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REMARKS ON HILLE’S UNIFORM AND STRONG ERGODIC THEQREMS
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ABSTRACT. We give a full answer to the converse problem of Hille
in the uniform and strong ergodic theorems with a view to relating
the Cesdro (C,o) ergodic theorems for a linear operator T omn a
Banach space and the properties of the resolvent R(A;T).

My purpose in this exposé is to give a brief summary of some recent
research on the uniform and strong convergence of Cesdro (C,a) and Abelian
ergodic operator averages. The exposé is mainly a report on the author’s
personal work on the subject, by a general survey. Most of the results
mentioned below were discussed in [ 6 ].

Let (X,]-]}) be a complex Banach space and let B[X,X] denote the Banach
algebra of bounded linear operators on X to itself. For a real number o> -1
and each integer n 20, let Ax(la) be the (C,a) coefficient of order o which is
defined by the generating functiom (l-u)"(a+1) = 2;__.0 Ar(1a) p® (0<yp < 1). In

particular, we have
Al =a(® =y, a5, A ol 2almD ey,

al®) - §oale=1) o (mtay . [(mtetl) . n®
k=0 n-k n T (nt+1)T (a+1) T (atl)

Furthermore, Aéa) is an increasing function of n2 0 for a> 0 and is a decreas-
ing function of n20 for -1 <a<0. If A is such that |A]|>v(T), where y(T)
stands for the spectral radius of TeB[X,X], then two series I- Z;zl (ToFlorny /AR
and Z:=0Tn/}\n+1 converge in the uniform operator topology and

n © n-1
...._.Ll__.. =T - (I-T) % T
an n=1 AR

For each A>max(l, v(T)), (A-1)R(X;T) is said to be the Abel average for T.
The resolvent R(A;T) is analytic in the resolvent set p(T). Let Dbe an open
set containing p(T) and let 3D denote the boundary of D which is assumed to

consist of a finite number of rectifiable Jordan curves, oriented in the

usual sense. The Cesdro (C,a) averages of order a>0 for TeB[X,X] are
defined by

-ROGT) = (A=1)
n=0

(prj=—2t  F sla-l)gk_._1 (@) .
¢y /LTl RO kﬁoAn-k T ol fip Ca C(MR(A;TYAA, n20,
n
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(@) (3 = (a(@)y=E g0, (a=1)3k . .
where (O (A) (An ) Zk=0 An-—k A®™. In 1945, E. Hille obtained the following
theorem.

THEOREM 1 ([ 3], Theorems 6, 7). Anecessary condition for the existence
of an operator E ¢ B[X,X] such that for some fixed o >0
(1 (uo) (resp. (so0)) lim Cl’(la) [(Tl=E
Nroo
is that
(2) (uo) (resp. (s0)) lim T%/n%=18 (the null operator) and
N>

(3) (uo) (resp. (s0)) lim (A-1)R(XA;T) =E.
A+140

Conversely, if (2) is replaced by the power-boundedness of T, then (3) implies
(1) for every a>0.

Our particular interest consists in the converse statement of the above
theorem, when the operators in question are not necessarily power-bounded.
Such a case seems to have not been considered by Hille. More precisely, the
question is whether the power-boundedness of the operators in question is
indispensable to deduce (1) from (3). A partial negative answer to this ques-
tion was first given by M. Lin in the case a =1, proving the following theorem.

THEOREM 2 ([ 41, Proposition). Let TeB[X, X] satisfy the condition
(uo)lim T™/n=6. Then the following conditions are equivalent :
oo

1 n-l k
(1) (uo) 1im — I T exists in B[X,X].
N+ 1 k=0

(2) (vwo) 1lim (A-1)R{(A;T) =E for some operator E e B[(X,X].
A>140

Our purpose is to answer the question negatively for any real order
a>0. The main results are stated as follows :

THEOREM 3 ([ 61, Theorem 1). For any fixed real a >0 let T e B[X,X] sat-
isfy the conditiom (uo)lim T%/a% =6, where w=min(l,x). Then there exists ‘an
operator E & B[X,X] suchn;;at

(o) lim c{*){11=E if and only if (wo) im (=DROT) = E.

THEOREM 4 ([ 6 ], Theorem 2). For any fixed real a >0 1let T e BLX,X] sat-

isfy the condition (so)lim T%/n% =18, where w=min(l,a). Suppose that
pets- ]
sup Hcéa) [Tlx] <= for all x ¢ Range(I-T).
n

Then there exists an operator E e B[X,X] such that
(s0) Lim C{®)[TI=E if and only if (so) lim (A-1)R(A;T) =E.
Tlc0 A>-140
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Condition (2) appearing in the Hille theorem (Theorem 1) is very impor-
tant in ergodic theory. In fact, this condition plays an essential role in
relating Tauberian theorem and ergodic theorems. Hille himself stated only
the fact of implication (1)=>(2) without proof. Since then, its proof has
never been given so far. So it seems to be worth while to give the proof of

implication (1)==(2). We prove the following (new) theorem which is the key
of the proof.

THEOREM 5. Suppose that for any fixed real o >0 there exists an operator
E € B[X,X] such that (uo)(resp. (so))%im Céa)[T]==E. Then we have
=300

im 5 a(B=1) gk _ -
(uo) (resp. (so))lim = . L A T 8 for -l1<B<min(l,a).
N+ 7 k=0 n~k

Proof. Here we consider only the case of uniform operator topology. For
notational covenience we write

ulrl=17, s{®[r]= kréo alest) gk, s,
Then it follows that
nzo un[T]rn = (l—r)ango Sr(la) [TI™, O0<r<l, ¥Yr>+vy(T).
Now fix a B such that -1 <B8<min(l,a). We obtain

?0 s{Brr1em - (1-r)7B

? T
z I, uglTd

a

= -0 T u 1)

- -8 3
= -n*F L s{M e,
s0 that

s{Frr1= 1;ﬁo(—l)k (*By s, a0,

(B) = T (e1)k (B yalx)
A7 = LD (%A%, n20.

There exist constants Kl >0 and K2 >0 independent of n and k, such that

A(a) K
n-k <K1(2———)a, 0sksn, n21,
nU. n
K
o-8 <2z 5
1oL | el k2 1.

Put m==[—%—]. Given € >0, choose an integer Ny =N,(e) say, large enough so
that
(a)
Aq

o (a) - £
X eyt~ < 3 n2N;+1,
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c T E<—F—, lsksm, nzN;+1,
” n-k ” 60K1K2 m n 1

where o0=3° {Yk* B} yhich converges since a-8+l > 1. Then we have
k=1 &

m _ ko 1 (o) €
K1K2k£1(2 —) B |]Cn_k[T]—EH< 3 nz N+ 1.

On the other hand, since {] Cx(la)[T:}—EH} is bounded, there exists an integer
N,= Nz(e) say, large enough so that

Klek;Z;l(z - Ey® el rr1-g

cx8+1
n
SEKKg I (2———)

KiKoK3 1 (2-0)®
a¢-8 1 pa-BHl

dt

<-3—, n2 Nyt 1

with some constant K3 > 0. Summing up the estimates obtained above, we have
for all n>max(N1, N,)

s{¥rry alPe ale)

‘ _ (@) ppy -
fl = x i< S e, LTl -E|l
o ko 1 (o)
+K1K2kzl(2-——) e uc“[ﬂ E |
3 ke 1yl
+K1K2~k=§1+1(2 —) e e LTl - £l
< £ o4& 4 & ..
3 3 3

Since HA[(la)Ell =0(n%), we therefore have || Sr(lB> [T]]=0(n*) and the theorem
follows.

Using Theorem 5 we see that implication (1)==>(2) in Theorem 1 follows

from a modification of the proof given by S. Chapman [ 1] in the case of nu-
merically valued sequences.

REMARK. Following Hille [ 3], we take X to be the space Cy[0,1] of func-

tions f£(x) continuous for 0 <$xs 1 which vanish at 0, with |[f ] =max| f(x) | .
Let 8>0 be fixed and define

Qpf = (T-Jp)E,  (I46) () = LI (® I x-w) P e (wyau, 0sxs1

for f € X. Then the iterate Qg, for each n, has the form
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(ng) (x) =£(x) - fOX P_(x-u,B)f(u)du,
where

PaGeu,8) = T (=D (R)Ir(ks) 17 (e ¥
k=1

E. Hille proved that (i) || Qtl1 I = O(nl/“) , I]iim Il Q?H =, and (ii) Q1 is strongly

(C,0) ergodic for a> 2. But we see that Q1 fails to be uniformly (C,a) ergodic
when Y2<a<1 (see [ 61). Let Tg = I‘(B+1)Q1JB for B> 1 with the operators Q1
and JB. Since HJBII < 1/T(B+1), we have I[Tgn ==O(n1/‘*). Note that TB is compact.
Then by Theorem 3.1 of [ 5] Ty is uniformly (C,a) ergodic for a> Yy,

CONJECTURE. lim || Tg || == for some B> 1.
pe -
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