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ABSTRACT. In this article, we first study existence theorems in complete
metric spaces which generalize the Banach contraction principle. Next, we
introduce the concept of w-distances and prove some results in complete metric
spaces. Finally we study the relationship between contractive mappings and
Kannan mappings and then discuss characterizations of metric completeness.

1 Introduction

Let X be metric space with metric d. A mapping T from X into itself is called
contractive if there exists a real number r € [0,1) such that d(Tz,Ty) < rd(z,y)
for every z,y € X. It is well known that if X is a complete metric space, then every
contractive mapping from X into itself has a unique fixed point in X. This theorem
is called the Banach contraction principle. However, we exhibit a metric space X
such that X is not complete and every contractive mapping from X into itself has a
fixed point in X; see Section 4. A mapping T from X into itself is also called Kannan
if there exists a real number r € [0, 3) such that d(T'z, Ty) < r{d(Tz,z)+d(Ty,y)}
for every z,y € X. We know that a metric space X is complete if and only if every
Kannan mapping from X into itself has a fixed point in X.

On the other hand, in 1976, Caristi [3] proved a fixed point theorem in a complete
metric space which generalizes the Banach contraction principle. Ekeland [5] also
obtained a nonconvex minimization theorem for a proper lower semicontinuous func-
tion, bounded from below, in a complete metric space. The theorem is also called
the e-variational principle. The two theorems are very useful and have many appli-
cations. Later Takahashi [22] proved the following nonconvex minimization theorem:
Let X be a complete metric space and let f : X — (—00,00] be a proper lower
semicontinuous function, bounded from below. Suppose that, for each u € X with
f(u) > infzex f(z), there exists v € X such that v # u and f(v) + d(u,v) < f(u).
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Then there exists zo € X such that f(zo) = infyex f(z). This theorem was used
to obtain Caristi’s fixed point theorem [3], Ekeland’s e-variational principle [5] and
Nadler’s fixed point theorem [11]. In [22], Takahashi also studied characterizations
of metric completeness by using the nonconvex minimization theorem. Recently,
Kada, Suzuki and Takahashi [8] introduced the concept of w-distances on a metric
space and improved Caristi’s fixed point theorem, Ekeland’s e-variational principle
and the nonconvex minimization theorem according to Takahashi.

In this article, we first study existence theorems in complete metric spaces which
generalize the Banach contraction principle. Next, we introduce the concept of w-
distances and prove some results in complete metric spaces. Finally we study the
relationship between contractive mappings and Kannan mappings and then discuss
characterizations of metric completeness.

2 FExistence Theorems

The Banach contraction principle in a complete metric space is very important.
The following theorem obtained by Takahashi [22] is also used to prove Ekeland’s
e-variational principle (Theorem 2.2) and Caristi’s fixed point theorem (Theorem
2.4) which generalize the principle. Throughout this article, we denote by N the set
of positive integers and by R the set of real numbers.

Theorem 2.1. Let X be a complete metric space and let F' 1 X — (—o0, 0] be
a proper lower semicontinuous function, bounded from below. Suppose that, for
each u € X with infzex F(z) < F(u), there exists a v € X such that v # u and
F(v)+d(u,v) < F(u). Then, there exists an zg € X such that F(zq) = infyex F(z).

Proof. Suppose inf ex Fz) < F(y) for every ¥y € X and let u € X with
F(u) < oo. Then, we define inductively a sequence {u,} in X, starting uy = wu.
Suppose u,_; € X is known. Then, choose u, € §, such that

Sp={weX:Flw) <F(up1)— d(tp-1,w)}

and
Flun) < inf F(w)+ 5{Flun ) — inf F(w)} )

We claim that this is a Cauchy sequence. Indeed, if m > n, then

m—1

A(Un, um) < Zd(uiaui+l)
< i{F(ui)—F(um)}
= Fl(un) — F(tm). o (x%)
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This implies that {u,} is a Cauchy sequence in X. Let u, — v. Then, if m — co
in (x*), we have

d(tn, v) < F(u,) — lim F(un) < Flu,) — F(v).

m—o0

On the other hand, by hypothesis, there exists a z € X such that z # v and
F(z) < F(v) — d(v, z). Hence we have

F(z) < F(v)—d(v,z2)
< F(v) —d(v,z) + Fup) = F(v) — d(tn,v)
= F(un) = {d(un,v) +d(v, 2)}
< Fun) — d(un, 2).

This implies z € Sp+;. Using (), we have

2F (ug) — F(un-1) < zienan F(z) < F(z).

Hence we have

F) < lim F(u,) < F(z) < F(v) — d(v, z) < F(v).

n—00

This is a contradiction. Therefore, there exists an zp € X such that F(zy) =
infyex F(z). O

Using Theorem 2.1, we prove Ekeland’s e-variational principle [5] in a complete
metric space.

Theorem 2.2 (Ekeland’s e-variational principle). Let X be a complete metric
space and let F : X — (—o00,00] be a proper lower semicontinuous function, bounded
from below. Then, for any € > 0 and u € X with

F(u) quel)f(F(x)+€

there exists v € X satisfying the following conditions:
(1) Flv) < Fu);
(2) dlu,v) < 1
(3) F(w) > F(v) — ed(v,w) for all w € X withw # v.
Proof. Let
Xo={zeX: F(z) < F(u) — ed(z,u)}.
Then, it is obvious that Xj is nonempty and closed. Further, for each z € X,

ed(u,z) < F(u) = Fz) < F(u) — inf F(z) <€
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and hence d(u,z) < 1. We also have F(z) < F(u). Suppose that for every z € X,
there exists w € X such that w # z and F(w) < F(z) — ed(z, w). Then

ed(w, u) ed(w, z) +ed(z, u)

(z) = F(w) + F(u) — F(z)

<
< F(z) - F(w)
= F(u) - F(w)

and hence w € Xy. By Theorem 2.1, there exists zo € Xy such that F(zy) =
infzex, F'(z). On the other hand, there exists wy € Xy with F(wg) < F(zo). This
is a contradiction. O

Corollary 2.3. Let X be a complete metric space and let F': X — (—oo,00] be a
proper lower semicontinuous function, bounded from below. Then, for any £ > 0,
there exists v € X satisfying the following two conditions:

(1) F(v) < infeex F(z) +¢;
(2) F(w) > F(v) —ed(v,w) for allw € X.
Proof. For any € > 0, there exists u € X such that

F(u) < ;g)f{ F(z) +«.

By Theorem 2.2, there exists v € X satisfying

F(U)SF(u)gxig)f(F(a:)—l-E

and

Flw) > F(v) —ed(v,w) forallwe X. O

Using Theorem 2.1, we prove Caristi’s fixed point theorem [3] in a complete
metric space.

Theorem 2.4 (Caristi’s fixed point theorem). Let X be a complete metric space
and let f be a mapping of X into itself such that

d(z, f(z)) + F(f(z)) < F(z) forallze X,

where F' 1 X — (—00,00] is a proper lower semicontinuous function, bounded from
below. Then there exists z € X such that f(z) = z and F(z2) < co.

Proof.  Since F' is proper, there exists u € X with F(u) < co. So, let

X' ={zeX:F(z)<Fu) —d(u,z)}
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Then, X' is nonempty and closed. We can also see that X' is invariant under the
mapping f. In fact, for each z € X', we have

F(f(z)) +d(z, f(z)) < F(z) < F(u) - d(u, z)
and hence

F(f(z)) < F(u) - {d(u,z) +d(z, f(2))}

<
< Fu) = d(u, f(2).

This implies f(z) € X'. Suppose that f(z) # z for every z € X’. Then, for every
z € X', there exists w € X' such that z # w and F(w) + d(z,w) < F(z). So,
by Theorem 2.1, we obtain an zp € X' with F(zy) = infzex F'(z). For such an
o € X', we have

0 < d(zo, f(z0)) < Fzo) = F(f(20)) < F(f(20)) = F(f(20)) = 0.
This is a contradiction. O

Finally, using Theorem 2.1, we obtain Nadler’s fixed point theorem [11]. Before
obtaining it, we give some definitions and notations. Let X be a metric space. Then,
forz € X and A C X, define

d(z,A) = inf{d(z,y) : y € A}.

We also denote by CB(X) the class of all nonempty bounded closed subsets of X.
For A, B € CB(X), define

8(A, B) = sup{d(z,B) : z € A}
and for A, B € CB(X), define
H(A, B) = max{8(A, B), (B, A)}.

Then, H is a metric on CB(X). A metric H on CB(X) is said to be the Hausdorff
metric. We know that for any z € X and B,C € CB(X),

\d(z,B) — d(z,C)| < H(B,C).

Let 7" be a mapping of a metric space X into CB(X). Then T is called nonezpansive
if

H(Tz,Ty) < d(z,y) forallz,ye X.
If there exists £ < 1 such that
H(Tz,Ty) < kd(z,y) forallz,y € X,

T is called contractive or k-contractive. If T is nonexpansive or k-contractive, the
real valued function g on X defined by

g(z) =d(z,Tz) forallze X

is continuous.
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Corollary 2.5 (Nadler’s fixed point theorem). Let X be a complete metric space
and let T be a k-contractive mapping of X into CB(X). Then T has a fized point
n X.

Proof.  Suppose that d(z,7z) > 0 for every z € X and choose a positive number
e with € < 1/k — 1. Then, for every z € X, we can choose y € Tz satisfying
d(z,y) < (1 +¢€)d(z,Tz). Since

d(y,Ty) < H(Tz,Ty) < kd(z,y) < k(1 + €)d(z, Tz),
we have inf,cx d(z,Tz) = 0. Further, we have
d(z,Tz) — d(y,Ty) > d(z,Tz) - kd(z,y)
d(z,y) — kd(z,y)

v

1+¢

(1_-1?5 _ k) d(z,y).

It

Defining F: X — R by

1 -1
F(z) = (1 —- k) d(z,Tz) forall z € X,

we have d(z,y) < F(z) — F(y) from the above inequality. Now, using Theorem 2.1,
we obtain zy € X such that F(zy) = 0. This implies d(zq,Tz;) = 0. This is a
contradiction. O

3 Distances on Metric Spaces

Let X be a metric space with metric d. Then a function p: X x X — [0,00) is
called a w-distance on X if the following are satisfied:

(1) p(z,2) < plz,y) +ply, 2) for any z,y;2 € X;
(2) forany z € X, p(z,-) : X — [0, 00) is lower semicontinuous;

(3) for any € > 0, there exists § > 0 such that p(z,2) < § and p(z,y) < § imply
d(z,y) <e.

The concept of w-distances was first introduced by Kada, Suzuki and Takahashi
[8]. Let us give some examples of w-distances.

Example 3.1. Let X be a metric space with metric d. Then p = d is a w-distance
on X.
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Example 3.2. Let X be a metric space with metric d. Then a functionp : X x X —
[0,00) defined by p(z,y) = ¢ for every x,y € X 1is a w-distance on X, where ¢ is a
positive real number.

Example 3.3. Let X be a normed linear space with norm ||-||. Ifp : X x X —
[0,00) 1s defined by

p(z,y) = llz|| + lyll  for every z,y € X,
then p is a w-distance on X.

Example 3.4. Let X be a normed linear space with norm || - ||. Ifp : X x X —
[0,00) is defined by

plz,y) =Ilyll foralzyeX,
then p is a w-distance on X.

Example 3.5. Let X be a metric space and let T be a continuous mapping from X
into itself. Then a function p: X x X - [0,00) defined by

p(z,y) = max{d(Tz,y),d(Tz,Ty)} for everyz,y € X
18 a w-distance on X.

Example 3.6. Let F' be a bounded and closed subset of a metric space X. Assume
that F contains at least two points and c s a constant with ¢ > 6(F), where §(F) is
the diameter of F. Then a function p: X x X — [0,00) defined by

_Jdlzy) f z,y€eFR,
p(x,y)m{c if ¢ Fory¢F

18 a w-distance on X.

Let € € (0,00]. A metric space X with metric d is called e-chainable [4] if for -
every z,y € X there exists a finite sequence {ug,us,. .., ux} in X such that vy = z,
up = y and d(us, uip) < € for 1 = 0,1,... ,k — 1. Such a sequence is called an
e-chain in X linking « and y.

Example 3.7. Let ¢ € (0,00] and let X be an e-chainable metric space with metric
d. Then the functionp : X x X — [0,00) defined by

k-1
p(z,y) = inf {Z d(ui, Uir1) © {Uo, U1, - .. ,ux} s an e~chain linking © and y}

1=0

18 a w-distance on X.
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Next, we discuss properties of w-distances. The following lemmas are crucial in
the proofs of the theorems in this article.

Lemma 3.8. Let X be a metric space with metric d and let p be a w-distance on
X. Let {z,} and {y.} be sequences in X. Let {a,} and {B,} be sequences in [0, co)
converging to 0, and let x,y,z € X. Then the following hold:

(1) If p(n,y) < o and p(zn,2) < B, for any n € N, then y = z. In paticular, if
p(z,y) =0 and p(z,z) =0, then y = z;

(i) if p(Zn,Yn) < o and p(zn, z) < B, for any n € N, then {y,} converges to z;

(iii) if P(Tn,Tm) < an for any n,m € N with m > n, then {z,} is a Cauchy
sequence;

(iv) if p(y,zn) < o for any n € N, then {z,} is a Cauchy sequence.

Lemma 3.9. Let X be a metric space and let p; and p, be w-distances on X. If
p: X x X —[0,00) is defined by

p(z,y) = max{p\(z,y),p2(z,y)} forallz,y€ X,
then p s a w-distance on X.

Lemma 3.10. Let X, p; and py be as in Lemma 3.9. Ifp: X x X — [0,00) is
defined by

p(z,y) = api(z,y) + Bpa(z,y) forallz,ye X,

where & and B are nonnegative real numbers such that a« # 0 or 8 # 0, then p is a
w-distance on X.

Lemma 3.11. Let X be a metric space, let p be a w-distance on X and let [ be a
function of X into [0,00). If g: X x X — [0,00) is defined by

then g is a w-distance on X.

We first prove a nonconvex minimization theorem [8] which improves the result
in Section 2.

Theorem 3.12. Let X be a complete metric space, and let f : X — (—o00,c0] be a
proper lower semicontinuous function, bounded from below. Assume that there exists
a w-distance p on X such that for any v € X with infrex f(z) < f(u), there ezists
v e X withv#u and

f(v) +plu,v) < f(u).
Then there ezists zg € X such that infyex f(z) = f(zo).
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Proof.  Suppose infzex f(z) < f(u) for every y € X and choose v € X with
f(u) < co. Then we define inductively a sequence {u,} in X, starting with u; = u.
Suppose u, € X is known. Then choose u,,; € S(u,) such that

S(u,) = {z€X:f(z)+plunz) < flun)},
k(un) = zeisn(in)f(z)

and
1
flung1) < kug) + —

Since f(upt1) + P(Un, Uns1) < f(un), {f(un)} is nonincreasing. So, limpoeo f(un)
exists. Put k = lim,,_,o f(u,). We claim that {u,} is a Cauchy sequence. In fact,
if n < m, then
m—1
p(uﬂ:um) < Zp(uj7uj+1)
j=n

< i{f(uj) — fluje)}
= flun) = fum) < flua) — k. (*)

From Lemma 3.8, {u,} is a Cauchy sequence. Let u, — vp. Then, if m — oo in
(x), we have
P(un,v0) < flun) —k < flua) — flvo).

On the other hand, by hypothesis, there exists v; € X such that v; # vy and
f(v1) + p(vg, v1) < f(vg). Hence, we obtain

f(vy) + plun, v1) f(v1) + plun, vo) + plvo, v1)
£ () + D, v0)
f(un) (x%)

ININ AN

and hence v; € S(uy,). Since

F(00) < Flunsr) < Klun) + = < o) + -

for every n € N, we have f(vg) < f(v;). Then, f(vo) = f(v1). So, we have
p(vg,v1) = 0. By hypothesis, there exists v, € X such that vy # v; and f(vq) +
p(vy,v2) < f(v1). As in (xx), we have f(vy) + p(un,v2) < f(u,) and hence v, €
S(ug). So, we have f(v;) = f(vo) < f(ve). This implies p(vy,v;) = 0. From
p(vo,v2) < p(vo,v1) +p(v1,v2) = 0, we have p(vg, v2) = 0. Hence, from p(vg,v;) = 0,
p(vo,v2) = 0 and Lemma 3.8, we have v; = vy. This is a contradiction. O

The following theorem [8] is a generalization of Caristi’s fixed point theorem.
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Theorem 3.13. Let X be a complete metric space and let f : X — (—c0,00] be
a proper lower semicontinuous function, bounded from below. Let T be a mapping
from X into itself. Assume that there exists a w-distance p on X such that f(Tz) +
p(z,Tz) < f(z) for every z € X. Then there ezists o € X such that Tzy = zo and
p(il]o,il?o) = 0.

Proof.  Since f is proper, there exists u € X such that f(u) < oo. Put
Y={zeX: flz)<flu}

Then, since f is lower semicontinuous, Y is closed. So Y is complete. Let z € Y.
Then, since f(Tz) + p(z,Tz) < f(z) < f(u), we have Tz € Y. So, Y is invariant
under T. Assume that Tz # z for every z € Y. Then by Theorem 3.12, there
exists vy € Y such that f(vy) = infzey f(z). Since f(Twg) + p(vo, Tvo) < f(wyp)
and f(vo) = infzey f(2z), we have f(Tv) = f(vo) = infzey f(z) and p(vy, Tvo) = 0.
Similarly we obtain f(T?v) = f(Tvg) = infrey f(z) and p(Twy, T?vp) = 0. Since
p(vo, T?vp) < p(vo, Two) + p(Tvo, T?vg) = 0, we have p(vo, T?vp) = 0 and hence
Ty = T?vy by Lemma 3.8. This is a contradiction. Therefore T has a fixed point
zp in Y. Since f(zy) < co and

f(zo) + p(z0, 20) = f(Tx0) + p(z0, Tx0) < f20),
we have p(zg,z9) =0. O

Let X be a metric space with metric d. Then, a set-valued mapping T from X
into itself is called weakly contractive or p-contractive if there exists a w-distance p
on X and r € [0,1) such that for any z;,z, € X and y; € T'z; there is y» € Ty
with p(y1,y2) < rp(z1,22). In particular, a single-valued mapping 7 from X into
itself is called weakly contractive or p-contractive if there exists a w-distance p on
X and r € [0,1) such that p(Tz,Ty) < 7p(z,y) for every z,y € X. The following
theorem was proved by Suzuki and Takahashi [16].

Theorem 3.14. Let X be a complete metric space and let T be a set-valued p-
contractive mapping from X into itself such that for any z € X, Tz is a nonempty
closed subset of X. Then there ezists zp € X such that xy € T'zg and p(zo,zo) = 0.
Proof. Let p be a w-distance on X and let 7 be a real number with r € [0,1)
such that for any z,,z, € X and y; € Tz, there exists yo € Tzy with p(y;1,y2) <
rp(z1, 22). Let ugp € X and u; € Tug be fixed. Then there exists up € Tu; such that
pluy,ug) < rp(ug,u;). Thus, we have a sequence {u,} in X such that u,yy € Tu,
and p(Un, Uns1) < 7P(Un-1, un) for every n € N. For any n € N, we have

Pltin, tng1) < 7p(tnoy, un) < 72p(un_s, tnoy) < - < 7"p(ug, uy)
and hence, for any n,m € N with m > n,

P(Un, Um) < P(Un, Unt1) + D(Unt1, Ung2) + -+ + D(Um—1, Um)
< rplug, wy) + 1 Mp(ug, uy) + -+ T p(ug, u)

3

IN

p(UQ, ul)'
1—7
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By Lemma 3.8, {u,} is a Cauchy sequence. Then {u,} converges to a point vy €
X. Let n € N be fixed. Then since {u,,} converges to vy and p(un,-) is lower
semicontinuous, we have

‘2

(U, vg) < lIminf p(t,, uy) < 7 plug, uy). (x)

m—00 —T
By hypothesis, we also have w, € T'vy such that p(un,w,) < rp(un—1,vs). So, we
have, for any n € N, ‘

p(um wn) S Tp(un—la v(})
7

<
= 7

TP(UO,U1)~

By Lemma 3.8, {w,} converges to vy. Since Ty is closed, we have vy € Twy. For
such v, there exists v; € Ty such that p(vg,v1) < rp(vg, vp). Thus, we also have
a sequence {v,} in X such that v,., € Tv, and p(vy, vny1) < rp(vg, vn) for every
n € N. So, we have

P(vo, v,) < 7p(vg, V1) < -+ - < 7"p(vg, Vo).

By Lemma 3.8, {v,} is a Cauchy sequence. Then {v,} converges to a point zy € X.
Since p(vy, -) is lower semicontinuous, we have p(vp, o) < liminf, p(ve,v,) < 0 and
hence p(vp, o) = 0. Then, we have, for any n € N,

P(Un, T0) < p(Un,vo) + p(vo, To)

n

1-—

IN

TP(UD,- ul)'

So, using (*) and Lemma 3.8, we obtain vy = 2y and hence p(vg, vp) = 0. O

Corollary 3.15. Let X be a complete metric space. If a mapping T from X into
itself is p-contractive, then T has a unique fized point z¢ € X. Further such xg
satisfies p(zo, o) = 0.

Proof. Let p be a w-distance and let 7 be a real number with r € [0,1) such that
p(Tz,Ty) < rp(z,y) for every z,y € X. Then from Theorem 3.14, there exists
zo € X with Tz = zg and p(zo, zo) = 0. If yo = Tyo, then we have

p(z0, %0) = p(Tzo, Tyo) < rp(z0, Yo)-

Since r € [0, 1), we have p(zo, o) = 0. So, by p(zo,z0) = 0 and (i) of Lemma 3.8,
we have zg = yg. O

i



4 Characterizations of Metric Completeness

In this section, we discuss characterizations of metric completeness. We first give
the following example [16] : Difine

t
A, = {(t)—) ER?:te (0,1]} forevery n € N
n
and

S=JA,u{0}.

neN

Then S is not complete and every continuous mapping on S has a fixed point in S.

Motivated by this example, we shall discuss characterizations of metric com-
pleteness. Before discussing them, let us study the relationship between contractive
mappings and Kannan mappings [15]. Let X be a metric space with metric d. Then
we denote by W(X) the set of w-distances on X. A w-distance p on X is called
symmetric if p(z,y) = p(y,z) for all z,y € X. We denote by Wy(X) the set of all
symmetric w-distances on X . Note that the metric d is an element in Wy(X). We
denote by W1 (X) the set of all mappings T from X into itself such that there exist
p € W(X) and r € [0,1) satisfying

p(Tz,Ty) < rp(z,y) forall z,y € X,

i.e., the set of all weakly contractive mappings from X into itself. We define the
sets WC(X), WCo(X), WK (X)), WK>(X) and W Ky (X) of mappings from X into
itself as follows: T € W(Cy(X) if and only if there exist p € W(X) and 7 € [0,1)
such that

p(Tz, Ty) < rp(y,z) forallz,y € X;
T € WCy(X) if and only if there exist p € Wy(X) and 7 € [0,1) such that
p(Tz,Ty) < rp(z,y) foralz,ye X, _
T € WK, (X) if and only if there exist p € W(X) and o € [0,1/2) such that
p(Tz,Ty) < o{p(Tz,z) + p(Ty,y)} foralz,yeX;
T € WK,(X) if and only if there exist p € W(X) and o € [0,1/2) such that
p(Tz,Ty) < a{p(Tz,z) +p(y, Ty)} foralzyeX;
T € WKy(X) if and only if there exist p € Wy(X) and a € [0,1/2) such that
p(Tz,Ty) < ofp(Tz,z) + p(Ty,y)} forall z,y € X.

For proving the theorems in this section, we need some lemmas.
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Lemma 4.1. Let X be a metric space with metric d, let p be a w-distance on X
and let f be a function from X into [0,00). Then a function q from X X X into
[0,00) given by q(z,y) = f(z)+p(z,y) for each (z,y) € X x X is also a w-distance.

Lemma 4.2. Let X be a metric space with metric d, let p be a w-distance on X,
let T be a mapping from X into itself and let u be a point of X such that

lim p(T™u,T"u) =0

™m,n—0o0

Then for every © € X, limy_,0o p(T*u, z) and limy_,oo p(z, T*u) exist. Moreover, let
B and «v be functions from X into [0, 00) defined by

B(z) = lim p(T*u,z) and ~(z) = klim p(z, T*u).

k—00

Then the following hold:
(i) B is lower semicontinuous on X;

(i) for every € > 0, there exists 6 > 0 such that f(x)
d(z,y) < e. In particular, the set {z € X : f(z) =0
point;

§ and Bly) < § imply

<
} consists of at most one

(ili) the functions q1 and g2 from X x X into [0,00) defined by

g (z,y) =B(z) + Bly) and g¢(z,y) =v(z) + B(y)
are w-distances on X.

We study the relationship between the classes of mappings by using Lemmas 4.1
and 4.2.

Lemma 4.3. WC(X) C WK(X).

Proof. Suppose T' € WC,(X), i.e., there exist a w-distance p and 7 € [0,1) such
that p(Tz,Ty) < rp(z,y) for all z,y € X. Fix v € X. Then we have, for each
m,n € N,

Tmin{m,n}

p(T™u, TMu) < T

max{p(u, u), p(Tu,u), p(u, Tu)}.

Since 0 < 7 < 1, we have limp nooo p(T™u, T"u) = 0. So, by Lemma 4.2, §(z) =
limg 00 p(T*u, z) is well-defined and ¢, (z,y) = B(z) + B(y) is a w-distance on X.
From B(Tz) < rf(x) for every z € X, we have

Tz, Ty) <r(l+7)" Y (Tz,z) + ¢, (Ty,y)} foral z,y € X.
This implies T € WKy(X). O
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Lemma 4.4. WK,(X) C WC(X).

Proof.  Suppose T € WK, (X), i.e., there exist a w-distance p and « € [0,1/2)
such that p(Tz, Ty) < ap(Tz,z)+ap(Ty,y) forallz,y € X. Weputr = a(l—a)™L.
Note that p(T?z,Tz) < rp(Tz,z) for every z € X. Fix u € X. For m,n € N, we
have

p(T™u, T™u) < ap(T™u, T™  u) + ap(T™u, T" tu) < afr™ ! + 7" Hp(Tu, u)

and hence limm, 0o P(T™u, T"u) = 0. So, by Lemma 4.2, 8(z) = limg—c0 p(T*u, z)
is well-defined and ¢, (z,y) = G(z) + B(y) is a w-distance on X. We next prove that
B(Tz) < rB(z) for every z € X. In fact, from

p(Tz,z) < p(Tz, TrFu) + p(T*u, z) < ap(Tz,z) + ap(T*u, TF " u) + p(T*u, 7),
we have
p(T*u, Tz) < ap(T*u, T u) + ap(Tz, z) < rp(TFu, TF " u) + rp(T*u, 7).

Hence (Tz) < rf(z). So we have q;(T'z,Ty) < rqi(z,y) for all z,y € X. This
implies T € WC,(X). O

Lemma 4.5. WCy(X) = WKy(X).

Proof.  We first show WCq(X) C WK,(X). Suppose T € W(C5(X), i.e., there
exist a w-distance p and r € [0,1) such that p(Tz,Ty) < rp(y, z) for all z,y € X.
Fixu € X and m,n € N. If m > n, then

m-1
p(T™u, T™u) + p(T™u, T™u) < Z{p(T”lu,Tiu) + p(THu, T u)}
-

<
= 1=

T{p(Tu, u) + p(u, Tu)}.

If m = n, then p(T™wu, T"u) < r™p(u,u). So, we have

T,mm{m,n}

——{p(y,u) + p(Tu,u) + p(u, Tu)}

Ty, TMu) <
PT™u, T") < ——

and hence lim, 500 p(T™u, T™u) = 0. So, by Lemma 4.2, 8(z) = limy— e p(T*u, 7)
and y(z) = limyeo p(z, T*u) are well-defined and go(z,y) = v(z) + B(y) is a w-
distance on X. From fB(Tz) < ry(z) and v(Tz) < rf(z) for every z € X, we
have

¢@(Tz,Ty) < r(1 + 1) Hg(Tz,z) + g2y, Ty)} forallz,y e X.

This implies T' € WK,(X).
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We next show WK,(X) C WCy(X). Suppose T € WK,(X), i.e., there exist
a w-distance p and « € [0,1/2) such that p(Tz,Ty) < ap(Tz,z) + ap(y, Ty) for
all z,y € X. We put 7 = a(l — a)™*. Note that p(T?z,Tz) < rp(z,Tz) and
p(Tz,T%*z) < rp(Tz,z) for every z € X. Fix u € X. For m,n € N, we have

p(T™u, T"u) < p(T™u, T™ 'u) + p(T™ 'u, T"u)
< (™ 4+ Y {p(Tu, u) + p(u, Tu)}

and hence lim, n00 P(T™u, T"u) = 0. So, by Lemma 4.2, B(z) = limy_,0 p(T*u, 1)
and y(z) = limy_e0 p(z, T*u) are well-defined and gx(z,y) = v(z) + B(y) is a w-
distance on X. We next prove that f(Tz) < ry(z) for every z € X. In fact,
from

p(z, Tz) < p(z, T*u) + p(T*u, Tz) < plz, T*u) + ap(T*u, TF 1u) + ap(z,Tz),
we have
p(T*u, Tz) < ap(Tru, TF'u) + ap(z, Tz) < rp(Tu, TF'u) + rp(z, T ).

So f(Tz) < ry(z). Similarly, we have y(T'z) < rf(z). Hence we have ¢,(T'z, Ty) <
rqa(y, z) for all z,y € X. This implies T € W(C,(X). O

Now we can state the first theorem [15] in this section.

Theorem 4.6. Let X be a metric space. Then
WCI(X)=WC(X) = WK, (X) =WEKy(X) Cc WC{X) = WK,(X).

Proof. It is clear that WCo{X) C WC(X) and W Ky(X) € WK, (X). So, by
Lemmas 4.3 and 4.4, we have

WCo(X) = WCi(X) = WEy(X) = WK, (X).

Hence by Lemma 4.5, we obtain the desired result. O

Next, we discuss characterizations of metric completeness. Before discussing
them, let us give a definition. Let 1 be a mean on N, ie., a continuous linear
fucntional on Iy satisfying ||zl = 1 = p(1). Then we know that p is a mean on N
if and only if

inf{a, : n € N} < p(a) < sup{a,:n € N}

for every a = (a1, as,...) € loo. According to time and circumstances, we use (i, (a,)
instead of u(a). A mean p on N is to be a Banach limit if it satisfies p,(a 1) =
pn(a,). We know that if p is a Banach limit and a, — k, then p,(a,) = k. The
following theorem was proved in [22] and [15] by using the nonconvex minimization
theorem.
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Theorem 4.7. Let X be a metric space with metric d. Then the following are
equivalent:

(1) X us complete;
(i) every Kannan mapping T from X into itself has a fized point in X ;

(iii) for every bounded sequence {z,} in X and every mean u on N such that
infrex pnd(zn, ) =0, there exists Ty € X with pnd(x,, 7o) = 0.

(iv) if for every uniformly continuous function ¢ : X — [0,00) and every u € X
with infyex ¢(z) < @(u), there exists v € X such that v # u and ¢(v) +
d(u,v) < ¢(u), then there exists z € X such that ¢(2z) = infex ().

Proof. (i) = (ii) is obvious from Corollary 3.15 and Theorem 4.6. (We also leave
another proof to the reader.) We show (ii) = (iii). Let {z,} be a bounded sequence
in X and let x be a mean on N such that inf,ex pnd(z,,z) = 0. Let us define a
mapping T from X into itself as follows. For each z € X, we choose a point Tz € X
with pnd(z,, Tz) < 1/4p,d(z,, ). We show that T is a Kannan mapping. Let z
and y be arbitrary points in X. Then

1 1
pnd(zn, Tz) < Zﬂnd(xn; z) < Z{/“nd(xm Tz) + /"nd(Tx: :1:)}

Hence pnd(z,, Tz) < 1/3d(Tz,z). Similarly, ppd(z,, Ty) < 1/3d(Ty,y). So we
have

1 1
d(Tz,Ty) = pnd(Tz, Ty) < pind(zn, TT) + pnd(zn, Ty) < gd(Tz,:v) + gd(Ty,y)

Hence T is a Kannan mapping. From (ii), there exists a point zo € X such that
Tzg = zg. So we have

1
pnd(Tn, To) = pnd(Tn, Txo) < Z/-Lnd(xnyl'o)‘

Hence pnd(zn, o) = 0. This implies (iii). We next show that (iii) = (i). Let {z,}
be a Cauchy sequence in X and let u be a Banach limit. Then it is easy to see that

Unl(Zn, ) = lim d(z,,z)
n—o00
for every z € X and

;g{ pnd(Zn,z) = 0.

So from (iil), there exists a point zy € X such that p,d{z,,z¢) = 0. Hence
lim, d(z,, o) = 0. Therefore X is complete. (i) = (iv) is immediate from The-
orem 2.1. Let us prove (iv) = (i). Let {z,} C X be a Cauchy sequence and
consider the function ¢ : X — [0, 00) given by

d(z) = ILm d(zn, ).

82



Then, ¢ is uniformly continuous and infyex ¢(z) =
exists an z,, € X such that z,, # u, ¢(zm) < 34(u
Hence, we have

0. L t 0 < ¢(u). Then, there
) and d(Tm, u) — ¢(u) < B(v).

30(zm) + d(Zm, u) < ¢(u) + 2¢(u) = 3¢(u).

So, there exists an o € X with 0 = ¢(zo) = limpe0 d(Zn, o). This completes the
proof. O

Using the above theorems, we obtain the following:
Corollary 4.8. Let X be a metric space. Then the following are equivalent:
(i) X is complete;
(ii) every weakly contractive mapping from X into itself has a fized point in X.

Proof. (i) = (ii) is proved in Section 3. By Theorem 4.6, we have WKy (X) =
WC,(X). Since W Ky(X) contains all Kannan mappings from X into itself, we can
prove (ii) = (i) from Theorem 4.7. O

We also know the following theorem [16]

Theorem 4.9. Let X be a normed linear space and let D be a convez subset of X.
Then D is complete if and only if every contractive mapping from D into itself has
a fized point in D.

As a direct consequence of Thorem 4.9, we obtain the following.

Corollary 4.10. Let X be a normed linear space. Then X 1is a Banach space if
and only if every contractive mapping form X into itself has a fized point in X.

References

1. S. Amemiya and W. Takahashi, Generalization of shadows and fixed point
theorems for fuzzy sets, Fuzzy Sets and Systems, to appear.

2. F. E. Browder, The fixed point theory of multi-valued mappings in topolegical
vector spaces, Math. Ann., 177 (1969), 283-301.

3. J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions,
Trans. Amer. Math. Soc., 215 (1976), 241-251.

4. M. Edelstein, An extension of Banach’s contraction principle, Proc. Amer.
Math. Soc., 12 (1961), 7-10.

83



10.

11.

12.

13.

14.

15.

16.

17.

18.

16.

20.

. I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1
(1979), 443-474.

K. Fan, Fixed point and minimax theorems in locally convex topological linear
spaces, Proc. Nat. Acad. Sci. USA., 38 (1952), 121-126.

K. Fan, Extensions of the two fixed point theorems of F. E. Browder, Math.
Z., 112 (1969), 234-240.

0. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and
fixed point theorems in complete metric spaces, Math. Japonica, 44 (1996),
381-391.

. T. C. Lim, A fixed point theorem for multivalued nonexpansive mappings in a
uniformly convex Banach space, Bull. Amer. Math. So., 80 (1974), 1123-1126.

N. Mizoguchi and W. Takahashi, Fixed point theorems for multivalued map-
pings on complete metric spaces, J. Math. Anal. Appl., 141 (1989), 177-188.

S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math., 30
(1969), 475-488.

S. Park, On generalizations of the Ekeland type variational principle, to appear
in Nonlinear Analysis.

T. Shimizu and W. Takahashi, Fixed point theorems in certain convex metric
spaces, Math. Japonica, 37 (1992), 855-859.

T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain
convex metric spaces, Topol. Mathods Nonlinear Anal., 8 (1996), 197-203.

N.Shioji, T. Suzuki and W. Takahashi, Contractive mappings, Kannan map-
pings and metric completeness, to appear in Proc. Amer. Math. Soc..

T. Suzuki and W. Takahashi, Fixed point theorems and characterizations of
metric completeness, Topol. Methods Nonlinear Anal., 8 (1996), 371-382.

M. Takahashi and W. Takahashi, Separation theorems and minimax theorems
for fuzzy sets, J. Optim. Theory Appl., 31 (1980), 177-194.

W. Takahashi, Nonlinear variational inequalities and fixed point theorems, J.
Math. Soc. Japan, 28 (1976), 168-181.

W. Takahashi, Recent results in fixed point theory, SEA Bull. Math., 4 (1981),
59-85.

W. Takahashi, Fixed point theorems for families of nonexpansive mappings on
unbounded sets, J. Math. Soc. Japan, 36 (1984), 543-553.

84



'21. W. Takahashi, Nonlinear Functional Analysis, Kindaikagakusha, Tokyo, 1988
(Japanese).

22. W. Takahashi, Existence theorems generalizing fixed point theorems for multi-
valued mappings, Fixed Point Theory and Applications (J. B. Baillon and M.
Théra eds), Pitman Research Notes in Mathematical Series 252, 1991, 397-406.

85



