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Abstract 

We discuss how to decompose the zero set of a multivariate polynomial system with 
inexact coefficients to a sequence of zero sets of reduced triangular sets in a numerically 

stable way. 

1 Introductlon 

Finding the solutions to a system of non-1inear polynomial equations over a given field 

is a classical and fundamental problem in the computational literature. Many problems 

in robotics, computer vision, computational geometry, signal processing involve solving 

polynomial systems of equations. A number of symbolic, numeric and hybrid approaches 

have been proposed. Newton's algorithms and homotopy methods are two main numeric 

approaches for solving zero-dimensional polynomial systems. Newton's method works well 

only if we are given good initial guesses to the solutions and it is difficult for most prac-

tical problems. Since 1970's, the rapid advances in techniques for homotopy method have 

brought a great leap in the feasibility of solving numerical polynomial systems globally [8] 

[1l]. However, it still suffers some problems such as path=crossing[12]. 

Most papers on symbolic or hybrid methods(combination of symbolic and numeric ap-

proaches) for polynomial solving concentrate on Gr6bner basis and resultant method. It is 

well known that Gr6bner basis method can not be applied safely with floating point arith-

metic and requires to increase the precision of computation dramatically compared with 

input and output precision. Algorithm based on resultant method provides one of the most 
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efficient solution method for small and mediumsize zero-dimensional polynomial systems 

[3][18]. Different kinds of resultant matrices are used for constructing monomial bases, 

multiplication maps and, ultimately, reduce solving a polynomial system to an eigenvalue 

problem. On the other hand, as directly applying resultant for polynomial solving, Wu 

Wen-tstin developed the theory of subresultant for reducing a polynomial system to a fam-

ily of triangular sets. The subresultant polynomial remainder sequence is well known as 

the best nonmodular algorithm for computing GCD and resultant of sparse multivariate 

polynomials [1][2] [4] [5] . However, its application in polynomial solving is still relatively 

unexplored. In [13] , Noda and Sasaki have used subresultant theory for computing ap-

proximate GCD of multivariate polynomials and then, applied it to solve ill-condition 

polynomial systems. But their purpose is to divide out the approximate GCD and transfer 

the system to well-condition problem. 

In this paper, we combine Wu's symbolic elimination theory with Noda and Sasaki's 

approximate GCD computation to solve systems of polynomial equations with numeric 

coefiicients. Our paper is organized as follows. In section 2 we describe Wu's method, 

followed in section 3 by generalizing it to polynomials with numerical coefficients. Section 

4 compares the current approach with the Gr6bner basis method. 

2 Wu9S Elimination Theory 

2 . I P reliminaries 

R Let K be a field of characteristic O and let xl' ' ' " x~ be a set of indeterminates with 

the order x ~ x ~: xn K[xl""'x~] is the ring of polynomials in these variables. 

R Let c be the greatest subscript such that xc actually occurs in f. We define: 

1. cls(f) = the class of f = c. 

2. Iv(f) = the leading variable of f = xc' 

3. cdeg(f) = the class degree of f = degx.f. 

4. ini(f) = the initial of f with respect to lv(f) = coeff(f, xc' cdeg(f). Note that ini(f) 

, xc-l] ' is a polynomial in K[xl' ' ' ' 

R A polynomial g is said to be reduced with respect to f if degx.(9) < cdeg(f). 

e Let PS = {pl'p2, . ' ' ,ps} be a polynomial set in K[xl' ' ' " x~], PS is called a triangular 

set if either s = I and pl ~ O, or s > I and cls(pl) < cls(p2) < ･ ･ ･ < cls(ps)' If s > 1 

and pj is reduced with respect to pi for each pair j > i, then PS is called an ascending 

set. An ascending set is said to be contradictory if $ = I and pl is a non-zero constant. 
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o For a nonempty polynomial set PS ~ K[xl, ' ' ' , x~], the greatest class c, if it exists, 

for which the number of corresponding polynomial is > I , is called the dominant class 

of PS, the least degree of polynomials having class c is called the dominant degree of 

PS. In case, no such c > O exists then dominant class will be defined to be O, while 

dominant degree will be left undefined. 

c For polynomial sets PS and polynomial G. Zero(PS) denotes the zero set of PS, 

Zero(PS/G) for Zero(PS) - Zero(G). 

2.2 SubreSultant Cham 

Let f and g be two multrvanate polynonuals m K[x , Xn] Suppose lv(f) Iv(g) = x 

and m = cdeg(f) ~ cdeg(g) = : n 

f = fmxm+...+fo, fm~0. (1) 
g = gnxn+...+go, 9n~0. (2) 

According to [2] [4] , the subresultant chain is defined as 

fm fm-1 ' ' ' f2j-n+2 xn-j-I f 

Sj(x) = gn fn I fm fm-1 ' ' ' fj+1 xof (3) 
f ' m-j-1 ' ' ' 92j-m+2 x 

9n 9n I ' 9j+1 xog 
where fk = gk = O if k < O. Therefore 

Sj(x) = Uj(x) f(x) + Vj(x) g(x). 

where Uj is Sj except for the last column, which is top down 

xn-j-1 . " 10-'O 
and Vj is Sj except for the last column, which is top down 

O"'Oxm 3 1 ... 1, 

hence, degxUj ~ n - j - I and degxVj < m - j - 1. It is clear that 

Zero({f,g}) C Zero(Sj)' forO ~ j ~ n - 1. 

Proposition 1 

The last subresultant Sn-1 is equal up to a sign to the pseudo-remainder of f with respect 

to g, i.e., for some polynomial q, 

f + qg. Snl n 
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Proposition 2 

So is the resultant of f and g, and the vanishing of So is the necessary and sui~icient 

condition for f and g to have a GCD ofpositive degree in x. 

Proposition 3 

If f and g have a non-trivial GCD of degree d > o, then Sj = O for O ~ j < d, and 

GCD(f, g) is equal to the primitive part of the frst non-zero polynomial Sd . 

In the case So ~ O, the least integer e, if it exists, for which S* has a positive degree 

in x, will be called exponent of f and g. The corresponding polynomial S* will then be 

called the eliminant of f and g. 

Wu's elimination method consists the following four replacement rules[19]. Here, we 

suppose PS is a nonempty polynomial set. 

Rule I . For any polynomial p e pS, if p = pl ' p2 . We replace PS by polynomial sets PSI and 

PS2 consisting of same polynomials as PS with p replaced by pl and p2 respectively. 

Rule 2. Suppose the dominant class of PS is c > O. Let f be the polynomial with class c and 

cdeg(f) = d the dominant degree, g be any other polynomial in PS with cls(g) = c, So 

the resultant of f and g with respect to variable x*. Replace PS by PSI consisting of 

same polynomials as PS but with f and g replaced according to the following rules. 

2.1 If So = O then replace f and g by Sd, where d = deg*.GCD(f, g). 

2.2 If So ~ O and S* be the eliminant of f and g, then replace f and g by So and S* . 

2.3 If So ~ O and the eliminant is non-existent, then replace f and g by f and So . 

Applying Rule 2 to PSI again, until the dominant class is O. We get a triangular set 

TS. 

Rule 3 If the mitlal of some polynomlal fi+1 m TS is not reduced with respect to the partial 

triangulated set TSi, formed of polynomials in TS preceding fi+1 ' Compute the pseudo 

remainder r of fi+1 with respect to TSi. 

3.1 If cls(r) = cls(fi+1), replace TS by TS/ consisting of same polynomials as TS but 

with fi+1 replaced by r. 

3.2 If cls(r) < cls(fi+1), then apply replacement rules to {{r} U TSi} to flnd an ascending 

set ASi . If ASi is contradictory, then the zero set of PS is empty; otherwise, apply 

the replacement rules to PS again over the algebraic extension field generated by 

ASi . 

Rule 4. For each ascending set AS obtained by preceding rules applied to PS, compute the 

pseudo-remainder set RS of polynomials in PS with respect to AS, replace AS by 

ps! = AS U RSL Apply rules to PS/ until the pseudo-remainder sets of PS with respect 

to AS are empty. 
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Applying replacement rule 1-4 whenever possible. Ultimately, we have the following 

theorem. 

Zero Decomposition Theorem[19] There is an algorithm so that for any polynomial set 

PS there will be a decomposition of the form 

Zero(PS) = ~ Zero(ASk/Jh) (5) 

in which each ASk is an ascending set while Jk is the product of all initials of polynomials 

in ASk . 

Example 1 
PS = {fl(x, y, z), f2(x, y, z), f3(x, y, z)} with x ~: y ~ z and 

fl = x2-xy+y2-1, 
f2 = 2xy + yz - 3z2 

f3 = yz+x2 -2z2. 

Step I . Classify the polynomials in PS into two polynomial sets. 

PS = [[fl] ' [f2, f3]] 

Step 2. Compute the subresultant chain of f2 , f3 , we get 

S1 = yz - 4xy + 3x2 

So = 17x2y2 - 2y3x - 24yx3 + 9x4. 

Step 3. Since So ~ O and degz(Sl) = I > o, by Rule 2.2, replace f2, f3 by So, Sl ' Let 

PSI = [[fl' So] , [Si]] , 

Step 4. Compute the subresultant chain of fl ' So , 

S{ = -2xy + 7yx3 - 6x4 + 15x2 

S/o = 127x8 - 294x6 + 17lx4 - 4x2. 

By Rule 2.2, replace fl' So by S6, Si･ Let 

TSI = [[S6] , [S{] , [Sl]] ' 

Step 5. Form the pseudo-remainder of Sl with respect to ascending set [S6, Si], 

r = 6zx4 - 15x2z - 45x5 + 54x 

By Rule 3, replace S1 by r, 

TSI = [So, S1' r] 
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Step 6. 

Step 7. 

Step 8. 

The pseudo-remainder set of PS with respect to TSI rs empty. Then 

Zero(PS) Zero(TS /(1112)) + i Zero(PS + TS + I~)' 

i=1 

where 

I1 = ini(S{) = -7x3 - 2x = -x(7x2 + 2) = -pl 'p2, 

12 = ini(r) = 6x4 - 15x2 = 3x2(2x2 - 5) = 3p~ ･p3' 

Apply Rule I to the factors of 11 and 12 , we have 

~ Zero(PS + TS + I ) ~ Zero(PS + TS + {p }) 

For i = 2, 3, it is easy to check the zero sets are empty. For i = 1, repeat the preceding 

steps, we will get 

Zero(PS + TS + {p }) Zero([x,y2 - 1,yz]). 

Finally, 

Zero(PS) Zero(TS /(1112)) + Zero([x, y2 - 1, yz]). 

Now, it is easy to get all eight solutions of PS as 

x 
y
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1
 
1
 
1
 

-1 

-1 
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-0.156 

- I .06 
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-0.747 
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O
 

o
 

o
 

o
 

3 POlynOmial SyStem SolVing 

We consider PS = {pl' ' ' "ps} be a polynomial set with pi e C[xl' ' ' " xn] whose 

coefficients have specifled numerical values. Unlike most papers on polynomial solving, 

here we do not assume s = n or the zero set of PS be zero-dimension. Our meaning of 

flnding the common zeros of PS is to decompose the zero set as (5). If all coefficients in PS 

be assumed to be exact as rational numbers, implement Wu's elimination method in exact 

arithmetic, we could decompose the zero set of PS as in section 2. Otherwise, some of the 

coefficients in PS are only known to a specified level of accuracy. Then PS represents an 

equivalent class PS of polynomial sets PS and the members of PS cannot be distinguished 

in the given context. Thus, according to [15] , the concept of a zero has to be= widened to : 

z e Cn rs a pseudozero of PS <~> ~PS e PS Ip (z)1 < e, pi e PS. 

for a specified small number c > O. In the following, we deflne jl p ll be the oo-norm of the 

coefficient vector. We show how to stabilize Wu's elimination method in flnite precision 

arithmetic. 



Josai Mathematical Monograplts Vol. 2 (2000) 97 

3.1 Univariate Case 

Let PS = {pl' ' ' "p.} with pi ~ C[x]. The zero decomposition in (5) is actually: 

Zero(PS) = Zero(GCD(pl' ' ' " p.)). 

There are a lot of algorithms available for computing the GCD of univariate polynomials 

with inexactly known coeflicients. [6] [7] [9] [10] [13] [14] . Noda and Sasaki's scaled Euclidean 

algorithm is simple, efiicient and stable. But it can produce answers slightly different than 

what we want. In the following, we present a new algorithm that modified Noda and 

Sasaki's method to avoid unsatisfactory results. 

Algorithm A(Approximate GCD of two univariate polynomials with accuracy e). Given 

nonzero polynomials f and g in C[x] with accuracy 6 and deg. (f) ~ deg. (g), this algorithm 

calculates an approximate GCD of f and g with accuracy c. 

A1. [Initialize] Set pl ~~ f,p2 ~ 9. 

A2. [Iteration] Compute the remainder r and quotient q of pl and p2 . 

A3. [Finished?] If ll r llZ e, set pl ~ p2, p2 ~ r/max(1, 11 q II)･ Go back to A2. 

Otherwise, compute the remainder r and quotient q of g and p2 . 

If ll r llZ 6 then set pl ~~ g, p2 ~ r/max(1 11 q ll) Go back to A2 

Otherwise, compute the remainder r and quotient q of f and p2 . 

If ll r ll~ e then set pl ~~ f, p2 <- r/max(1, Il q ll)･ Go back to A2. 

Otherwise, the algorithm terminates, return p2/ini(p2). I~ 

Example 2 

f = 3.x7-1.x+3.x6 - 1., 

g = x5 + 4.x + 1.0000lx4 + 4 OO004 

Suppose e = 10-4. 

Numbering intermediate remainder in A2 of Algorithm A properly, we obtain a sequence 

of polynomials 

p3 = -.333333x - .333373 - 4.00000x3 - 4.00000x2 - .100002 ･ 10-4x4 
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p4 ::: 

p5 :~ 

.333332x + .333373 + 4.00000x2 + 3.99999x3 

250001 ･ 10~9x - .625003 ･ 10~9x2 

Since li p5 ii~ e, compute the remainder and quotient of g and p4: 

= 4.00694x + 4.00698 - .295158 ･ 10~5x2 

q = 250000x + 192706 10 x 208353 ･ 10-1. 

Since ll r ll> e, replace pl by g and p2 by r. Repeat A2 we obtam 

p3 = 4.00694x + 4.00698, 

p4 = 0.186850 ･ 10~8. 

Check the termination, we will find the approximate GCD of f and g with accuracy 10-4 

is p3/1coeff(p3) = x + 1.00001. We remark that algorithm in [13] stops after 11 p5 Il~ e, and 

returns a degree-3 GCD which is completely spurious. 

The normalization of the remainder is crucial in the algorithm. The analysis of numer-

ical stability of the algorithm is similar to [13] . 

3.2 Multivariate Case 

Let PS = {pl' ' ' "ps} be a polynomial set with pi e C[xl' ' ' " xn]' We can use (3) 

to compute the subresultant chain to find the pseudo-remainder, eliminant, resultant and 

GCD. But compute the determinant of a polynomial matrix is not easy. Actually, we have 

the following more efficient algorithm which modifled [2] [4] to numerical case. 

Algorithm S(Approximate subresultant polynomial remainder sequence of two multivari-

ate polynomials with accuracy e). Given nonzero polynomials f and g in C[xl' ' ' ' , xn] with 

accuracy e, Iv(f) = Iv(g) and cdeg(f) ~ cdeg(g), this algorithm calculates an approximate 

subresultant polynomial remainder sequence of f and g with accuracy e. 

S1. [Initialize] Set L <~ [g, f], pl <~ f, p2 ~ 9, ~/ ~~ 1, p ~ I ~ ~~ 3 

S2. [Iteration] Set d ~ cdeg(pi-2) - cdeg(p 1) r ~ nprem(p~ 2 Pe l) 

If ll r ll~ ~ then go to S3. 

Otherwise, set pi <- nquo(r) normal(p . 7d))), L ~ CONS(pi, L), 

p ~ ini(pi-1), 7 ~ n/1-dpd z ~ ~ + 1 
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S3. [Finished?] If ll r jl< e or deg*(r) = O then set L ~ INV(L), return L. 

Otherwise, go back to S2. IB 

The function CONS(pi,L) appends pi to the list L and INV(L) reverses the list L. 

Note that the division to get pi in S2 is exact if the coeflicients are exact rational nurnbers. 

Otherwise, we impose the similar normalization of quotient as in the case of univariate poly-

nomials. If cls(g) = O then nquo(f, g) = f/9･ Otherwise, suppose the pseudo-remainder r 

and quotient q of f and g with respect to x = Iv(g) be calculated by 

ml(g) f - qg, d = deg (f) cdeg(g) + I > O (6) 

If 11 r ll / Il ini(g)d ll~ e then 

nquo(f, g) = nquo (q, ini(g)d) . 

Otherwise, return f/ll 9 11 as the quotient. Since the class of divisor decreases, finally, 

we can stop to get a polynomial divided by a number. Let q,d be the same in (6), the 

normalizations of the pseudo-remainders and polynomials are 

nprem(f,g) = r/max(lini(g)d ll,llqll), 

normal(f) = flllfll-

See [13] for the analysis of numerical stability of the algorithm. 

Example 3 
Suppose e = 10-5 

pl = 2y5 + xy4 + x2y + 2x + 2xy2 + 4y + y4 + xy + 2, 

p2 = 6.y3x + 6.y3 + x4 + 3.x2y2 + 6.xy2 + 1.0000lx 

+2.yx3 + 2.00002y + x3 + 3.y2 + 1.00001. 

The subresultant polynomial remainder sequence(up to sign) of pl and p2 computed by 

the above algorithm is 

p3 = 432.x4y2 + 1296.x2y2 + 1296.x3y2 + 432.xy2 + 216.x5y + 2256.00x3y 

+2856.00xy + 48.x7y + 3456.x2y + 912.000y + 48.x6y + 960.000x4y 

+1776.00x + 24.x8 + 1776.00x3 + 456.000 + 2616.00x2 + 24.x6 

+528.000x4 + 48.0004x5 + 48.x7. 

p4 = 21696.0x8y + 173632.x5y + 16533.3x9y + 64.xl3y + 30912.1x7y + 7701.34y 

+52288.0xy + 153472.x2y + 254698.x3y + 1600.00xlly + 106.667xl2y 
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+64 xl4y + 7552.00xroy + 262336.x4y + 76821.5x6y + 21.3333xl5y 

+29994.7x + 19114.6x9 + 853.335xl2 + 102880.x2 + 258517.x4 

+12042 6xlo ~ 53866 8x + 125226.x6 + 204085.x3 + 3850.67 

+217984.x5 + 4576.00xll + 42 6667xl5 + 26304 Ox 

+64.xl4 + 85.3337xl3 + 10.6667xl6 

and ji p5 ii~ c. Actually, apply approximate GCD to the coeflicients of p4 , we will find the 

primitive part of p4 is 

primitive(p4) = 2.y + 1.x + 1. 

4 EXperimental TeSt 

We report here on the results of our algorithms applied to two examples. The algorithms 

are implemented in Maple V. 

Example 4 
This example is cited in fl6J. Consider two ellipses which intersect with angles not far 

from 90' in four well-separated real points. The associated quadratic equations in x,y 

have real rational coei~icients with nontrivial denominators and numerators. pl and p2 are 

their decimal approximations to seven digits. 

pl = 1.027748y2 - .46787lxy + 2.972252x2 + .662026y + 0.0785252x - 3.888889, 

p2 = 3.958378y2 + .701807xy + 1.041622x2 - 0.0785252y + .662026x - 3.888889. 

With lexicographic term order, x ~ y, the exact rational Gr6bner basis of this system is 

(displ'ayed to 7-digits) 

91(x) = x4 - 0.134646x3 - 2.107266x2 + 0.242335x + 1.009172, 

92(x,y) = y - 1.355154 ･ 1016x3 - 1.240075 ･ 1016x2 + 1.553930 ･ 1016x + 1.302800 ･ 1016 

It has been pointed in [16], if we compute the solutions of gl to accuracy less than 34 

digits, there are no meaningful results for two y-components. By our methods, suppose 

e = 10-5 we get the zero decomposition of pl'p2 as 

Zero({pl'p2}) = Zero({91 92}/1 ) + Zero({fl f2}) 

Where ll is the initial of g2 and 

91 = 120.9999x4 - 16.29212x3 - 254.979lx2 + 29.32250x+ 122.l098, 

92 = -2.57329lxy + 10.69477x2 + 2.701253y - .3695634x - 11.39689. 
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Solve gl for Digits = 10(the number of digits carried in floats), 

x = 1 204415, -.7603909, 1.049726, 1.049726. 

Substitute the first two zeros to g2 , the initial 11 rs nonzero, and we get 

y = -.7865145, 1.058881. 

which are exact to six digits. Evaluate 11 at the last two zeros, we find it is less than 10-5. 

Now, we consider another branch 

fl = 1.000000x - 1.049727, 

f2 = 2.254914y2 + .3749366y - 1.165602. 

There are two sets of solutions 

{x = 1.049727, y = -.8068975}, 

{x = 1.049727, y = .6406222}. 

Substitute the solutions to pl 'p2, the error is less than 10-5. 

For this example, using Maple's fsolve, it only gives one set of solutions corresponding 

-.8068975}･ In order to find the other three roots, we have to give to {x = 1.049727, y = 

appropriate range informations. 

Example 5 
This example appeared in f20J. 

pl = ty8 + y3x+3, 

p2 = 4x2+3xy+y2+2. 

Suppose t = 10- be a small number The Grobner basrs wrth lexrcographic term order 

x ~ y is 

91 = 4096xl6 + 16384xl4 h 2308672xl2 + 4648672xlo + 401969795x8 

+600322168x6 + 467731792x4 H~ 385520256x2 + 56310016, 

92 = 8349641086351584263053068672y + 42640543834312116938843924992x 

+52905962762889785619017231079x7 + 6444725 12281 71657084673721 132x5 

+33813977062020986431284887152x3 + 528873020288802930634680416x9 

+304378975983140261643437376xl I + 20141 15039566951041531904xl3 

+541204990029293392547840xl5 
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It is obvious that we have to compute the roots of gl to high accuracy to get reasonable 

solutions of y due to the large coeflicients in g2. For Digits = 10, the error of some solutions 

are about 1. Compute the zero decomposition by our subresultant method, we get 

Zero({pl'p2}) = Zero({fl f2}) 

where fl is the same as gl and f2 is 

f2 = (49496x 19904x + 93x 252x )y + 30016+364x + 350x + 119412x + 59696x 

Substitute the solutions of gl to f2 , we get the solutions of y-component which are exact 

to flve digits, i.e., the error is less than 10-5. It has been pointed in [16], Iarge coefiicients 

originate through S-polynomial formation or reduction of a polynomial with a small leading 

coeflicient and some other coefficients with a modulus of order 1, combined with another 

polynomial whose matching coefncient is of order I . On the contrary, for subresultant 

chain, small leading coeflicient does not cause large coeflicients. It can be seen from the 

above example. In fact, we have the following proposition. 

Proposition 4 

Let f and g be two multivariate polynomials in K[xl' ' ' " Xr] Suppose lv(f) Iv(g) = x 

and m = cdeg(f), cdeg(g) = n, 

f = fmxm+...+fo, (7) 
g = gnxn+...+go (8) 

If fm = O, gn ~ O then conslder 

f = fmlxm I + + fo 

We have 

Sj(f, g) = ~Sj(f, g)/bn' for j < min(m - 1, n). 

Similarly; if fm ~ O and gn = O, then consider g as ~ of degree n - I , we have 

Sj(f,~) = ~Sj(f, g)lam' forj < min(m, n - 1). 

5 ConcluSion 
Polynomial equations used to describe practical problems usually have a limited mean-

ingful accuracy. For a well-condition system, a small uncertainty in its data must not imply 

large uncertainties of its solutions. Gr6bner basis is not suitable for this purpose [16]. Our 

algorithm is more stable due to the special properties of subresultant chain. Meanwhile, 

we also notice that the algorithms based on symbolic elimination and flnding roots of a 
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single polynomial have to be implement in high-precision arithmetic. It has been shown 

by Wilkinson[17] that the problem of finding roots of a univariate polynomial may be 

ill-conditioned for high degree polynomials. However, high-precision arithmetic will slow 

down the overall computation signiflcantly. So we start with low accuracy and add the 

precision digits in the case the algorithms fail. More examples and analysis will appear in 

our forthcoming paper. 
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