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ABSTRACT. In this paper, we shall introduce generalized vector measures for the

. t
path integrals for Schrédinger equations. We prove that [®(V)](v) = ¢’ Jiviatnds
is integrable with respect to our generalized measure for any real function V(%)
which continuous in Z € RV\{0}

INTRODUCTION

It is well known that for the case of space-dimension > 2 ,Feynman path integrals
for Schrddinger or Dirac equations are not represented by (scalar-valued) measures.
In this paper, we shall introduce generalized vector measures and prove that

[@W)(vy) = ¢l o VOtsNds i e following equation(2) is integrable with respect to our
generalized measure for any real function V() which continuous in # € RV\{0} ( see
Corollary 3).
For the Schrodinger equation in RV
o]

(1) —é-zu(t,f) = —iAu(t, %) + iV (D)u, ), u(0,7) = (&), ¢ ARY;0),

we would write the associated semigroup {S,} :

Swpl#) = u(t, ) = [ K(t: D)y

( where K(t;Z,7) is the elementary solution of (1)) as the path integral

(2) Swp(@) = [ VD G(4(0)du0 () Swp € PRY;C).
0.1
where every v is a path on RY, or v € Qg = HaepgRY, (RY = a copy of RY).
If V = 0 we denote the semigroup by {T}} and the elementary solution by Ky(¢; z, y).
F. Takeo [13],[14] introduced the notion of generalized vector measures similar to
ours for the path integrals for Dirac and Schrodinger equations. For the necessity and

the more detailed discussion of generalized measures associated with path integrals,
see [8].

113



1. PATH INTEGRALS AND GENERALIZED MEASURE

Using L2-wellposedness of gzu(t,i’) = —iAu(t, %), we shall try to represent path
integrals for Schrodinger equations as a kind of Stieltjes integrals. Though this is
similar to Takeo’s measure, our generalized measure is easy to understand.

For an L*-valued measure g = g(,7), T € RY,7 € I =[0,1], let

[B(0)r(3) = 97, (2(),1() = (V) ((8)) = I 7T

for v = (F, € RY) (or (@) = Z.), a € [1,7),
be a function RV*(™7 — C. For 7 = 0 we denote ®(g)o, simply by ®(g), and
[2(9)0.)(Z) by [2(9)](Z,t). Note that

[2(9) o rllos < o i Ra(EIs

Definition 1.
var(F o) = sup { CIF(v(13)) = Flr(m-)l},

J
var(F) =sup { 3 |Fy; = Fyy_,[loo} = supvar(F o 7),
Jay j Y

where A runs over all divisions of [0,t], A :0=Ty < --+- < 7T =t.

For any fixed v, (Fov)(7) = F,(7) is a function with bounded variation if var(F) <
o0, and we have var(F) = sup, var(F o~). We shall define a norm of the space X
of the functions with bounded variation. The unit ball B and the Banach space X
associated with the norm || - ||, are defined as usual:

B = the convex hull of {®(g) i eJo supe lo(Es)lds <e},
X =the completion of the normed space with unit ball B.

Definition 2. We denote by L* the space of functions with bounded variation.
We denote the space of F' above by L*([0,t], L= (RN)) if F is considered as a function
of (t,%), and by L*(Qy) if F is considered as a function of .

Evidently we have

(3) IF]lw = 1 4= var(G) = e, VF(&) = elospzo@erde,
where G(t) = [ g(s)ds. Note that

@ t
51 Pl = llg()ooelo 1o=12,

C1 [ 5} loods < var(@(9)) < Cs [ lg(s)lends.
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We define a finitely additive measure
(B30 (BN@) = T(xs, ) = [ Kalb £, 0@,
W3 (BE@) = ([T, 0,1 (BHE),

where X p; be the characteristic function of B;, that is, x5,(%) = 1 for ¥ € B;, x5;(%) =

0 for £ ¢ B;. The solution u(t) = S,u(0) to the equation

%u =(A+9)u, u(0,7)=f(%)

where A = —iA is formally written as

t/h .
uft) = lim [[ Tres®f = [ ehVohirggQ,
=0 =1 Qo1

On the other hand,

4)  u(t)=T.f + /0 Tioeg(s)fds = Tof + G(t) = TLG(0) — /0 "G(t - s)dT, f.

Lemma 1. The equation (4) has a unique solution. More precisely,

[l < (14 [ lg(o) o) 1u(O)1L

Proof. Since T,_,f is an L*-valued continuos function and g(s) is an L*-valued
measure, T,_,g(s)f is an L*-valued measure and hence integrable.

Definition 3. An element pu € (L**(Qpy); X) is called an X -valued generalized mea-
sure. For f, f' € L? we formally denote

¢
(Wi@@)f.7) = ([ 20)an®) 1, £) = ( [l 2dp%1, 1),
Lemma 2. For ®(g) = eJoe L"(Qoy), f € L2, the bilinear operator W,
(5) Wi o LHRY) x L®(Qp ) — L*RY)
defines a bounded linear operator in L(L*(Qo,g; C); L(L* (RN C), L*(RY; ©))).

Proof. By Lemma 1, W, is defined and sup)p<; [Wi(F)|| < C(2). [Wi]| < 1. W,
is uniquely extended to a bounded linear operator : L*(RV) x Lb"(Q[o,,;]) 3 foF —
W(F)(fo) € L*(R") which is denoted by the same notation W;. By Lemma 2 we get

Theorem 1. The path integral for Schrédinger equations is expressed by the gener-
alized measure p@ € L(L*(Qp4; C); L(L*(RY; C), L2(RY; C))).
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Corollary 1. Ifezxp (fy iV (v(s))ds) is continuous in T uniformly on the set {v}, it
is integrable by our measure.

Theorem 2. For some ¢ € C(Qog; Ls(L*(RY;C), L*(RY; C)))

pl(v) = ;%qﬁr('y),

where Ly(L*(RY; C), L*(RY;C)) means L(L*(RY;C), L*(R"; C)) with the topology of
simple convergence (= the weakest topology such that L(L*(RY;C), L2(RV;C)) 2 T:
L?> f — Tf € L? is continuous).

Proof. By Theorem 1 we have ¢, € L®(Qpy, L,(L*(RY;C), L*(RY;C))). It suf-
fices to show ¢, is continuous in 7. Suppose ¢(7) is not continuous at 7. Then
lim, o || 4@ ([ro — &, 70 + €]) f|| is not zero for some f € L2. This contradicts the conti-
nuity of T = p?([0,7]) in L? with respect to T.

Remark 1. Since G is a vector-valued function of bounded variation and T,f is a
vector-valued continuous function, the integral f{ G(t—s)dT, f in (4) is a vector-valued
Stieltjes integral. Our measure u® corresponds to the Stieltjes measure dT; = AT,dt,
the differential of the continuous operator-valued function T;.

2. FAMILY OF p?-INTEGRABLE FUNCTIONS

Associated with the restriction of a measure to BL = {&# € RV|||z|| < L}, we
consider the Schrédinger equamon with Dirichlet boundary condition: a path « is
excluded if 0 < 3s < t: y(s) ¢ BL.

We shall express the generator with Dirichlet boundary condition in a form of the
penalty method. Let x* be the characteristic function of B%, that is, xX(Z) = 1 for
& € BY, xp, (%) = 0 for T ¢ B

®) L) = Au(d), w(0,8) = 9(@), v e IFRY),

M) Lub) = AMul), w(0,9) = (@), ¢ € LRY),

where A = —iA, AL = A —limyteo A - xF = A +log X%

Lemma 3.
(I-A)f(@&@), for|Z <L,

® (- ai@ = oo, for £(2) £ 0, and |7 > L,
0, for f(Z) =0, and ||Z]| > L.

Hence

(9) (I— AN (&) = XM (&) - (I - A)~'g(#), g € L*(B) c L*(RY).
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Note that — AL is accretive:
17 =AM gl = Ix"(T - A gl S T = A7 gl < llgll Vo e Lz‘(BL)-

— A" is maximal accretive since —A is maximal accretive.
We use the following notation:

Qb = {veq|v(s) e BE ¥se o4},
B = U %y
L>0

Oy = (1e€Qq|1(s) el Vselo,y})
G = (7€ W) > 7 Vselo,g}, vr>o.
Definition 4. Let {TF} be the semigroup generated by AY. We define

K o)e(= [ P04 )

=12 Qfg)e( = /QL ©(7(0))du?(v)) = Te.

0.4
Theorem 3. The support of u? is contained in Oy That is,

(10) 2’199(7(0))=/ ©(v(0)du?(y), e L*RY).

o

[0.1]

Proof. By (9) we have
Jim (I — A%)7'g(2) = (I - A)"'9(2) Vg e LARY).
Thus a modified Trotter-K{ato Theorem ( see Lemma 4 below ) implies
Jlim Tfo =Tip, Ve e LRY).
That is, for a family of open sets {S C RV},

dm, /Q[s] 0(7(0))du(y) = /Q g ©(7(0))du(7), Vo € L*(RY).

On the other hand,

o etrondn®() = lim, [ w(2(0)du® ().

o) STRNJOR

This means the support of the measure ;9 is contained in the set of bounded paths
in Q% -
[0.1)
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Corollary 2. The set of unbounded paths Qo4 \ (0. is of measure zero.

We give a modified Trotter-Kato Theorem:

r > 0} be a decreasing family of closed subspaces of a Banach
space Xg satisfying Upso Xr = Xo. Let T} be a Cy-semigroup such that Ty X C X,
and AT its generator. We assume

Vfe Xy, Ye>0, 3r >0,

1) 3feXo:lf = fll <e T =47 = (I = ANl < el = A)7 .
Then we have
T7f—Tf, VieJX: el0, r=r()l0.
>0
Proof. See [4]

Theorem 4. Let the dimension N > 3. Then the outer measure of the set Qo \Q 0,4
can be arbitrarily small:

Ve >0,Vp € LARY),3r > 0: [u?(Qp5)ell > (1 =€)llell-

Proof. By virtue of Lemma 4, it suffices to show
(12) lim( ~ A"0)"lg(#) = (I - A)'g(#), Vg€ L*RY).

For N > 4 the proof is easy since the H2-closure of U,5q D(A") contains D(AY).
We shall prove our theorem for N = 3. Since ||(I — A™°)~!|| < 1 and since H* is
dense in L?, we may assume g € H*.

For f(£) = (I — A)™'g(%), put

L fa-Ef@,  forlal >
1:(2) = {o, for |7 <7,
9:(%) = (I = A™) (&)
Since fr|gs- = 0, f. € D(A™C). Note that AL.] = 0 for £ # 0, we obtain

Ar'Cfr(f)=(1—W;”)Af(f)—f(Aw)() 2r(0-=-)9f (&)

af (&),

| ‘H

" 1
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Hence we have

9() = 9:(8) = (I = A)f(Z) - (I = A™) £+ (&)
= f(Z) = f+(@) + A7 f.(T) — Af()

T o) — T AF () — 9re—
A A

g € H*, k> 2 implies f € Hk+2, hence||A flleo, [0f[lec < M.

8f(&), for ||Z]| >,

o= 0 @lon < uran 10 F @l snnne + nraﬁaﬂﬂum)
< 10 meey 1072 o + uraﬁum) 8F(#)llze(o
< CyrRM +rCoM — 0 as R— o, TR—0.
Hence
192) = 0: @) < lgzrllizconey (1S @ ls + 147 (@)) +2nra” 10/ @lon
— 0, asTt =0 and rR —=0.
Thus

(7 — A7) g(7) = (I = A) " g(@)]
ST =A™ g(@) — (I = AO) g (@) + (T = A7) 71ge(2) = (T~ A) 7 g (@)
< llg(2) — g (@) + Hfr(f @l
< lg(@) = g- @M + ll5z; T “H

Theorem 5. Let V(Z) be a real continuous function. [®(V)](y) = ¢ ifo VirtNds g
u@-integrable, that is, the fundamental solution in (2) is given by

D2 srey + 1 £ (@) L23y — O, as T — 0.

(13) S = /Q{ ]eifo V(7(8))dsdp0(7) e L(LZ(RN;C),H(RN;C)).
ot

Proof. Formally the solution to the inhomogeneous equation is given by

Ly _ oL YL _ i [y Viais)ds Q
St =Thf+ [ TEVsds= [ & bVOODf(3(0))dp().

(0.¢]

by Definition 4. This is easily justified since it holds for a bounded sufficiently smooth
V.
If v is bounded and measurable, the function V(y(s)) is bounded and measurable.

In this case [®(V)](y) = ¢ J7VOds is well defined for a.e. 7.
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Put FE(y) = xX(v)F(y). F¥isin L*(Q) and hence integrable. By Theorem 3,
we have

F(v(s))du®(y) = lim FL d = lim F(y(s))dp®F (v
f FlreNas®e) = Jim [ Fo(6)du0) = Jim [ FOr(s)dn ()
exists. For the measurability of a path v we cite the Axiom of Determinacy [3]: Any
RY -valued function is Lebegue-measurable. (Another justification will be given in
[8].) By Theorem 4, 5, we have

Corollary 3. Let N > 3. If V(%) is real and continuous in £ € RV\{0} ( for
instance, V(%) = U(Z) + 1/||Z|™,U € CRY) ), then [2(V)](7) = e [V ire)ds
u@-integrable.
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