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Spiral traveling wave solutions

of some parabolic equations on annuli
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Josai University University of Electro-Communications
Abstract

This paper deals with spiral traveling wave solutions of some parabolic equations on
annuli related to a model of the motion of screw dislocations. We prove the existence,
stability and uniqueness of spiral traveling wave solutions. Next we consider a model
equation for screw dislocations and study the properties of spiral solutions for the equation
of interface motion which is formally derived in the singular limit of the model equation.

1 Introduction

In this paper we shall investigate a semilinear parabolic equation on a two-dimensional

annulus:

{ut:Au-}-g(u—G), c€N, t>0, W

u, = 0, x €00, t>0,

where 0 = {z € R? | a < |z| < b}, (r,0) denotes the polar coordinates of x € Q and g is
the derivative of a multi-well potential.

Our motivation for studying problem (1) originates from crystallization processes in
material sciences. Screw dislocations are observed on the surface of actual crystals such as
silicon carbide, calcogen, paraffin and polyethylene ([19]). Frank [6], [3] originally proposed
the following mechanism of the formation of screw dislocations: Crystals generally contain
lattice defects. Once a lattice defect reaches the surface of a crystal, the defect creates a
mononuclear layer (or a step) on it. Since the velocity of progress of the step is assumed to
be the same at any point, the angular velocity near the corner of the defect is faster than
that at the edge. Thus, the dislocation proceeds in a spiral shape.

Recently Kobayashi [10] has proposed the following reaction-diffusion equation as a

model of the motion of screw dislocations:
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ut:Au+812f(u—9;a), zet>0
Uy = 0, z €00, t>0,

2)

where the parameter £ > 0 is sufficiently small and f(-;¢) is the derivative of a multi-well
potential for each e. The unknown function u(z,t) represents the normalized height of the
crystal. Some numerical experiments imply that equation (2) has a rotating and growing
solution with a spiral shape. The purpose of the present paper is to show the existence,
uniqueness and stability of such a solution, which we call a spiral traveling wave solution.
More precisely, a solution T(z, ) of (2) or (1) is called a spiral traveling wave solution with
growth speed w if it is written in the form

alz,t) = o(r,f —wt) +wt, z€,t>0. (3)

Since the reaction term is very large, equation (2) gives rise to sharp internal layers (or
interfaces). As we will see later, the motion of such interfaces is driven by their curvature.

To be more precise, each interface moves according to the equation
V=c—k 4)

in the singular limit as € — 0, where V' and x denote the normal velocity and the curvature
of the interface respectively, and c is a positive constant determined by the nonlinearity
f. Equation (4) also arises from the kinematic theory in excitable media as Belousov-
Zhabotinskii reagent. For mathematical results in this area we refer to [9], [12] and refer-
ences therein.

Our paper is organized as follows: In Section 2 we introduce basic notation and state our
main results (Theorem A — on the existence — and Theorem B — on the uniqueness and
the stability —). We prove Theorems A and B in Section 3. In Section 4 we present a formal
derivation of the equation of interface motion corresponding to equation (2). In Section 5 we
study spiral solutions with constant angular speed for the interface equation (Theorem C).
In Appendix we recall monotonicity and convergence results in order-preserving dynamical
systems in the presence of symmetry obtained by Ogiwara and Matano [16, Propositions
B1 and B2]. These results play a crucial role in the proof of Theorems A and B.

By (3) a spiral traveling wave solution & with growth speed w satisfies
a(z,t +Tp) = u(z,t) + 2, z€Nt>0, (5)

where Ty = 27 /w. Solutions with property (5) have been studied for other equations
such as systems of ordinary differential equations ([11], [7], [2]) and parabolic equations in
the whole space RV ([15]). The methods of these literatures are based on the theory of
dynamical systems and are, in essence, same as that of [16]. For our problem (1), as we
will see in Lemma 5, if a solution @ satisfies (5) for some Tp then it is a spiral traveling
wave solution with growth speed 27/Tj.
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2 Main results
Throughout this paper, we assume that the nonlinearity g(v) satisfies the following:
(A1) g is a smooth, 27-periodic function on R;

(A2) g has three zeroes 0 < { < 2x in the interval [0, 27];

(A3) /0 " g@)dv > 0.

It is known that, for any ug € C(f2), there exists a solution u(z,t) of (1) with initial data
u(-,0) = ug (see [13]). Here C(Q2) denotes Banach space of continuous functions on
endowed with the norm [IuOHO(@) = sup{|uo(z)| | z € Q}. For uy, uz € C(Q) we write

up <up  if w(z) <up(z), z€Q,
up <up if ui(z) <us(z) and ui(z) Z ua(z), z€Q, (6)
up Lug  if w(z) <ug(z), =€

Let {®;}:e[0,00) be the local semiflow on C(Q) generated by (1). In other words, the map
®, on C(Q) is defined by

Dy (ug) = ul-,t) for each ¢ € [0, c0),

where u(z,t) is a solution of (1) with initial data u(-,0) = wg. The strong maximum
principle ([17]) shows that @, is strongly order-preserving, that is, u1 < ug implies ®¢(u1) <
®,(usy) for each t > 0. Further the standard parabolic estimate ([13]) shows that ®; is a

compact map on C() for each ¢t > 0.

Definition 1
A solution T(z,t) of (1) is called a spiral traveling wave solution if it is written in the form

u(z,t) = o(r,0 —wt) +wt, z€N, t>0

for some function ¢(r,£) and some constant w. We call the constant w the growth speed of

the spiral traveling wave solution w.

Remark 1
Clearly, if U(z,t) = u(r,0,t) is a spiral traveling wave solution of (1), then u(z,t + 7) Is
also a spiral traveling wave solution for any constant 7. Further, u(r,0 — a,t) + « Is also

a spiral traveling wave solution for any constant o.



18 Procedings of NLA99 (2000)

It is easily seen that if ¢(r,0 — wt) + wt is a spiral traveling wave solution of (1) then
p(r, &) satisfies
—wpe +w=Ap +g(p = ). (7

Lemma 2

If a spiral traveling wave solution for (1) exists, then its growth speed is positive.

Proof Let ¢(r,0 — wt) + wt be a spiral traveling wave solution. Then (7) is fulfilled.
Multiplying both sides of (7) by ¢ — 1 and integrating over {2, we have

~w13¢g—1ﬁdx =:Lé{Aw-Wz~1%+M¢~f)WWs—lﬂit

b2 —a? [
- - 9 / g(’U) d’U,
0

and hence

27
(w—aﬁﬁ o(v) dv

w =
2/(905—1)26136
Q

This proves the lemma. i

Definition 3
A spiral traveling wave solution U of (1) is called stable if for any € > 0 there exists some
6 > 0 such that

) =7 Dllom <& >0

holds for any solution u of (1) satisfying ||u(-,0) — @(, O)H(;(ﬁ) < 4.

Concerning the existence, stability and uniqueness of spiral traveling wave solutions,
we obtain the following:

Theorem A

For any b > a > 0, (1) possesses a spiral traveling wave solution.

Theorem B

(i) A spiral traveling wave solution @ of (1) is stable and is monotone increasing in t, that
is, Ug(z,t) > 0 for all x € Q, t > 0. Further it is unique up to translation to the
t-direction, namely, if u is a spiral traveling wave solution of (1) then there exists some
70 € R such that u(-,t) = (-, t + 79) for t > 0.

(ii) For any solution u of (1), there exists some 7y such that

tlgg)””('yt) _ﬂ(‘yt‘}“TO)“o(ﬁ) =0. (8)
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Remark 2

From Theorem B, we see that a spiral traveling wave solution u of (1) is stable with
asymptotic phase, namely, it is stable and, for any solution u of (1) with initial data
sufficiently close to @, there exists some 7y such that (8) holds.

3 Proof of Theorems A and B

In this section, we prove Theorems A and B. In what follows z € Q will be often
identified with (r,6), the polar coordinates of z.

Lemma 4
Let v(z,t) be a solution of (1) with initial data v(-,0) = 0. Then there exists some constant
M > 0 such that

max{v(z,t) | z € Q} — min{v(z,t) |z € Q} < M
for allt > 0.

Proof Differentiating (1) by 6, we see that the function w(z,t) = ve(z,t) — 1 satisfies

wy = Aw + ¢g'(v — Qw, z €, t>0, (9)
wy = 0, xed, t>0.
Since w(-,0) = —1 < 0, from the strong maximum principle it follows that w(-,t) < 0,

namely
ve(-,t) <1, t>0.

Hence, using the fact that v(r,0,t) = v(r, 2w, t), we have
6 —2x <wv(r,0,t) —v(r,0,t) <8, a<r<b0<0<2m,t>0.
Thus
v(r,0,t) —v(a,0,t) — 2r < v(r,0,t) —v(a,0,t) <v(r,d,t) —v(a,d,t) + 27 (10)

holds for a < r < 4,0 < 8 < 2m,t > 0. Now fix ¢ty > 0 arbitrarily and take a small
constant § > 0 such that (ve — 6ve)(-,%0) < 1 and (vg + 6v:)(-, t0) < 1. Since vy % vy — 1
are also solutions of (9), in the same way as above we get (vg & duv)(-,t) < 1 for £ > to.
This implies, for ¢t > tq,

1— vy 1— vy
. 11
3 <o < (11)

Multiplying each side of (11) by r € (a,b) and integrating by 4 from 0 to 27, we have

2mh 2 27h
_T < ‘/0 rugdf < T
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Since v satisfies (1) for ¢ > tg, integration by parts yields

2
-2mbC < / (rvg),df < 27bC
0

with C' = (1/6) + || fll c(- Integrating each side by r, dividing by 7 and integrating again,
we get

_ 2mb(b— a)? 2 27b(b — a)* c
= a -

C< {v(r,6,t) — v(a,8,t)} db <
0

These inequalities and (10) yield

b—a)? b(b — a)?
—K—;@—C’ - 27 < v(r,0,t) — v(a,0,t) < L?Ta)——C + 2.
Therefore, again by (10), we obtain
b(b — a)? b(b — a)?
——(—GL)C — 4 < v(r,8,t) — v(a,0,t) < ~(—a—a—)—C + 4.

Combining these inequalities and the fact that the set {v(-,t) | 0 <t < to} is a compact

subset of C'(Q2), we obtain the conclusion. ]

Lemma 5
Let o(z) € C(Q) satisfy ¢ + 21 = ®1,(p) for some Ty > 0. Then o(r,§ — wt) + wt is a
solution of (1), where w = 27 /Tp.

We postpone the proof of Lemma 5 until the end of this section.

Proof of Theorem A Denote by v(z,t) a solution of (1) with initial data v(-,0) =0,
in other words v(-,t) = ®+(0). First we show that the orbit {v(-, %) | t > 0} is not bounded
in C(Q). Assuming that {v(-,%) | + > 0} is bounded in C(Q2), we will lead a contradiction.
In this case, since a map ®; on C(f2) is compact for each ¢ > 0, the omega-limit set of 0
defined by

W) = (W6s 558 ¢ o@

>0
is not empty. As is well-known, W(0) is compact and ®;-invariant for each ¢ > 0, namely
&, W(0) = W(0) (see for example [8]). Put

o = inf{a > 0] wy < gows for any wy,wy; € W(0)},

where gow(z) = gaw(r,8) = w(r,f — a) + a for w(z) € C(Q). Note that the map g, on
C(Q) is commutative with ®;, namely, g, 0 ®; = ®; 0 g,.

Clearly wy < goow2 holds for any wy,ws € W(0). We show that ap = 0. Assume that
ap > 0. If wy < goowa for any wy,ws € W(0) then wy K gq,ws for any wy,we € W(0),
since W (0) is ®;-invariant and since ®, is strong order-preserving for any ¢ > 0. In this case,

compactness of W (0) implies that if we choose § > 0 sufficiently small then w; < goy—sw2
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for any wy,ws € W(0), which contradicts the definition of ag. Thus there exist some two
elements wy, wy € W(0) such that wy = ga,ws. Then it holds that

w<w; forallwe W(0) and wy < Wy, (12)

Since the latter inequality implies ®;(ws) <€ ®4(wy) for any ¢ > 0, by the definition of
W (0) there exist large ¢;, ¢t > 0 satisfying

@tl (0) < (I’tQ (O)
Therefore, if we choose £ > 0 sufficiently small then
P, (0) < 9-:2¢,(0),

and hence
(I)t1+s(0) < gmeq’tﬁ-s(o)

for s > 0. Take a sequence {s;}; such that ®; ,,,(0) = w; as j — oco. Replacing
{®4,+5;(0)}; by its subsequence if necessary, we see that {®,4,,(0)}; also converges to
some w3 € W(0). Then w; < g w3 holds. This and the former statement of (12) imply
w3 < g-.w3 and we are lead to a contradiction. Thus we obtain oy = 0, from which for
any wi, we € W(0) it follows that wy < wy and w; > wy, that is, wy = ws. Hence W(0) is
a singleton. As is easily seen, if an omega-limit set is a singleton, then it consists of some
equilibrium solution. This means that (1) possesses a spiral traveling wave solution with
growth speed 0, which contradicts Lemma 2.

Thus we see that the orbit {v(-,t)|t > 0} is not bounded. Hence there exists some
sequence {t;}; such that ||v(-, tj)”g(ii) — 00 as j — co. We discuss only the case where

max{v(z,t;) |z € Q} — oo, Jj =00 (13)

and prove the existence of a spiral traveling wave solution with positive speed. The case
where min{v(z,t;) | z € 2} — —oo can be treated similarly. In the latter case there exists
a spiral traveling wave solution with negative growth speed, which contradicts Lemma 2.
We show that there exists some Tp > 0 such that ¢ + 27 = ®1,(p) for some function
o(z) € C(Q). Then, by Lemma 5, we see that (1) possesses a spiral traveling wave solution
with growth speed 27/T5. As in Lemma, 4, there exists some constant M > 0 such that

max{v(z,t) | z € Q} — min{v(z,t) |2 € Q} < M, t>0. (14)
We take n(j) € N so that the function v; defined by v;(z) = v(z,t;) — 2mn(j) satisfies
vj(z) €[0,M +2x], z €.

Fix s > 0 arbitrarily. Then, replacing {®,(v;)}; by its subsequence, we see that {®,(v;)};
converges to some ¢ € C(Q).
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Note that (13) and (14) imply 27 < v(-,T) for some T > 0. Therefore ®,.+(27) <
®,++7(0) holds for all ¢+ > 0. Putting ¢ = t; we have ®,44,(0) + 27 < @,44;+7(0) and
hence ®;14,(0) — 2mn(j) + 27 < Pyp¢;47(0) — 27n(j) = Br(Psy4;(0) — 27n(j)), since
@, (ug) +2mm = ®¢(ug+ 27m) holds for any ¢ > 0, m € N and uy € C(Q). Letting j — oo,
we get @ + 21 < Dr(p). Now set

To=inf{t > 0| o+ 27 < & (p)}.

Clearly 0 < Tp < T and ¢ + 27 < ®1,(p). Suppose that ¢ + 27 < ®1,(p). Then, for
any 6 > 0, ®5(¢ + 27) = P5(p) + o7 <& ®7,4+5(p). From this, for a sufficiently large jo, it
follows that

Bs545(vj,) + 27 K Pryists(Vj)-

Therefore, there exists some € € (0,7Tg) such that

(I)(H-S('Ujo) + 27 K (I>T0~E+5+S(Ujo)7

and hence
Potott(vjo) + 2 K Pry—etotstt(Vj), >0

Adding 27n(jo) — 27n(j) to both sides and putting t = ¢; — ¢, — 8, we get
D5 (vj) + 21 K D7, (R (v5))-

Hence letting j — oo implies
@+ 21 < 1, (),

which contradicts the definition of Ty. Therefore ¢ + 27 = &7, () holds and the proof is
completed. i

Lemma 6
Let ui,us € C(Q) satisfy uy + 27 = &1, (uy) and uy + 27 = &7, (uy) for some Ty, Ty > 0.
Then T1 = Tz.

Proof Suppose that the conclusion of the lemma does not hold. Without loss of
generality, we may assume that 77 < T3. Take ng € N satisfying u; — 2nom < us.
Then @71, (u1) — 2nom < up + 2n7 for all n € N, and hence @y (p, 7y (u1) — 2107 < uy.
This contradicts [|1, 1y +s, (u1)llo@ = s, (u1) + 2n7llog — o0 as n — oo, where
n(Tp = T1) = 1,11 + s, with [, € N, s, € [0,T1). ]

Proof of Theorem B (i) First, by applying Proposition B1 in [16] (which will be
mentioned in Appendix of the present paper), we prove the uniqueness and monotonicity
of a spiral traveling wave solution. Set an ordered metric space X = C(Q) with order

relation induced by (6) and put

X1 =Y = {ug € C(Q) | ug + 27 = &7 (uo) for some T' > 0}.
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Clearly each spiral traveling wave solution @ of (1) satisfies @(-,0) € Y. By Lemma 6
Y = {UO € C(ﬁ) | Ug + 27 = @TO(U,Q)}

holds for some Ty > 0. The semiflow {®;}s¢(0,00) generated by (1) can be defined on Y for
all t € R. Thus {®;}:e[0,00) is extended to a one-parameter group acting on Y. Denote
this group by G. Then condition (G2) in Appendix is satisfied. Further (G1) is fulfilled.
Indeed the map ®; on Y is also order-preserving for ¢ < 0. Fix a spiral traveling wave
solution @ arbitrarily. Then a pair Y and % = @(-, 0) satisfies (H1) and (H2). Further (H3)
holds since by the strong maximum principle ¢ < hp implies ¥ <« hip for any ¥ € Y,
h € G. Applying Proposition B1 in [16], we see that ¥ = G and that ¥ is homeomorphic
and order-isomorphic to R." By ¥ = (GG@ we obtain the uniqueness of a spiral traveling
wave solution up to translation to the t-direction. Moreover Lemma 2 and monotonicity
of Y = Gp yield that U (z,t) > 0 and @ (z,t) #Z 0 for z € Q, ¢ > 0. Therefore, from the
strong maximum principle it follows that ;(z,t) > 0 for z € 0, t > 0.

Next we show that a spiral traveling wave solution u is stable. By the positivity of @, if
t1 < to then w(-,t1) € G(-,ta). Further by the maximum principle we have, for any §p > 0,

ﬂ(', —dp) < U(,O) < ﬁ(',(SQ) implies  @(-,t — 5()) < ’u,(',t) < ﬂ(',t + 50), t>0.

This proves the stability of a spiral traveling wave solution. Indeed, for any € > 0, take a
do > 0 satisfying ||a(-, do) — @(-, ——60)”0(5) < ¢ and set

§ = min{u(z, §) — u(z,0) | z € O} = min{7u(z,0) — u(x, —d&) | z € Q} > 0.
Then, for any solution u of (1) satisfying |Ju(-,0) — @(-,0)|] c@ <0, we have
a(-, —do) < u(-,0) < (-, do).
Therefore, from the inequalities

(-, t — do) < u(-,t) < T, t+ dg),
(-t — &) <U(-,t) <T(-,t+ &)

it follows that
luC8) = TC, Ol oy < I+ 80) = T, — 80)ll gy = IC, do) —T(, —do)lloqm) < &

for allt > 0. i

Proof of Theorem B (ii) As we have shown above, (1) possesses a unique (up to
translation to the ¢-direction) spiral traveling wave solution . We denote by w the growth
speed of u.

Define a map F on X = C(Q) by

Fuo)(r,8) = &, (uo)(r, 0) — 2,
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where Ty = 2n/w. Then, ¥ = u(-,0) is a fixed point of F' and further @ — 2mn, T + 2m=n
are also fixed points for all m € N. For any up € X a sequence {F"(ug)}n is bounded in
X, since ¥ — 2m7 < ug < @ + 2mn implies § — 2ma < F™(up) < @ + 2mmw for m,n € N.

Hence the set K(up) = ﬂ {F™(ug) | m >n} C X is not empty. Set
neN

Y ={K(ug) | uo € X}

and an acting group G being as in the proof of Theorem B (i). Clearly (G1) and (G2)
in Appendix are fulfilled. A pair Y and {@} satisfies (H4) and (H5). Further the strong
maximum principle verifies (H6). Hence applying Proposition B2 in [16] (which will be
mentioned in Appendix of the present paper), we see that for any ug € C(Q) there exists
some 7y satisfying

nlLHéOHFn’MO - ﬂ(‘,To)“C(ﬁ) =0.

By the definition of F' we obtain the conclusion. ]

Proof of Lemma 5 As we have shown in the proof of Theorem B (i), a function
satisfying
w(z) + 27 = &7, (w) (), zeQ (15)
is unique up to action of one-parameter group {®:}:cr. Since ¢(r,8 — (2/m)) + (27 /m)
also satisfies (15) for any m € N, there exists some s € R such that

2 27
0—— ) +—=29; ,0), <r<b0<6<2nr.
w(r, m>+m (0)(r, ) a<r<b0<80<2r

It follows from this that

@ (7‘,9 — 2;73%> + Z;W =B ,(P,;(0))(r,0) = as(e)(r,8), a<r<b 0<60< 2.

Repeating this calculation, we obtain @,5(p) = ¢ + 27, If ms # Ty then {®(p) | t >
|To — ms|} is a periodic orbit with period |7y — ms|, which contradicts

|®nT, (W)Hc('ﬁ) =l + 2”””0(5) — 00, n — 0o.

Hence we get ms = Ty, namely s = Tp/m. Thus we have, for any k£ € N,

gp(r,()—k.%r)—%k.%r:Qﬂ(tp)(rﬁ), a<r<b0<0<2n
m m =
and further, for any rational number p > 0,

o(r,0 — 27tp) + 21mp = Bpr, () (r,0), a<r<b 0<6<2nr.
Since the set of positive rational numbers is dense in (0, 00), if we set w = 27 /Ty then

P(r,0 —wt) + wt = By(9)(r,0), a<r<bh0<O<2m

holds for any ¢ > 0. The proof is completed. ]
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4 A formal derivation of the interface equation
In this section, we consider equation (2):
1
U5:A1L+8—2f(u~9;6), ze, t>0
ur = 0, z€00,t>0.

We assume that f(v;e) = —%"Ul(v;e) is a smooth function derived from a multi-well
potential W(v;e) whose local minima lie at v = 2mm (m € Z) for all € > 0. More

precisely, we assume that f(v;e) satisfies the following conditions:
(F1) f(v;e) is 2m-periodic in v for each £ > 0,

(F2) f(-;e) has exactly three zeroes 0 < {(¢) < 27 in [0, 27] for each € > 0,

(F3) %5(0;6) < 0 for each € > 0,
27w 2 (r)f

(F4) f(v;0)dv =0, ——(v;0)dv > 0.
0 0 65

By Theorems A and B, under the conditions (F1)—(F4), there exists a unique spiral traveling
wave solution for each € > 0. Roughly speaking, condition (F4) means that the difference
of well-depth W{(2m ;&) —W(0;¢) is negative and that W(2m ;) —W(0;¢e) = O(e) ase — 0.
It follows from (F1)-(F4) that there exists a unique solution (1. (z),c(e)) of

{ $or +ec(e)b, + f(1;0) =0, z€R, 16)
Zb(“oo) = 27(, ?P(O) = C(ef), ¢(+00) = O:
for each € > 0 ([5]). Note that ¢(e) > 0 for € > 0 and
27 .
g—f—(v;O)dv
c=limc(e) = L0 (17)

=0 /R (Wh(2))2dz

Let u® be a solution of (2). Since the reaction term is very large and the potential W is
multi-well type, u® approaches § + 2mmr for some m € Z if 0+((e) +2(m — 17w < u®(z,0) <
0+ C(e) +2mm. Accordingly, a sharp interface appears between the regions {u® ~ 6 +2mn}
and {u® ~ 0 + 2(m + 1)} for each m € Z. By virtue of (F1), u®(z,t) = u°(r,0,t) can be
extended to a function (also denoted by uf) defined for all 8 € R satisfying the following

equation:

1 1 1
Ut = Upp + 7—'u,v+ T—zugg«k 6—2f(u~0;5), (r,0) € (a,b) xR, t >0,

uy(a,0,t) =0 =u,.(b,0,t), feR,t>0.
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We fix T' > 0 and define
5™ = {(r,0) € (a,b) x R | u(r,0,t) =0 + () + 2mr}

for t € [0,T]. Since u® is 2w-periodic in 6, we have ff’m = 0—omal2" where o, is the
translation o, : (r,0) — (r,0+s5). For simplicity, we assume that f‘i’o is a smooth embedded
curve in (a, b) x R with two boundary points on both {a} xR and {b} xR for each ¢t € [0, 7.
It follows from the homogeneous Neumann boundary conditions that the closure of fi’o
intersects with the lines 7 = a and r = b perpendicularly at the boundary points. We
denote by D™ the domain in (a,b) x R between the two curves Io™ and IS™ ', Let
IT be the covering map from (a,b) x R to  defined by II(r,6) = (rcosf,rsinf). We
take a neighborhood N; of IN“f’O in (a,b) x R so that the map II] , Is injective. We put
Ny = TII(N), DI =TI(D{ N N) (j =0,1) and
N= ] (Ve x{t}).

te(0,T]

In what follows we write 8 = 6(z) for z € Ny if z = II(r, 9).
We call the set
= J @i

t€[0,7T]

the interface, where
s = {II(r,0) € Q| (r,0) € T}°}.
We also call I'; the interface at time ¢. We remark that if 2 € I'f then u®(z,t) = 8(z)+((¢)
and that I'§ perpendicularly intersects with 6.
Let d°(z,t) be the signed distance function to I'* defined in N by

(1) = dist:,(:c, re), ?f z € D?,
—dist(z,T%), if z € D},
where dist(z,[) is the distance from z € N; to the curve I'f in R?. We remark that

d(z,t) = 0if x € I'{ and |Vd®| = 1. We assume that d° has the expansion

d(z,t) = do(z,t) +edi (z,t) + e2dy (2, ) + - -

and define
Iy = {z€N|do(z,t) =0},
Q = {z€DN|do(z,t) >0},
Qt1 = {(IZENt ido(il?,t) <O}>
I = |J @ex{t}),
t€[0,T]
Q = | @ x4y,
t€[0,7T]

Q= U @ x{.

te[0,T]
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Roughly speaking, I'; represents the position of the interface at time ¢ in the limit as
€ — 0, while dy represents the signed distance function to I'. In what follows we derive the
equation of motion of the interface I'; by using matched asymptotic expansions. See [1],
[4], [14] and [18] for details.

We assume that the solution u® has the expansions
uf(z,t) = uo(z,t) + euy (x,t) + 2ug(z,t) + - - (18)
away from I'® (the outer expansion) and
u(z,t) = Up(€,2,t) + eUr (€, 2,t) + e2Us (&, 3,t) + -+ (19)

near I (the inner expansion), where £ = d°(z,t)/e. To make these expansions consistent,

we require the matching conditions

Up(+o00,z,t) = up(z,t) if 2€ QlUTy

1
o . (20)
Up(—00,z,t) = u(z, 1) if e QUL

for all (z,t) € N and k > 0, where ui (j = 0,1) denote the terms of the outer expansion
(18) in the region Q; (j = 0,1). Since u®(z,t) = 6(x) + ((¢) on I'*, we also require the
normalization conditions Uy (0, z,%) = 8(x) + (o, Ur(0,z,t) = (& (k > 1), where (; denote
the terms of the expansion ((g) = (o +¢&(1 +€%(a + -

Substituting the outer expansion (18) into (2) and the collecting the e 2 and ™! terms
respectively, we have

fluo(z,t) = 6(2);0) =0,

01 (wo(a 1) — 0(2) ;0w (1) + 9L (o,1) — (2) :0) =,

in Qo U @:. The first equation implies that

w (:1; t) . 9(‘7;) in QO)
o f(z) + 27 in Q.

Hence from the second equation, we get u1(z,t) = 01in Qo U ¢1.
Next, substituting the inner expansion (19) into (2) and the collecting the e ™2 and ™!

terms, we have

Uoge + f(Uo — 0(2);0) = 0, (21)
Urge + %(Uo —0(z);0)Ur = Uog(dot — Adp) — 2V (Uog) - Vdo (22)
0

_6_£(UO —0(x);0).

In both equations we regard z and ¢ as parameters. From (21) together with the matching
conditions and the normalization conditions, we obtain

Uo(§,2,t) = (&) +0() (23)
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where 9 is the unique solution to (16) for ¢ = 0.
Substituting (23) into (22) and recalling the normalization conditions, we get

Uige + 2 (ol): 00U = (doe — Adi(©) ~ 2 (wo(6)0),

(24)
Ul(O,x,t) = 41.
By Lemma 4.1 in [1], (24) has a bounded solution if and only if
(doe — o) [ €12 - [ SLiwte)i0(61ag =0 (25)
0t o) | o o, 9 Pol&): 0% =Y.

Under the solvability condition (25), the solution U; of (24) incidentally satisfies the match-
ing conditions (20), since the right-hand side of the first equation of (24) tends to 0 expo-
nentially as £ = +oo. By (25), we get

d()t = Ado - C, (26)

where ¢ is the positive constant defined in (17). It is known that —dg; = V and Ady = &,
where V' and & are the normal velocity and the curvature of the interface I'y, respectively.
Thus (26) is equivalent to (4):

V=c—x onlIy

Moreover I'; intersects with 8§ perpendicularly.

5 [Existence of a spiral for the interface equation

In this section we consider the interface equation

{ V=c—=& on I, (27)

(v(z),n) =0 on 90 NTy,

where n = n(z,t) and v(z) is the outward unit normal at each point of I'y and 09,
respectively. We seek for a solution of (27) which is written in the form

T(t) = {(rcos(8(r) + wt),rsin((r) +wt) | a<r <b, t >0}
for some function #(r) and some constant w. We call such I'(¢) a spiral with angular speed

w. One can easily see that I'(t) is a solution of (27) if and only if g(r) = r6'(r) satisfies

d
E;% =h(r,q;w), r>a,

a(a) = 4(b) = 0,
where h(r, ¢;w) = (1+¢) (—ev/I+ ¢ = L +or).

Theorem C
Fix a > 0 arbitrarily.
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(i) For any b > a, there exists a spiral with angular speed w(b) > 0. In addition, the spiral

is unique up to rotation.

(ii) The angular speed w(b) is strictly monotone decreasing in b and there exists weo > 0
such that lim w(b) = weo.
b—ro0

(iii) In the case where Q = {x € R | |z| > a}, there exists a spiral with speed we, such
Woo

that lim 6'(r) = ——.
T—00 C
Remark 3
The statement (iii) of Theorem C shows that the shape of the spiral for (27) looks like

Archimedean spiral as r — oo in the case where b = +00.

In what follows we denote by ¢(r ;w) the solution of the initial value problem
dq
— = h(r,q;w), r>a,
o = M a;w) (28)
q(a) =0,

and let (a, R,) be the maximal interval of the existence of g(r;w).

Lemma 7
(i) If w1 < wsy then q(r;wy) < ¢(r;wsy) for a <7 < min{R,,, Ry, }.

(i) Ifw > ¢/a then R, = 400 and ¢(r;w) > 0 for r > a.
(iii) R, is nondecreasing in w € R.

(iv) Ifw, converges to wg then liminf R, > R,,. If, in addition, w, < wq for large n then
—r00
lim R, = Ry,-

7n—r00

Proof (i) The statement immediately follows from the fact that h(r,¢;w) is strictly
increasing in w for r > a.
(i) If w > c/a then h(r,0;w) = —c +wr > 0 for 7 > a. Therefore g(r;w) > 0 for
a < r < R,. Since h(r,q;w) < 0 if ¢ > wr?, we have 0 < ¢(r;w) < wr? for any
r € (a, R,,). This implies R, = +00.
(iii) If R, < +oo then rl/i(rgw q(r;w) = —oo, since hy(r,q;w) < 0 for ¢ > max{wr?, 0}.
Therefore by virtue of (i), R, is nondecreasing in w.
(iv) Put pn(r) = q(r;wn) — ¢(r;wo). Then p, satisfies

dpn,

= H,(r,pn), g y
e (r,pn) r>a (20)
pnla) =0,

where Hy,(r, p) = h(r,qo(r)+p;wn) —h(r, qo(r) ;wo) and go(r) = q(r;wo). For any R < Ry,
and & > 0 there exists L > 0 such that

|Ho(r,p) — Ho(r,p)| < Llp—pl,  Ipl[pl <, a<r <R
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and that

Tn = SUp ]Hn('r:p) - Ho(r,p)l -0, n — 0.

Ipl<o
a<r<R

We define R, = sup{a <7 < R | |pn(r)| < 8}. Then by (29) we have

pal?) S (R =)+ L [ Ipn(s)lds
for a < r < R,. Therefore by Gronwall’s inequality, we have
Pn(r)] < (R — a)e" "™ < 4 (R — a)e" (B

for a < r < R,. This implies R, = R for sufficiently large n. Thus we get R,, > R for

large n, hence

liminf Ry, > Ru,. (30)
n—rod

Combining (ii) and (30), we obtain ILm R,, = Ry, if w, <wyg for large n. B
n—roo

Lemma 8
There exists w < ¢/a such that R; > b and ¢(b;©) < 0.

Proof Suppose that the statement of the lemma does not hold. Then for any w < ¢/a,
either of the following holds:

(a) R, <b, (b) R, > b and q(b;w) > 0.

By Lemma 7 (ii), the statement (b) holds for w > ¢/a. We define wg = sup{w € R | R, <
b}. Then we have wg > ¢/b, since h(r,0;w) < 0 for a <r < bif w < ¢/b. Clearly w < ¢/a.
By virtue of Lemma 7 (iii), we obtain R,, < b, hence
r}{gio q(r;wo) = —oo.

On the other hand, R, > b and ¢(b;w) > 0 for any w > wg. Let ry € (a, Ry,) be such that
q(ro ;wo) < —(wp+1)b? and that h(rg, q{ro;wo) ;wo) < 0. Then g(rp;w1) < —(wo+1)b? and
h(ro,q(ro;wi);w1) < 0 for some w; sufficiently close to wy. Since h(ry,q;w) > h{rs, q;w)
fora<r; <re <b,qg< —(wo+1)b? and wp < w < wy + 1, we have

dq(r;wi)

ar = h(r,q(r;w1);w1) < h(re,q(ro;wi);w1) <0

for all r > rg satisfying ¢(r;w1) = q(ro;w1). Hence q(r;wi) < ¢(ro;w;) for r > 1o,
contradicting the fact that g(b;w;) > 0. B

Proof of Theorem C (i) Let @ € [¢/b,c/a] be such that R; > b and ¢(b;&) < 0.
Then ¢(b;w) is well-defined for w > @ and is continuous in w > @. Since ¢(b;w) > 0 for
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w > c/a, there exists w(b) € (@, c/a] satisfying ¢(b;w(b)) = 0. The uniqueness of w(b) is
an immediate consequence of Lemma 7 (i). B

Proof of Theorem C (ii) By Lemma 7 (i), the rotation speed w(b) is strictly mono-
tone decreasing in b. Therefore w(b) converges to some we, > 0, since w(b) > ¢/b. Note
that ¢(r;0) < 0 for r € (a, Ry) and hence ¢(r ;0) satisfies

dg _c 9 2

—= < =q(1 > -,

7 S59d+a), >~
This implies Ry < +00, from which and the following lemma we obtain we, > 0. ]
Lemma 9
R, = +oo.

Proof Suppose that R, is finite. We fix by > a, k > w(bg)/c and take

~ 2k
R—-max{m,me}.

Then, if w < w(bg), —kr is a supersolution of (28) for r > R since h(r,—kr;w) < —k. We
take § = min{—kR, —w(bo)R%}. Then we get h(r1,q;w) > h(ry,q;w) fora <r; <ry <R,
g < ¢ and w < w(by). By the similar argument in the proof of Lemma 8, there exists
b > by and 1y < Re_ such that g(ro;w(b)) < § and h(ro, q(ro;w(b)) ;w(b)) < 0. Again
by the argument in the proof of Lemma 8, we obtain ¢(r;w(b)) < g(re;w(b)) < ¢ for
ro < < R and q(r;w(b)) < —kr for r > R, contradicting the fact that q(b;w(b)) = 0.
This contradiction proves the lemma. B

Proof of Theorem C (iii) By Lemma 9, ¢(r;we) exists for all » > a. Furthermore
q(r ;we0) is negative since ¢{r;w(b)) < 0 for a < r < b. This corresponds to a spiral with
angular speed we, for @ = {z € R | |z| > a}. To complete the proof, we show that

(]('I’ ; woo) _ ﬂ.ﬁ

lim ——— =
r++00 T c

Fix k > weo/c. We take by so that k > w(bg)/c and put ro = 2k/(ck — w(by)). Since —kr
is a supersolution of (28) for r > rp if w < w(b), we have ¢(r;w(b)) > —kr for r > ry and
b > bg. This implies ¢(r;we,) > —kr for r > 1o, since ¢(r;w(b)) uniformly converges to
g(r;wee) on any compact subset of (a, +00). Hence we have

(’r ;woo) Woo

liminf 4 > Yoo
r=++00 T c

We define
Ky = {(T: Q)

r>;c-—\/1+q2, q<0}‘
oo
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Let
I = lim sup L73%e)
n—r00
and suppose that [ > —weo/c. Then there exists 7o > a such that (ro,¢(ro;we)) € Keo-
Since h(r, q;weo) > 0 for (r,q) € Ky, we have (7, ¢(r ;we)) € Koo for all 7 > 9. Therefore

by (28) we obtain

dr r r
for r > rg, hence

_Weo i ATiWe) g
C 7—+400 r

On the other hand, by (31) we have

lim inf -2 (M> > ¢l + weo > 0.
r—+oo dr T

This contradiction proves that

. TiWw W,
lim sup q(r;woo) < Yoo
r—400 T c

The theorem is proved. ]

Appendix

In this appendix we present two propositions in [16]. Proposition B1 is concerned with
the structure of a subset of an ordered metric space under a group action. Proposition B2
is, in a sense, a set-valued version of the former half of Proposition B1.

Let X be an ordered metric space. In other words, X is a metric space on which a
closed partial order relation is defined. We will denote by < the order relation in X. Here,
we say that a partial order relation in X is closed if ¢, < ¢, (n = 1,2,3,---) implies

lim ¢, < lim 4, provided that both limits exist. We write ¢ < ¢ if ¢ < 9 and ¢ # ¥.
%‘grooa subs:t“};o C X, the expression ¢ <V, V < ¢ means ¢ < 9, ¥ < ¢ for all points
¥ € V, respectively.

Let G be a metrizable topological group acting on some subset X; of X. We say G
acts on X if there exists a continuous mapping v: G x X; — X; such that g — ~(g,")
is a group homomorphism of G into Hom(X;), the group of homeomorphisms of X; onto
itself. For brevity, we write (g, ¢) = gy and identify the element g € G with its action
~(g,-). We assume that

(G1) # is order-preserving (that is, ¢ < 1 implies go < g% for any g € G);

(G2) G is connected.
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Let Y be a subset of X and % be an element of ¥ N X; such that
(H1) gp €Y for any g € G;
(H2) for any 1 € Y, there exist some g1, g2 € G satisfying g1 < ¢ < g29;

(H3) for any ¢ € Y with ¢ < hp for some h € G, there exists some neighborhood B of
the unit element of G such that ¢ < ghw for any g € B.

Proposition ([16, Proposition B1))
Let G satisfy (G1), (G2) and Y, P satisfy (H1), (H2), (H3). ThenY is a totally-ordered
connected set and Y = G@. Furthermore, if Y is locally precompact, then Y is homeomor-

phic and order-isomorphic to R.

A similar result holds for the case where the set Y consists of subsets of X. To be more
precise, let Y be a set of subsets of X containing {%} such that

(H4) {gp} €Y for any g € G;
(H5) for any V € Y, there exist some g1, g2 € G satisfying 17 <V < goP and V {017},
{928} 5

(H6) for any V € Y with V < hp and V # {hp} for some h € G, there exists some
neighborhood B of the unit element of G such that V' < ghp and V # {ghp} for any
g€ B.

Proposition ([16, Proposition B2])
Let G satisfy (G1), (G2) and Y, {@} satisty (H4), (H5), (H6). Then Y = G{p} = {{gP} |
g € G}

References
[1] N.D. Alikakos, P. W. Bates and X. Chen: Convergence of the Cahn-Hilliard equation
to the Hele-Shaw model, Arch. Rational Mech. Anal., 128, 1994, 165-205.

[2] C.Baesens and R. S. MacKay: Gradient dynamics of tilted Frenkel-Kontorova models,
Nonlinearity, 11, 1998, 949-964.

[3] W.K. Burton, N. Cabrera and F. C. Frank: The growth of crystals and the equilibrium
structure of their surfaces, Philos. Trans. Roy. Soc. London A, 243, 1951, 299-358.

[4] P. C. Fife: Dynamics of Internal Layers and Diffusive Interfaces, CBMS-NSF Regional
Conf. Ser. in Appl. Math., SIAM, Philadelphia, 1988.



34 Procedings of NLA9Y9 (2000)

[5] P.C.Fife and J. B. McLeod: The approach of solutions of nonlinear diffusion equations
to travelling front solutions, Arch. Rational Mech. Anal., 65, 1977, 335-361.

[6] F. C. Frank: The influence of dislocations on crystal growth, Disc. Faraday. Soc., 5,
1949, 48-54.

[7] L. M. Floria and J. J. Mazo: Dissipative dynamics of the Frenkel-Kontorova model,
Adv. Phys., 45, 1996, 505-598.

[8] D. Henry: Geometric theory of semilinear parabolic equations, Lect. Notes in Math.,

Springer-Verlag, New York—Berlin, 1981.

[9] R. Ikota, N. Ishimura and T. Yamaguchi: On the structure of steady solutions for the
kinematic model of spiral waves in excitable media, Japan J. Indust. Appl. Math., 15,
1998, 317-330.

[10] R. Kobayashi, private communication.

[11] A. A. Middleton: Asymptotic uniqueness of the sliding state for charge-density waves,
Phys. Rev. Lett., 68, 1992, 670-673.

[12] A. S. Mikhailov, V. A. Davydov and A. S. Zykov: Complex dynamics of spiral waves
and motion of curves, Physica D, 70, 1994, 1-39.

[13] X. Mora: Semilinear parabolic problems define semiflows on C* spaces, Trans. Amer.

Math. Soc., 278, 1983, 21-55.

[14] K-I. Nakamura, H. Matano, D. Hilhorst and R. Schétzle: Singular limit of a reaction-
diffusion equation with a spatially inhomogeneous term, J. Statist. Phys., 95, 1999,
1165-1185.

[15] G. Namah and J.-M. Roquejoffre: Convergence to periodic fronts in a class of semi-
linear parabolic equations, Nonlinear differ. equ. appl., 4, 1997, 521-536.

[16] T. Ogiwara and H. Matano: Monotonicity and convergence results in order-preserving

systems in the presence of symmetry, Discrete Contin. Dynam. Systems, 5, 1999, 1-34.

[17] H. Protter and H. Weinberger: Mazimum principles in differential equations, Prentice
Hall, NJ, 1967.

[18] J. Rubinstein, P. Sternberg and J. B. Keller: Fast reaction, slow diffusion and curve
shortening, SIAM J. Appl. Math., 49, 1989, 116-133.

[19] 1. Sunagawa, K. Narita, P. Bennema, B. van der Hoek: Observation and interpretation
of eccentric growth spirals, J. Crystal Growth, 42, 1977, 121-126.



