{xe'x} (e e pE) 

are complete m B(PE) the umt ball of the range of P . C] 
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