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Abstract 

This paper deals with spiral traveling wave solutions of some parabolic equations on 

annuli related to a model of the motion of screw dislocations. We prove the existence, 

stability and uniqueness of spiral traveling wave solutions. Next we consider a model 
equation for screw dislocations and study the properties of spiral solutions for the equation 

of interface motion which is formally derived in the singular limit of the model equation. 

1 Introduction 

In this paper we shall investigate a semilinear parabolic equation on a two-dimensional 

annulus: 

{
 
ut = Au + g(u - O), x e ~, t > o, 

(1) 
x ~ a~, t > o, ur = O, 

where ~ = {x e R2 j a < jxl < b}, (r,a) denotes the polar coordinates of x e ~~ and g is 

the derivative of a multi-well potential. 

Our motivation for studying problem (1) originates from crystallization processes in 

material sciences. Screw dislocations are observed on the surface of actual crystals such as 

silicon carbide, calcogen, parafiin and polyethylene ([19]). Frank [6] , [3] originally proposed 

the following mechanism of the formation of screw dislocations: Crystals generally contain 

lattice defects. Once a lattice defect reaches the surface of a crystal, the defect creates a 

mononuclear layer (or a step) on it. Since the velocity of progress of the step is assumed to 

be the same at any point, the angular velocity near the corner of the defect is faster than 

that at the edge. Thus, the dislocation proceeds in a spiral shape. 

Recently Kobayashi [10] has proposed the following reaction-diffusion equation as a 

model of the motion of screw dislocations: 
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ut = Au + -12 f(u - O ;c), x e ~, t > o (2) 

ur = O x e a~, t > o, 
where the parameter c > o is sufliciently small and f(. ; c) is the derivative of a multiwell 

potential for each c. The unknown function u(x, t) represents the normalized height of the 

crystal. Some numerical experiments imply that equation (2) has a rotating and growing 

solution with a spiral shape. The purpose of the present paper is to show the existence, 

uniqueness and stability of such a sQlution, which we call a spiral traveling wave solution. 

More precisely, a solution ~(x, t) of (2) or (1) is called a spiral traveling wave solution with 

growth speed ~) if it is written in the form 

~(x, t) = (p(r, a - cvt) + ~)t, x e ~, t > O. (3) 

Since the reaction term is very large, equation (2) gives rise to sharp internal layers (or 

interfaces). As we will see later, the motion of such interfaces is driven by their curvature. 

To be more precise, each interface moves according to the equation 

in the singular limit as c ~> O, where V and /~ denote the normal velocity and the curvature 

of the interface respectively, and c is a positive constant determined by the nonlinearity 

f. Equation (4) also arises from the kinematic theory in excitable media as Belousov-

Zhabotinskii reagent. For mathematical results in this area we refer to [9] , [12] and refer-

ences therein. 

Our paper is organized as follows: In Section 2 we introduce basic notation and state our 

main results (Theorem A - on the existence - and Theorem B - on the uniqueness and 

the stability -) . We prove Theorems A and B in Section 3. In Section 4 we present a formal 

derivation of the equation of interface motion corresponding to equation (2) . In Section 5 we 

study spiral solutions with constant angular speed for the interface equation (Theorem C). 

In Appendix we recall monotonicity and convergence results in order-preserving dynamical 

systems in the presence of symmetry obtained by Ogiwara and Matano [16, Propositions 

B1 and B2]. These results play a crucial role in the proof of Theorems A and B. 

By (3) a spiral traveling wave solution ~~ with growth speed cu satisfles 

u(x t + T ) u(x t) + 27r, x e ~, t > o, (5) 

where To = 27rlcv. Solutions with property (5) have been studied for other equations 

such as systems of ordinary differential equations ([1l], [7] , [2]) and parabolic equations in 

the whole space RN ([15]). The methods of these literatures are based on the theory of 

dynamical systems and are, in essence, same as that of [16]. For our problem (1), as we 

will see in Lemma 5, if a solution ~1 satisfies (5) for some To then it is a spiral traveling 

wave solution with growth speed 27TITo. 
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2 Main reSultS 

Throughout this paper, we assume that the nonlinearity g(v) satisfies the following: 

(A1) g is a smooth, 27T-periodic function on R; 

(A2) g has three zeroes O < ( < 27r in the interval [O, 27T]; 

21T f
 
(A3) g(v)dv > o 

It is known that, for any uo e C~~), there exists a solution u(x, t) of (1) with initial data 

u(',O) = uo (see [13]). Here C(~) denotes Banach space of continuous functions on ~ 

endowed with the norm lluolic(~:) = sup{luo(x)1 1 x ~ ~}. For ul' u2 ~ C(~) we write 

ul < u2 if ul(x) ~ u2(x), x e ~, 

ul < u2 if ul(x) ~ u2(x) and ul(x) ~ u2(x), x e ~ (6) 
ul << u2 if ul(x) < u2(x), x e ~. 

Let {~t}te[o,oo) be the local semiflow on C(~) generated by (1). In other words, the map 

~'t on C(~) is defined by 

~t(uo) = u(', t) for each t e [O, oo), 

where u(x,t) is a solution of (1) with initial data u(',O) = uo' The strong maximum 

principle ([17]) shows that ~t is strongly order-preserving, that is, ul < u2 implies ~t(ul) << 

~t(u2) for each t > o. Further the standard parabolic estimate ([13]) shows that ~t is a 

compact map on C(~) for each t > O. 

Definition 1 

A solution ~(x, t) of (1) is called a spiral traveling wave solution ifit is written in the form 

~1(x, t) = (p(r, 6 - a)t) + ~)t, x ~ ~, t > o 

for some function (p(r, ~) and some constant cv. We call the constant ev the growth speed of 

the spiral traveling wave solution l~. 

Remark 1 
Clearly, if ~(x, t) = ~1(r, 6, t) is a spiral tra;veling wa;ve solution of (1), then ~1(x, t + T) is 

also a spiral traveling wave solution for any constant T. Further, ~~(r, O - a, t) + a is also 

a spiral traveling wave solution for any constant a. 
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It is easily seen that if ~)(r, e - cvt) + cvt is a spiral traveling wave solution of (1) then 

{p(r, ~) satisfies 

-cL)~~ + eJ = A~) + 9(~~ - ~). (7) 

Lemma 2 
If a spiral traveling wave solution for (1) exists, then its growth speed is positive. 

Proof Let <p(r, O - ~)t) + ~)t be a spiral traveling wave solution. Then (7) is fulfilled. 

Multiplying both sides of (7) by ~p~ - I and integrating over ~, we have 

- f~((P~ - 1)2dx f~{A(p ((p~ 1) +g((p ~) (~~~ 1)}dx 
ce; 

b2 - a2 f2lr 
2 Jo 9(v) dv, 

and hence 
(b2 - a2) Jf02lr g(v) dv 

~) 2 f~((P~ - 1)2 dx 

Definition 3 

A spiral traveling wave solution ~1 of (1) is called stable if for any c > O there exists some 

6 > o such that 

llu( t) u(',t)jlc(~~) < e, t > o 

holds for any solution u of (1) satisfying llu(', O) - ~1(', O)Ilc(~~) < 6. 

Concerning the existence, stability and uniqueness of spiral traveling wave solutions, 

we obtain the following : 

Theorem A 
For any b > a > o, (1) possesses a spiral traveling wave solution. 

Theorem B 
(i) A spiral traveling wave solution ~~ of (1; is stable and is monotone increasing in t, that 

is, ~:t(x,t) > o for all x e ~, t > O. Further it is unique up to translation to the 

t-direction, namely, if u is a spiral traveling wave solution of (1) then there exists some 

To C R such that u(', t) = ~1(', t + To) for t > O. 

(ii) For any solution u of (1,, there exists some To such that 

tli~moollu( t) u( t+To)llc(~~) = O. (8) 
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Remark 2 
From Theorem ~, we see that a spiral traveling wave solution 7~ of (1) is stable with 

a;symptotic phase, namely; it is stable and, for any solution u of (1) with initial data 

sui~ciently close to ~~, there exists some To such that (8) holds. 

3 Proof of TheoremS A and B 

In this section, we prove Theorems A and B. In what follows x e ~ will be often 

identified with (r, a)~ the polar coordinates of x. 

Lemma 4 
Let v(x, t) be a solution of (1) with .initial data v(', O) E O. Then there exists some constant 

M > o such tha;t 

max{v(x,t) I x e ~} - min{v(x t) I x e ~} < M 

fol' all t > O. 

Proof Differentiating (1) by 6, we see that the function w(x, t) = ve(x, t) - I satisfies 

{ , x e ~, t > o, (9) wt = Aw + g/(v - e)w 

x e a~, t > o. wr = O, 

Since w(',O) = -1 < O from the strong maxlmum prmcrple it follows that w(',t) < O, 

namely 

ve( t) < 1, t > o. 

Hence, using the fact that v(r, O, t) = v(r, 27T, t), we have 

O - 27r < v(r,O, t) - v(r,O, t) < O, a ~ r ~ b, O ~ O ~ 27r, t > o. 

Thus 

v(r, 6, t) - v(a, 6) t) - 27r < v(r, O, t) - v(a, O, t) < v(r, e, t) v(a, O, t) + 27r (10) 

holds for a < r ~ b, O ~ g ~ 27r, t > o. Now fix to > o arbitrarily and take a small 

constant 6 > o such that (ve - 6vt)(', to) <( I and (ve + 6vt)(', to) < 1. Since ve ~ 6vt - l 

are also solutions of (9), in the same way as above we get (va ~ 6vt)(',t) < I for t > to' 

This implies, for t > to) 

l - vo I - vc 
- 6 < vt < 6 ' (11) 

Multiplying each side of (11) by r e (a, b) and integrating by 6 from O to 27T, we have 

27r 

27Tb 27rb - f t 6 < rv d6< 6 
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Since v satisfies (1) for t > to, integration by parts yields 

21? 
-27rbC< f (rvr)rdO < 27rbC 

with O = (1/6) + Ilfl{c(~~)' 

we get 

Integrating each side by r, dividing by r and integrating again, 

27r 

a 2 f 27Tb(b - a) C 27rb(b - a) O < 
{v(r, a, t) - v(a, e, t)} de < 

a 

These inequalities and (10) yield 

_b(b - a)2 _ b(b - a) C + 27r a C 27r < v(r, O, t) - v(a, O, t) < a 

Therefore, again by (10), we obtain 

b(b - a) C + 47r b(b a a) C 47r < v(r,6,t) v(a,O,t) < a 

Combining these inequalities and the fact that the set {v(',t) I O ~ t ~ to} is a compact 

subset of C(~), we obtain the conclusion. ~
 

Lemma 5 
Let (p(x) e C(~) satisfy ~ + 27r = ~Tb((P) for some To > O. Then Y2(r,e - c()t) + ~)t is a 

solution of (1), where ~) = 27rlTo. 

We postpone the proof of Lemma 5 until the end of this section. 

Proof of Theorem A Denote by v(x, t) a solution of (1) with initial data v(', O) E O, 

in other words v(', t) = ~t(O). First we show that the orbit {v(', t) I t ~ O} is not bounded 

in C(~). Assuming that {v(', t) I t ~ O} is bounded in C(~), we will lead a contradiction. 

In this case, since a map ~t on C(~) is compact for each t > o, the omega-limit set of O 

deflned by 

W(O) = n {v(', s) I s > t} C C(~) 

t>0 

is not empty. As is well-known, W(O) is compact and ~t-invariant for each t > o, namely 

~tW(O) = W(O) (see for example [8]). Put 

ao = inf{a > O I wl ~ 9aw2 for any wl' w2 e W(O)}, 

where gaw(x) = gaw(r,O) = w(r,O - a) + ai for w(x) e C(~). Note that the map ga on 

C(~) is commutative with ~t, namely, ga o ~t = ~t o ga' 

Clearly wl ~ 9aow2 holds for any wl'w2 e W(O). We show that ao = O. Assume that 

ao > o. If wl < gaow2 for any, wl'w2 e W(O) then wl << 9aow2 for any wl'w2 C W(O), 

since W(O) is ~t-mvariant and since ~t rs strong orderpreserving for any t > o. In this case, 

compactness of W(O) implies that if we choose 6 > o sufficiently small then wl < gao-5w2 
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for any wl' w2 ~ W(O), which contradicts the definition of ao . Thus there exist some two 

elements wl' w2 C W(O) such that wl = 9aow2. Then it holds that 

w < wl for all w ~ W(O) and w < w (12) 

Since the latter inequality implies ~t(w2) << ~)t(wl) for any t > O, by the definition of 

W(O) there exist large tl' t2 > O satisfying 

~ti(O) << ~~ (O) 

Therefore, if we choose ~: > o sufliciently small then 

~tl (O) << 9_c~t2 (O), 

and hence 

~t +s(O) << 9 ~ (O) 1 -c t2+s 
for s > o. Take a sequence {sj}j such that ~tl+sj (O) H~ wl as j ~> oo. Replacing 

{~)t2+sj (O)}j by its subsequence if necessary, we see that {~t2+sj (O)}j also converges to 

some w3 e W(O). Then wl < g-cw3 holds. This and the former statement of (12) imply 

w3 ~ 9_ew3 and we are lead to a contradiction. Thus we obtain ao = O, from which for 

any wl' w2 e W(O) it follows that wl < w2 and wl > w2, that is, wl = w2. Hence W(O) is 

a singleton. As is easily seen, if an omega-limit set is a singleton, then it consists of some 

equilibrium solution. This means that (1) possesses a spiral traveling wave solution with 

growth speed O, which contradicts Lemma 2. 

Thus we see that the orbit {v(',t)It ~ O} is not bounded. Hence there exists some 

sequence {tj}j such that Ilv(', tj)Ilc(~~) ~ oo as j ~~ oo. We discuss only the case where 

max{v(x,tj) I x ~ ~} ~ oo, ' (13) 3~~oo 

and prove the existence of a spiral traveling wave solution with positive speed. The case 

where min{v(x, tj) I x ~ ~} H~ -oo can be treated similarly. In the latter case there exists 

a spiral traveling wave solution with negative growth speed, which contradicts Lemma 2. 

We show that there exists some To > O such that ~) + 27r = ~Tb(fP) for some function 

~(x) e C(~). Then, by Lemma 5, we see that (1) possesses a spiral traveling wave solution 

with growth speed 27T/TO ' As in Lemma 4, there exists some constant M > O such that 

max{v(x,t) I x ~ ~} - min{v(x, t) I x e ~} < M, t > o. (14) 

We tal{e n(j) e N so that the function vj defined by vj(x) = v(x, tj) ~ 27Tn(3) satrsfies 

vj(x) ~ [O, M + 27r], x c ~. 

Fix s > O arbitrarily. Then, replacing {~s(vj)}j by its subsequence, we see that {~s(vj)}j 

converges to some fP e C(~). 
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　　Note　th就（13）棚d（14）imp1y2π＜り（・ラT）for　so㎜一e　T＞0．ThereforeΦ、十老（2π）＜

Φ3＋£斗丁（0）ho王ds　for　a11老＞0．P砒ting舌二ちwe　haveΦ叶ち（O）十2π＜Φ叶ち十丁（O）and

h・㏄・Φ・十ち（O）一2πれ（ゴ）十2π＜Φ糾叶・（0）一2πれ（ゴトΦ・（Φ榊（0）一2πn（ゴ））ラ・虹㏄

Φ老（αo）十27r㎜＝Φオ（吻十2π肌）ho1dsfor狐y亡＞O，肌∈N棚d吻e0（Ω）。Let伽gゴ→○o，

we　getψ十2π≦ΦT（ψ）．Now駝t

　　　　　　　　　　　　　　乃ユinf｛オ≧Olψ十2π≦Φル）｝。

C1e蹴1y0＜Zo≦T　andψ十2π≦Φ恥（ψ）．Supposc　th＆tψ十2π＜Φ乃（ψ）．Then，for

aayδ〉0，Φδ（ψ斗一2π）＝Φδ（ψ）十2π＜ζΦT。十δ（ψ）．Fro㎜this，for　a　s＆鐙cient1y1＆rgeゴo，it

fO1王OWS　that

　　　　　　　　　　　　　　　Φ糾、（巧。）十2π《蛎。十δ十、（巧。）．

Thercfore，there　cxists　somcεξ（O，Tb）such　that

　　　　　　　　　　　　　　Φδ十、（りゴ。）十2π《Φト、斗δ斗、（巧。），

＆nd　hence

　　　　　　　　　　　Φδ十、十・（的。）十2π《Φト、十δ十、十1（巧。），亡＞0．

Add虹g2πれ（ゴo）＿2π肌（ゴ）to　bo毛h　sides狐d　p砒t虹g¢＝考ゴーち。一δ，we　get

　　　　　　　　　　　　　　　Φ、（巧）十2π《Φ恥＿、（Φ、（的））．

Blence1ettingゴ→co　i㎜p王ies

　　　　　　　　　　　　　　　　　　ψ十0π≦Φzo＿、（ψ），

which　co砒脇dicts出e　de£nition　of乃．Thereforeψ十2π＝Φ乃（ψ）ho1ds　aad　the　proof　is

con三p王eted。　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　麗

L⑧㎜一醐一＆6

胴吹，吻∈0（Ω）餓む帥吹十2π二ΦT、（砒。）aηれ。令2π＝ΦT，（吻）加80皿〃。ラT2＞O．

Th8ητ王二乃．

　　趾oof　Suppose　th就the　co㏄1usion　of　the1e㎜㎜a　d㏄s鮒ho1d．Without1oss　of

gene峨｝ity，we　m我y　assu㎜e　th＆t乃　＜乃．　Take胸　ξN　satisfyi双g吻＿2れoπ　≦α2．

Th8nΦ仙（吻）＿2物π≦吻十2附for　au肌∈N，搬d　hen㏄Φ肌（乃イ王）（吻）＿2吻π≦吻．

Thi・…t舳・t・llΦ1一・1・・一（吻）l1岬）こllΦ・一（刎・）十2互肌πll。（行）→・・舳→…wh…

れ（T2＿乃）二2μ1＋8肌with1れξN，8，、∈［0，T1）、　　　　　　　　　　　　　　　　　麗

　Pダoof　of　Th⑧ore㎜一B（豆）　Firstラby＆pp1ying　Propos三tion　Bl　in〔161（which　wi11be

㎜entioned　in　ApPend三x　of　the　prese就paper），wc　prove　the　unique巫ess狐d㎜onotonicity

of　a　spira1trave1三双g　wave　so1ひtion．Set　an　ordered㎜銚ric　space　X二0（Ω）with　order

・e1ationind㏄edby（6）＆ndp砒

　　　　　　　X1二γ二｛αo∈0（Ω）1αo＋2π＝ΦT（吻）for　so㎜e　T＞O｝．
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Clearly each spiral traveling wave solution ~1 of (1) satisfies ~1(', O) e Y. By Lemma 6 

Y {u e C(~) u +27r = ~Tb(uo)} 

holds for some To > O. The semiflow {~t}te[0,00) generated by (1) can be deflned on Y for 

all t ~ R. Thus {~t}te[o,c<)) is extended to a oneparameter group acting on Y. Denote 

this group by G. Then condition (G2) in Appendix is satisfied. Further (G1) is fulfilled. 

Indeed the map ~t on Y is also order-preserving for t < O. Fix a spiral traveling wave 

solution ~~ arbitrarily. Then a pair Y and ~ = ~(', O) satisfles (H1) and (H2). Further (H3) 

holds since by the strong maximum principle ip < h~: implies ip << h~ for any ip ~ Y, 

h e G. Applying Proposition B1 in [16], we see that Y = G~ and that Y is homeomorphic 

and orderisomorphic to R. By Y = G~ we obtain the uniqueness of a spiral traveling 

wave solution up to translation to the t-direction. Moreover Lemma 2 and monotonicity 

of Y = G~: yield that ~:t(x,t) ~ O and ~It(x, t) ~ O for x e ~, t > O. Therefore, from the 

strong maximum principle it follows that ~~t(x, t) > o for x ~ ~, t > O. 

Next we show that a spiral traveling wave solution ~~ is stable. By the positivity of ~t if 

tl < t2 then ;~(., tl) << ~l(', t2). Further by the maximum principle we have, for any 50 > o, 

~;(.,-60) ~ u(',O) ~ ;~(.,60) implies ~:(.,t - 60) ~ u(',t) ~ ~:(.,t+50), t > O. 

This proves the stability of a spiral traveling wave solution. Indeed, for any c > O, take a 

60 > O satisfying ll;~(., 50) ~ ~~(･, -60)llc(~:) < c and set 

6 = min{~1(x, 60) - ~1(x, O) I x e ~} = min{~(x, O) - ~7(x, -60) I x e ~} > o. 

Then, for any solution u of (1) satisfying llu(', O) - ~(･, O)llc(~~) < 6, we have 

~1(', -60) < u(', O) < ~(･, 60). 

Therefore, from the inequalities 

~1(', t - 60) < u(', t) < ~1(', t + 60), 

~1(', t - 60) < ~1(', t) < ~1(', t + 50) 

it follows that 

llu(', t) - ~~(', t)llc(~~) < II~I(', t + 60) - ~~(',t - 60)llc(~r) = !l~~(･, 60) - ~(', -60)lic(~~) < c 

Proof of Theorem B (ii) As we have shown above, (1) possesses a unique (up to 

translation to the t-direction) spiral traveling wave solution ~l. We denote by e~; the growth 

speed of ~1. 

Define a map F on X = C(~) by 

F(uo)(r, 6) = ~~Tb(uo)(r, O) - 27r, 
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where To = 27r/ev. Then, ~: = ~;(., O) is a flxed point of F and further ~: - 2m7r, ~ + 2m7T 

are also fixed points for all m e N. For any uo e X a sequence {Fn(uo)}n is bounded in 

X, since ~~ - 2m7r ~ uo ~ ~ + 2m7T implies ~: - 2m7r ~ Fn(uo) ~ ~ + 2m7T for m,n ~ N. 

Hence the set K(uo) n = {Fm(uo) I m > n} C X is not empty. Set 

neN 
Y = {K(uo) I uo e X} 

and an acting group G being as in the proof of Theorem B (i). Clearly (G1) and (G2) 

in Appendix are fulfilled. A pair Y and {~} satisfies (H4) and (H5). Further the strong 

maximum principle verifies (H6). Hence applying Proposition B2 in [16] (which will be 

mentioned in Appendix of the present paper), we see that for any uo e C(~) there exists 

some T]o satisfying 

nli~moo llFnuo u( , To)llc(~~) = O. 

By the definition of F we obtain the conclusion. ~ ' 

Proof of Lemma 5 As we have shown in the proof of Theorem B (i), a function 

satisfying 

w(x) + 27r ~T (w)(x), x e ~ (15) 
is unique up to action of oneparameter group {~t}teR' Since fP(r, 6 - (27r/m)) + (27r/m) 

also satisfies (15) for any m ~ N, there exists some s ~ R such that 

{p (r, e - ) = 27r + 27T a ~ r ~ b, O ~ e ~ 27T' m m ~;s ((P) (r, e) , 

It follows from this that 

~P (r, e - ) 2.27r +2.27r a~r~b,o~e~27r. m m = ~s(~!s(~0))(r, 6) = ~f2s((P)(T, 6), 

Repeating this calculation, we obtain ~ms((P) = ~' + 27r. If ms ~ To then {~t((p) I t ~ 

jTO - msl} is a periodic orbit with period jTO ~ msl, which contradicts 

ll~nTb((P)llc(~') = Ii~2 + 27rnjl c(~~) ~~ oo, n ~~ oo. 

Hence we get ms = To, namely s = To/m. Thus we have, for any h ~ N, 

(P (r,a - h . 27r) + k . 27T 
~!ii~kT (~~)(r a) _ , , a ~ r < b, O ~ a < 27r 

m 

 

and further, for any rational number p > o, 

~)(r, e - 27rp) + 27rp = ~p7b (~)(r, 6), a ~ r ~ b, O ~ e ~ 27r. 

Since the set of positive rational numbers is dense in (O, oo), if we set ~) = 27r/To then 

~2(r, g - cut) + cut = ~t(~;)(r, e), a ~ r ~ b, O ~ e ~ 27r 

holds for any t > O. The proof is completed. ~ 
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4 A formal derlVatlOn of the InterfaCe equation 

In this section, we consider equation (2): 

u Au+ I f(u e;c), x e ~, t > o 

u* = O x e a~, t > o. 
aw We assume that f(v ;c) = - (v ; c) is a smooth function derived frorn a 
a~ 

potential W(v ; c) whose local minima lie at v = 2m7r (m ~ Z) for all e > 

precisely, we assume that f(v ; c) satisfies the following conditions: 

(F1) f(v ; c) is 27T-periodic in v for each c ~ O, 

(F2) f(. ; c) has exactly three zeroes O < ~(e) < 27T in [O, 27r] for each c ~ O, 

a f 
F3 O ' c < O for each c > o ( ) av( ' ) ~ ' 

(F4) 
f2'f(v;o)dv = o, 2' af(v o)dv > o f , ac 

multi-well 

O. More 

By Theorems A and B, under the conditions (F1)-(F4) , there exists a unique spiral traveling 

wave solution for each c > o. Roughly speaking, condition (F4) means that the difference 

of well-depth W(27r ; c) -W(O ; c) is negative and that W(27r ; c) - W(O ; e) = O(c) as c ~~ O. 

It follows from (F1)-(F4) that there exists a unique solution (ipe(z), c(c)) of 

opzz + cc(c)ipz + f(ap ; O) = O, z e R, 

ip(-oo) = 27T' ip(O) = ((c), ip(+00) = , O
 

for each c > O ([5]). Note that c(c) > o for ~ > o and 

c = Iim c(c) = 
~~0 

2lr af 

f , ac (v O)dv 
fR{ip~(z)}2dz 

( 1 7) 

Let ue be a solution of (2). Since the reaction term is very large and the potential W is 

multi-well type, uc approaches 6 + 2m7r for some m c Z if O + ((c) + 2(m - 1)7T < ue(x, O) < 

g + ~(c) + 2m7r. Accordingly, a sharp interface appears between the regions {ue ~; e+ 2m7r} 

and {ue ~; O + 2(m + 1)7r} for each m ~ Z. By virtue of (F1), u5(x, t) = uc(r, O, t) can be 

extended to a function (also denoted by ue) defined for all O e R satisfying the following 

equation : 

1 1 uee + ~f(u O c), (r,e) e (a,b) x R, t > o, 
ut urr + ~ul' + ~~ 

c
 

ur(a, 6, t) = O = ur(b, O, t), 6 ~ R, t > o. 
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We fix T > o and deflne 

~,m rt = {(r, e) ~ (a, b) x R I uc(r, O, t) = O ~ ((c) + 2m7r} 

for t ~ [O,T]. Since u5 is 27r-periodic in a, we have i~,m = (r_2m*~~,o where as is the 

translation crs : (r, e) H~ (r, 0+s). For simplicity, we assume that i~,o is a smooth embedded 

curve in (a, b) x R with two boundary points on both {a} x R and {b} x R for each t e [O, T]. 

It follows from the homogeneous Neumann boundary conditions that the closure of i~,o 

intersects with the lines r = a and r = b perpendicularly at the boundary points. We 

denote by ~r the domain in (a,b) x R between the two curves t~,m and i~,m-1 Let 

n be the covering map from (a, b) x R to ~ defined by H(r, a) = (r cos e,rsine). We 

take a neighborhood N~t of i~,o in (a,b) x R so that the map nlj~* Is injective. We put 

Nt =n(N) D II(D nN) (3 t ' = O, 1) and 

N= U (NtX{t}). 
te[o,T] 

In what follows we write e = e(x) for x ~ Nt if x = II(r e) 

We call the set 

rc = U (r~ x {t}) 
t ~ [o ,T] 

the interface, where 

r~ = {n(r O) ~ ~ I (r O) ~ r' o} 

We also call r~ the interface at time t. We remarl{ that if x e r~ then uc(x, t) = O(x) + ~(e) 

and that r~ perpendicularly intersects with a~. 

Let de (x, t) be the signed distance function to rc deflned in N by 

{
 
dist(x, r~), if x e D~, 

d=(x, t) - _dist(x, r~), if x e DS, 

where dist(x,r~) is the distance from x ~ Nt to the curve r~ in R2. We remark that 

dc(x, t) = O if x e r~ and jVde I = 1. We assume that de has the expansion 

dc(x, t) = do(x, t) + cdl(x, t) + ~2d2(x, t) + . . 

and define 

rt = {x ~ Nt I do(x,t) = O}, 

(10 
a tt 

1
 

~
t
 
r
 

Q = O 

Q = 1 

{x ~ Nt I do(x,t) > o}, 

{x e Nt I do(x, t) < o}, 

U (rt x {t}), 

t e [o , T] 

U (~? x {t}), 

t e [o , T] 

U (~i x {t}). 

t e [o , Ti 
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Roughly speaking, rt represents the position of the interface at time t in the limit as 

c ~> O, while do represents the signed distance function to r. In what follows we derive the 

equation of motion of the interface rt by using matched asymptotic expansions. See [1], 

[4], [14] and [18] for details. 

We assume that the solution u~ has the expansions 

uc(x, t) = uo(x, t) + cul(x, t) + c u2(x, t) + . . . (18) 

away from re (the outer expansion) and 

ue(x, t) = Uo(~, x, t) + cU1(~' x, t) + e2U2(~, x, t) + . . . (19) 

near rc (the inner expansion), where ~ = d~(x, t)/c. To make these expansions consistent, 

we require the matching conditions 

Uk(+oo, x, t) = uk(x, t) if x e ~~ U rt (20) 
Uk(-oo, x, t) = u~(x, t) if x c ~~ U rt 

for all (x,t) e N and k ~ O, where ujk (j = O, 1) denote the terms of the outer expansion 

(18) in the region Qj (j = O, 1). Since ue(x,t) = e(x) + ((c) on rc, we also require the 

normalization conditions Uo(O, x, t) = e(x) + ~o, Uk(O,x, t) = ~k (k ~ 1), where ~j denote 

the terms of the expansion ~(c) = ~o + e~1 + c2~2 + ' ' " 

Substituting the outer expansion (18) into (2) and the collecting the c~2 and c~1 terms 

respectively, we have 

f(uo(x, t) - O(x) ; O) = O, 

a f a f 
(uo(x, t) - O(x) ; O)ul(x, t) + (uo(x, t) - 6(x) ; O) = O, 

ac av 

in Qo U Q1. The first equation implies that 

O(x) in Qo uo(x,t) - O(x) + 27r in Q1 

Hence from the second equation, we get ul(x, t) = O in Qo U Q1. 

Next, substituting the inner expansion (19) into (2) and the collecting the c~2 and ~ 

terms, we have 

Uo~~ + f(U O(x) O) = O, (21) 
= Uo~(dot ~ Ado) ~ 2V(Uo~)'Vdo Ul~~ + U 6 x 'O U av( o- ( ), ) 1 

a f 
- (UO ~ 6(x) ; O). 
ac 

In both equations we regard x and t as parameters. From (21) together with the matching 

conditions and the normalization conditions, we obtain 

Uo(~, x, t) = ipo(~) + e(x) (23) 
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where ipo is the unique solution to (16) for c = O. 

Substituting (23) into (22) and recalling the normalization conditions, we get 

(~) O)U (dot Ado)ipo(~) - ac (ipo(~) O) U + ' 
U1(O, x, t) = (1' 

By Lemma 4.1 in [1], (24) has a bounded solution if and only if 

a f (dot Ado) fR{ip (~)}2d~ - fR (rpo(~) ; O)ip (~)d~ O (25) 
ac 

Under the solvability condition (25), the solution U1 of (24) incidentally satisfies the match 

ing conditions (20), since the right-hand side of the first equation of (24) tends to O expo-

nentially as ~ ~~ ~oo. By (25), we get 

dot = Ado - c, (26) 
where c is the positive constant deflned in (17). It is known that -dot = V and Ado = Ii), 

where V and fe are the normal velocity and the curvature of the interface rt , respectively. 

Thus (26) is equivalent to (4): 

V c-/~ onrt' 
Moreover rt intersects with a~ perpendicularly. 

5 ExiStence Of a Spiral for the interface equation 

In this section we consider the interface equation 

f V = c - /~ on rt, (27) 
(v(x),n) = O on a~ nr~t, 

where n = n(x,t) and v(x) is the outward unit normal at each point of rt and a~, 

respectively. We seek for a solution of (27) which is written in the form 

r(t) = {(rcos(e(r) ~ ce't),rsin(e(r) + ~)t) I a ~ r ~ b, t ~ O} 

for some function O(r) and some constant cv. We call such r(t) a spiral with angular speed 

cv. One can easily see that r(t) is a solution of (27) if and only if q(r) = r61(r) satisfies 

dq 
- = h(r, q ; ~'), r > a, 
d r 

q(a) = q(b) = O, 

where h(r, q ; ~)) = (1 + q2) (-c/~T - q + ce;r) . 
r
 

Theorem C 
Fix a > o arbitrarily 
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(i) For any b > a, there exists a spiral with angular speed c4;(b) > O. In addition, the spiral 

is unique up to rotation. 

(ii) The angular speed ~)(b) is strictly monotone decreasing in b and there exists ~)QO > o 

suc'h that bli~moo ~)(b) = (4)00' 

(iii) In the case where ~ = {x e R I Ixl > a}, there exists a spiral with speed cvoo Such 
that rliH,~moo e!(r) = -~)oo 

c
 

Remark 3 
The statement (iii) of Theorem C shows that the shape of the spiral for (27) Iooks like 

Archimedean spiral as r H* oo in the case where b = +oo. 

In what follows we denote by q(r ; cv) the solution of the initial value problem 

dq _ r > a, h(r, q ; ~)) , 

q(a) = O, 

and let (a, Reu ) be the maximal interval of the existence of q(r ; cu). 

Lemma 7 
(i) Ifcvl < ~)2 then q(r ;a)1) < q(r ;a)2) for a < r < min{R~)i' Rcv2}' 

(ii) If~) > c/a then R~) = +oo and q(r ;~)) > o for r > a. 

(iii) R~' is nondecreasing in a) e R. 

(rv) IfcL)n Converges to ce'o then linrnH.loOnf l~~) Z R~)o ' If, in addition, cvn ~ a)o for large n then 

lim R~) = R~)o 
n~'oo 

Proof (i) The statement immediately follows from the fact that h(r, q ; ~)) is strictly 

increasing in cv for r > a. 

-c + ~)r > O for r > a. Therefore q(r ;~)) > O for (ii) If ~) > c/a then h(r,O;c()) = 

a < r < R~)' Since h(r,q;c()) < O if q ~ cvr2 we have O < q(r ;~)) ~ cvr2 for any 

r e (a, R~))' This implies R~' = +oo 

(m) If R~) < +oo then lim q(r ;~)) = -oo, since h(r,q;c~) < O for q > max{~)r2,0}. 

Therefore by virtue of (i), R(J is nondecreasing in c,). 

(iv) Put pn(r) = q(r ; ~)n) ~ q(r ; ~)o). Then pn Satisfies 

dpn = Hn(r,pn)' r > a, 

Pn(a) = O, 

where Hn(r,p) = h(r, qo(r) +p ; ~)n) ~ h(r, qo(r) ; ~)o) and qo(r) = q(r ; cvo). For any R < R~)o 

and 5 > o there exists L > O such that 

IHo(r,p) - Ho(r, ~)1 ~ Llp - p~, Ipl, Ip~ ~ 6, a ~ r ~ R 
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and that 

~/~ = sup jH~(r,p) -Ho(r,p)1 ~ O, n ~ oo. 
lpl~6 

~<r<R 

We define R~ = sup{a < r < R I Ipn(r)1 ~ 6}. Then by (29) we have 

{p~(r)1 ~ 7~(R - a) + L f lp~(s)Ids 

for a ~ r ~ Rn ' Therefore by Gronwall's inequality, we have 

jpn(r)! ~ n/n(R - a)eL(r-a) ~ ~/n(R a)eL(R a) 

This Implies Rn = R for sufliciently large n. Thus we get R~'~ > R for for a ~ r ~ Rn' ' 

large n, hence 

linmH,ioonf R~)~ > R~)o ' (30) 
Combinmg (n) and (30) we obtam nli~moo Reu~ = Rvo if cc;n ~ CJO for large n. ~ 

Lemma 8 
There exists ~; ~ c/a such that R~) > b and q(b ; ~;) ~ O. 

Proof Suppose that the statement of the lemma does not hold. Then for any ~) ~ c/a, 

either of the following holds: 

(a) R~) ~ b, (b) R~) > b and q(b cv) > o 

By Lemma 7 (ii), the statement (b) holds for c() > c/a. We define cvo = sup{eJ ~ R I R~) ~ 

b}. Then we have c~;o ~ c/b, since h(r, O ; cd) < O for a ~ r ~ b if ~) < c/b. Clearly ~) ~ c/a. 

By virtue of Lemma 7 (iii), we obtain R~)o ~ b, hence 

lim q(r ;~)o) = ~oo. 
r/R~o 

On the other hand, R~) > b and q(b ; cv) > o for any ce; > a)o. Let ro ~ (a, R~)o) be such that 

q(ro ; ~)o) < ~(cv0+1)b2 and that h(ro, q(ro ; ~)o) ; ~)o) < O. Then q(ro ; ~;1) < ~(u)0+1)b2 and 

h(ro, q(ro ; cvl) ; cJ1) < O for some ~)1 sufficiently close to a)o. Since h(rl' q ; cc)) > h(r2, q ; ~)) 

for a ~ rl < r2 ~ b, q ~ -(ee'o + 1)b2 and a)o ~ c~ ~ ~)o + 1, we have 

dq(r ;e~l) _ h(r q(r ~)1) a)1) < h(ro q(ro ~;1) ~)1) < O 

d r 

for all r ~ ro satisfying q(r ;ce'l) = q(ro ;cvl)' Hence q(r ;~)1) < q(ro ;~)1) for r > ro, 

contradicting the fact that q(b ; ce'l) > o. ~ 

Proof of Theorem C (1) Let ~) ~ [c/b c/a] be such that R~~ > b and q(b ; ~) < O. 

Then q(b;~;) is well-defined for c,; ~ ~ and is continuous in cv ~ ~). Since q(b ; ~)) > O for 
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~) > c/a, there exists cv(b) C (Z~,c/a] satisfying q(b 

an immediate consequence of Lemma 7 (i). 

~)(b)) = O' The uniqueness of ev(b) is 

~
 

Proof of Theorem C (ii) By Lemma 7 (i), the rotation speed a)(b) is strictly mono-

tone decreasing in b. Therefore ~)(b) converges to some ~)oo ~ O, since ~)(b) ~ c/b. Note 

that q(r ; O) < O for r e (a, Ro) and hence q(r ; O) satisfles 

- < -q l+q2 r ~ -. dr ~ 2 ( )' 

This implies Ro < +oo, from which and the following lemma we obtain cvoo > o. m 

Lemma 9 
1~.= = +00. 

Proof Suppose that R.= rs fimte We fix bo > a k > ~)(bo)/c and take 

~:::: { , (~, R max 2k } R ck - cJ(bo) co 

Then, if ~) ~ ~)(bo), ~kr is a supersolution of (28) for r Z R since h(r, -kr ; ~)) ~ -k. We 

take ~ = min{-kR, -e()(bo)R2}. Then we get h(rl ' q ; cJ) ~ h(r2, q ; ~)) for a < rl < r2 < R, 

q ~ ~ and ~) < ~)(bo). By the similar argument in the proof of Lemma 8, there exists 

b > bo and ro < Ra)- such that q(ro ;~)(b)) < ~ and h(ro,q(ro ;~)(b)) ;~)(b)) < O. Again 

by the argument in the proof of Lemma 8, we obtain q(r ; (4)(b)) < q(ro ; c()(b)) < ~ for 

ro < r < R and q(r ; ~)(b)) < -kr for r ~ R, contradicting the fact that q(b;~)(b)) = O. 

This contradiction proves the lemma. B 
Proof of Theorem C (iii) By Lemma 9, q(r ; ~)oo) exists for all r > a. Furthermore 

q(r ; a)oo) is negative since q(r ; ~)(b)) < O for a < r < b. This corresponds to a spiral with 

angular speed ~)oo for ~ = {x e R I Ixl > a}. To complete the proof, we show that 

lim q(r;~)oo) _ ~)oo 

*H'+00 r 
Fix k > ~)oo/c. We take bo so that k > ~)(bo)/c and put ro = 2kl(ck - ~)(bo))' Since -kr 

is a supersolution of (28) for r ~ ro if cL) ~ ~)(bo), we have q(r ; ~)(b)) > -kr for r ~ ro and 

b ~ bo' This implies q(r ; c~)oo) ~ -hr for r Z ro, since q(r ; ~)(b)) uniformly converges to 

q(r ; a)oo) on any compact subset of (a, +00). Hence we have 

liminf q(r ,~)oo) > ~)oo 

rH'+0O r 
We deflne 

Ko0= (r,q) r> ~)oQ¥lTTT; q<0} 
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Let 
l = Iim sup q(r , ~)_) 

n~oo r 
and suppose that I > -cv_/c. Then there exists ro > a such that (ro,q(ro ; CJOQ)) ~ Koo' 

Since h(r, q ;a)oo) > o for (r, q) e Koo' we have (r, q(r ;a)oo)) e K_ for all r > ro' Therefore 

by (28) we obtain 

> C 1+q(r,~)_) +~)oor >0 
d r 

for r ~ ro, hence 

~oo < I = Iim q(r,a)oo) < O 

c "~+-On the other hand, by (31) we have 

d (q(r;a)_)) 
lim inf > cl + ~)oo > O r~+oo dr r 

This contradiction proves that 

q(r ,~)oo) < lim sup a)oo 
r~+00 c 

r
 

The theorem is proved. B
 

Appendix 
In this appendix we present two propositions in [16] . Proposition B I is concerned with 

the structure of a subset of an ordered metric space under a group action. Proposition B2 

is, in a sense, a set-valued version of the former half of Proposition B1. 

Let X be an ordered metric space. In other words, X is a metric space on which a 

closed partial order relation is defined. We will denote by ~ the order relation in X . Here, 

we say that a partial order relation in X is closed if ~)n ~ ipn (n = 1,2,3, ･ ･ ･) implies 

lim ~n < Iim ipn Provided that both limits exist. We write (p < ip if ~ ~ ip and ~ ~ ip. 

n~oo n~oo For a subset V C X, the expression {p ~ V, V ~ ~) means ~ ~ ip, ip ~ (p for all points 

ip e V, respectively. 

Let G be a metrizable topological group acting on some subset X1 of X. We say G 

acts on X1 if there exists a continuous mapping ~/: G x Xl ~> X1 such that g h~ 7(9, ') 

is a group homomorphism of G into Hom(X1)' the group of homeomorphisms of Xl onto 

itself. For brevity, we write ~/(g,~2) = g(p and identify the element g ~ G with its action 

7(9, ')･ We assume that 

(G1) 7 is order-preserving (that is, fP ~ ip implies gfP ~ 9ip for any g ~ G) ; 

(G2) G is connected. 



Jo舳｛舳伽mα伽α1〃o肌og・ψ8附．2（2000） 33

　Letγbe　a醐bset　of　X狐d¢be狐e1eme批ofγ∩X1such　that

（H1）g¢∈γfor　aay　g∈G；

（H2）for　a」nyψξγ，thcre　exist　solm⑧g互，92∈G　satisfying9！ψ＜ψ＜92¢；

（H3）for　anyψξγwithψ＜ん¢for　so㎜eん∈Gラthcre　exists　some　neighborhood　B　of

　theunite王e㎜cntofGsuchthatψ＜gん¢foranygξB．

Propos拙o皿（［16ラproposi亡ionB1］）

胴G・・tj・ポG1），（G2μη〃，恥・施ポ則，（H2フ，（則・砒ηγj・・舌・t・11y一・・d…d

・・㎜・・む・d・舳・dγ二師．肚t加㎜…，∬1・1㏄・11yp・㏄・㎜p・・む，伽∬鮎・m・・㎜・・一

p虹ca皿do・dθ・一jso㎜αp血jctoR・

　A　si㎜i1肌res山t　ho王ds　for　the　case　where　the　setγcc双sists　of　subsets　of　X．To　be㎜ore

P…i・・，1・tγb・…t・f・曲・・t・・fX・・漁i・i㎎｛¢｝…hth・t

（H4）｛9¢｝ξγf・mnyg∈G；

（H5）f・・搬yV∈γ，th・・…i・t・・m・g・，9・∈G・・ti・fyi・g9ρ≦γ≦9・¢・・〃≠｛9・¢｝1

　｛9刺；

（H6）for狐yγξγwithγ≦ゆ狐dγ≠｛ゆ｝foぎsomeん∈G，tb－ere　exists　some

　・・ighb・・h・・dB・fth・泌・itd・㎜・・t・fG…hth・tγ≦9ゆ・・〃≠｛9ゆ｝f・・狐y

　gξB。

Pxoposi亡ion（［五6，Propos批ion　B2］）

L勧G鋤帥（G1），（G2フ・・dγ，｛¢｝・・帥（H4），（珂，（H6フ・Th・∬＝G佃｝＝｛｛9¢｝l

g∈G｝．

　　　　　　　　　　　　　　　　正もe逓erenCeS

［1］N．D．A1i1⑫kos，P．W．Bates脳dX．Ch㎝：C㎝vcrgen㏄ofthe　Cahn－Hi11iardequat1on

　to　the　Hde－Shaw　mode王，λブcん．Rα幼o侃α2〃εcん．λ肌α1。，128ラ1994，165－205．

［2］C，B＆esens　and　R．S．MacKay：Grad－ic砒dyna㎜ics　oft砒ed酎enkc1－Kontorova㎜ode1s，

　W㎝肋鮒物，u，1998，949－964・

［31W，K．Buれ㎝，N．Cabrera狐dF．C．Fra汰：Thcgrowthofcrysta1sandthcequi1ibrium一

　。t．uctu・e・fthd・su・fa㏄s，P舳・・．肋帆肋μ．8・・』㎝∂・バ，243．1951，299－358・

141P．C．Fif・：D岬舳・・μ伽犯肌W・㎝〃伽M倣伽・・10B鮒W艀切㎝α2
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