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Abstract 
In this paper we focus on the applications of Quantifier Eliminations (QE) to Control 

Theory and we aim at actual applicability of QE methods to industrial size problems. This 

is also regarded as a typical case study about how we can resolve the unsolved important 

engineering 'problems. 

1 IntrOduction 

Quantifier elimination approach covers wide range of many mathematical and industrial 

problems as follows; 

~ Real implicitization of parametric algebraic surfaces. 

~ Automatic theorem proving and finding in real geometry. 

~ Geometric reasoning about three-dimensional objects, including parallel and central projec-
tions of object~, the reconstruction of objects from projections, Iighting and shading, equi-

distance surfaces. 

~ Rounding, blending and boundary representation of solids. 

~ Collision and motion planing in robotics. 

~ The Birkhoff interpolation problem. 

~ Sign behavior of univariate polynomials. 

e Implementation of guarded expressions for coping with degenerate cases in the evaluation of 

algebraic expressions. 

R Stability analysis for ODE's and PDE'S. 

c Control theory. 

~ Simulation and error diagnosis of technical networks. 

R Non-convex parametric linear, quadratic and hyperbolic optimization problems. 

~ Parametric scheduling. 

(See [ I [ l) 3 , 40 . In this article, we focus on control theory and first we briefly explain the 

historical outline about applications of QE to control theory. Then we, in particular, give 

attention to "robust control problems" which is one of main concerns of control community. 
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2 Quantlfier Ellmlnatlon 

Many mathematical and industrial problems can be translated to formulas consisting 

of polynomial equations, inequalities, quantiflers (V, l) and Boolean operators (A, V, -, ~> 

, etc). Such formulas construct sentences in the so-called first-order theory of real closed 

fields and are called first-order formulas. 

Let fi(X, U) ~ Q[X, U], i = 1, 2, . ･ ･ , t, where Q is the flelds of rational numbers, X = 

(xl' ' ' " x~) e R" a vector of quantified variables, and U = (ul' ' ' " u~) ~ R" a vector 

of unquantifled parameter variables. Let Fi = fi(X, U) #i O, where #i e {=, ~, >, ~}, 

for i = 1, ･ ･ ･ , s, Qj e {V, l}, and Xj a block of qj quantified variables for j = 1, ･ ･ ･ , s. In 

general, quantified formula (p is given 

･ ･ ･ Q'X.) G(F1' ' ' "F) 

where G(FI ' ' ' " Ft.) is a quantifier-free (qf) Boolean formula. 

QE procedure is an algorithm to compute equivalent qf formula for a given first-order 

formula. If all variables are quantified, i. e. m = O, QE procedure decides whether the 

given formula (1) is true or false. This problem is called deci3ion problem. When there are 

some unquantified variables U, QE procedure find a qf formula (p(U) describing the range 

of possible U where ~o(U) is true. If there is no such range QE outputs false. This problem 

is called general quantifier elimination problem. 

The history of the algorithms for QE begins with Tarski-Seidenberg decision procedure in 

1950's [36], [9]. But this is very intricate and far from feasible. In 1975, Collins presented a 

more efiicient general purpose QE algorithm based on Cylindrical Algebraic Decomposition 

(CAD) [12] . The algorithm has improved by Collins and Hong [13] and was implemented 

on SACLIB as "QEPCAD" by Hong. Weispfenning has presented other QE algorithm by 

using Comprehensive Gr6bner basis and the real root counting for multivariate polynomial 

systems [4l]. 

Weispfenning presented a more ofncient QE algorithm based on test terms [38] ,[29] ,[39] . 

Though there is some degree restriction of a quantifled variable in input formulas for 

test terms approach, this approach seems very practical. Implementation of the method 

was done on Reduce as "REDLOG" and Risa/Asir 1) by Sturm [34], [35]. Moreover, 

L.Gonz~lez-Vega et.al. also presented a special QE algorithm ba,sed on Sturm-Habicht 

sequence for partrcular mputs some "srgn defimte" conditrons [19] . We can say that the 

relevance of these special QE algorithms consists in its applicability to the actual important 

problems . 

1 ) Risa/A sir is a computer algebra system [32] developed at FuJ rtsu Labs Ltd 
FTP : end eavor. fujitsu . co . jp :/pub/isis/asir 
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3 Appllcatlon of QE In COntrol Theory 

Roughly speaking, control systems consists of a plant and a controller (compensator) 

and control problems are usually described as follows : "Des~gn the controller so that the 

controlled systems satisfy the desired properties (specifications) for a given plant. " If we 

consider all admissible noise, disturbance, and model uncertainties within the plants, the 

problems are called "Robust control problem" . Usually, a plant and a controller are given 

by rational functions in s (s : Laplace variable), say P(s), C(s) respectively, and C(s) has 

some control parameters, say pl ' ' ' " pt ' And specifications are given by using functions ~)i 

in P(s),C(s) and speciflc value 7i: ~i(P(s), C(s)) < ~/i' Then, control problem is described 

by 

~c ~E C(s pl' ' ' "pt) s.t. ~i(P(s), C(s)) < ~fi for a fixed plant P(c) 

and robust control problem is 

lc ~ C(s pl' ' ' "pt) s.t. ~i(P(s), C(s)) < ~/i for all plants p e P. 

where P is some family of plants. 

~{s 

control p<a, remeters 

C('s) ::;~i~ ;if.._t, 

~:* s 
1
 P(s) s2 + s-1 

Umcertaiuties : 

' nonlinearity 

' identification error 

para metric pertu rbation 

unmedeled dynamics 

(~) 

(b) 

(*) 

Figure 1: Robust Control Problems 

These are surely constraint solving problems and usually solved by numerical methods. 

QE is regarded as one of powerful methods of "constraint solving" and enables us to 

obtain not only one feasible solution but also the feasible (possible) range of solutions, 

deal with non-convex optimization and 

examine decision problems exactly. 
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These features (advantages) of QE is useful to resolve many unsolved problems in engi-

neering and industrial problems if we utilize numerical methods only. 

Many interesting control system design and analysis problems can be reduced to quan 

tifler elimination problems as shown in the followings (see Fig.2); 

1. In 1975, Anderson et.al. [8] 

Application of Tarski-Seidenberg decision theory ([36] ,[9]) to the solution of the static 

output feedback stabilization problem, 

2. In 1995, Dorato et.al.[15], in 1996 Abdallah et.al. [1] and in 1997 Doraot et.al.[16] 

Application of QE theory to a robust multi-objective design for linear systems (stability, 

robust stability, robust performance), 

3. In 1996, Jirstrand [25] 

Application of QE theory to linear systems (stabilization, feedback design) and nonlin-

ear systems (computation of stationary points and curve following in the state space). 

4. In 1997, Neubacher [3l] 

Application of QE theory to various stability problems and developing a specialized 

(more eificient) method which solves them either symbolically or numerically. 

5. In 1998, Anai [4] 

Solving Semidefinite Programming (SDP) problems which are one of the generic Linear 

Matrix Inequality (LMI) problems by QE, in particular, when we consider the real 

parametric uncertainties. 

6. In 1998, Ne~i6 [30], in 1999 Anai et.al [7] 

Checking the fundamental properties (observability, accessibility) of discrete-time poly-

nomial systems in finite time step by using QE and Gr6bner basis. 

7. In 1998, Yovine [28] 

Checking the observability of an important class of Hybrid Systems finite time step by 

using QE. 

8. In 1999, Anai & Hara [5] 

Efficient robust control analysis and synthesis method by a special QE using a Sturm-

Habicht sequence. 

The first attempt to reduce some control problems to QE problems by Anderson et 

al.[8] was made in 1970's. But at that time the algorithm of QE was very intricate and no 

appropriate software was available. However, recently some improved algorithms have been 
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Figure 2: History of QE and its applications to Control Theory 

developed (see [12],[13],[29], [39]) and implemented on computers (see [22],[34],[35]). By 

virtue of the considerable developments of both algorithms and software in QE methods, 

we explore the application of the QE theory to control problems of great practical interest. 

4 Robust Control System Design 

Multiobjective design and robust control synthesis are of great practical interest and 

main concerns in the control system design. However, in general, they are hard to solve 

and there are no analytical solutions. Recently, for such problems, the methods based on 

Quantifier Elimination (QE) were proposed by several researchers (see [16] [25] [31][4]). 

For example, in [16] it is shown that how certain robust multi-objective design problems 

can be reduced to QE problems and actually solved by using "QEPCAD" . QEPCAD is a 

symbolic computation package for QE based on the Cylindrical Algebraic Decomposition 

(CAD) algorithm presented by G.E.Collins [12]. In [25] it is shown that, in feedbacl{ 

design of linear time-invariant systems, robustness and several performance specifications 

(HOO norm constraint, gain and phase margins) on the close-loop system can also be solved 

as QE problems by using QEPCAD. 

In this article, we consider this kind of problem, in particular, focus on a robust con-

trol system design methods based on QE. QE based approach is really effective for such 

problems. However, unfortunately the size of the problems which can be solved by QE 

based approach is limited, because the computational complexity of the general QE algo-
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Figure 3: Scheme for solving Control Problems by QE 

rithm based on CAD algorithm is doubly exponential in the number of quantifled variables 

(including parameter variables) . 

In applications of QE to control problems so far, QE method is applied to the flrst-

order formulas derived from the control problems by a direct translation. For the efficient 

computation, it is important to reduce the target problems to a flrst-order formula as 

simple as possible. Furthermore, it is preferable to use special QE algorithm which is 

effective for a particular input. (See Fig. 3.) Hence, we should try to translate the control 

system design problem to a formula to which a special QE algorithm is applicable. As one 

of such formulas, there is a "Sign Definite Condition (SDC)" for robust control system 

design problems. 

A parameter space design method is known to be one of the useful tools to deal w'ith 

multi-objective design problems. A parameter space approach for robust control system de-

sign is developed by reducing important design specifications such as Hoo norm constraint, 

stability margins etc, which are frequently used as indices of the robustness, to sign def-

inite condition. See [2l][26][27]. The sign definite condition is a very simple (flrstorder) 

formula and suited for a QE procedure in view of computational efliciency. Moreover, In 

[2l] it is also proposed that SDC is checked by using Routh-Hurwitz like criterion proposed 

by D.Siljak for positive realness [37]. A parameter space approach based on SDC using 

D.Siljak's criterion is essentially equivalent to performing QE for the particular inputs 

Vx > o, f(x) > o (2) 
where f(x) is a polynomial with real coefiicients. So this method is regarded as a special 

QE algorithm for the particular input first-order formula (2) and more efficient than the 

general QE algorithm based on CAD algorithm. However in the method using D.Siljak's 

criterion, there remains some issues related to singular cases (see [18]) and specialization 

of parameters. 
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Figure 4: Relevance of our approach 

Hence, in this paper, we propose a parameter space approach for robust control system 

design based on a special QE method for SDC using Sturm-Habicht sequence. A combina-

torial algorithm to solve the particular QE problem Vx, f(x) > O based on Sturm-Habicht 

sequence is proposed by L.Gonzaiez-Vega et.al.[19]. We utilize their algorithm with some 

modification for a sign definite condition (2). The method proposed here is more efficient 

than the method using Routh-Hurwitz like criterion by D.Siljak and moreover has a good 

specialization property. 

5 Sign definite condition (SDC) 

In this paper we use R and Q for the fields of real numbers and rational numbers, 

respectivel y. 

Definition 1 

Let f(x) be a polynomial in x over R i.e. f(x) ~ R[x]. f(x) is sign defnite in the interval 

x ~ [a, b] suc'h that a < b ~e R), denoted by f(x) e No[a, b]; if f(x) preserves its sign in 

[a, b] , or does not cross zero in [a, b] . 

Note that in actual computation we consider the polynomial f (x) over Q. This restric-

tion is needed since we utilize a computer algebra system. In this paper we, in particular, 

consider the parametric case that is the coelficients of f(x) contain some real parameters, 

say, pl ' ' ' " ps ' Strictly speaking, this means f (x) is a polynomial over the rational function 

fields R(pl' ' ' "ps) i.e. f(x) ~ R(pl' ' ' "ps)[x]. 

The sign definition condition have emerged as the important problem in a parameter 

space approach for robust control system design. The speciflcations such as 
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R Hoo norm constraint) 

~ frequency restricted norm constraint, 

~ gain and phase margin constraint, and 

e pole location, 

that are frequently used a,s indices of robustness of feedback control systems, are reduced 

to sign definite condition (see [2l][26][27][37]). This fact makes it appealing to look into 

the SDC. 

5.1 Hoo norm constraint 

Among the speciflcations that can be reduced to SDC, here we show how Hoo norm 

constraint is transformed to SDC (see [2l]). First we have the following lemma: 

Lemma 2 
fIOJ A stable transfer function G(s) = C(sl - A)-1B + D with degree n satisLes 

llG(s)Iloo < nr 

if and only if the following conditions hold; 

i) DTD < 721, 

ii; Hamilton matrix 

O
 H CTC CTD X (nr I DTD) [ DTC If] AT 

has no eigenvalues on imaginary axis. 

Since the characteristic polynomials h of Hamilton matrices are even polynomials, i.e., 

n 
h(s ) Isl Hl = ~ hix2i 

i=0 

this condition is equivalent that h has no root in pure imaginary number and on the origin. 

Let s2 = x then the condition is that h(x) = ~]in=0 hixi has no negative real roots and no 

root on the origin. Finally we have the sign deflnite condition: 

f(x) = (-1)n h(x) > o Vx > O 

Moreover~ frequency restricted norm~ a generalization of Hoo norm, defined by 

l IGI I [evl ,~)2] = sup ~ (G(jc())) 

~)i<~)<~)2 
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can be also reduced to SDC: 

f(x) e No[-~)2' -(~~] 

where ~(G(j~))) is the maximal singular value of G. 

Example 1 
We consider a PI control system shown in Fig. I . The compensator is flxod as C(s) = k + m 

C(S) P(S) 
s- 1 

Figure 5: PI control system 

The complementary sensitivity function is given by 

T(s) = P(s)C(s) _ (3) ks + m 
1 + p(s)C(s) ~ s2 + (k - 1)s + m' 

Now we consider the speciLcations 

liT(s)Ii[･,,-] < 7t' (4) 
From the cha;ra;cteristic polynomial of the Hamilton matrix concerning with complementary 

sensitivity, the specihcation (4) is reduced to SDC: 

ft(x) = b2x2 + blx + bo ~ No[O, +oo] (5) 

wh ere 

b2 = 1, 
bl = ~2a)~ + 2m - (1 - k)2 + :7~ik'--72 

ao = ~)4 - (2m-(1-k)2 + ---..--7k2)~)~ +m2(1 .-..7 ) 

Hereafter, without loss of generality, it is enough to consider the problern 

f(x) e No[ O, +00 J, (6) 
because the condition f(x) e No[a, b] can be translated to the condition f(z) ~ No[O, +oo] 

by a bilinear transformation 

x-a z x-b' 
In [2l][26] [27] , it is shown that SDC can be readily checked by the following lemma based 

on the Routh-Hurwitz like criterion proposed by D.Siljak [37]: 
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Lemma 3 
f26J Let f(x) = ~t?=0 aix ~ R[x] f(x) Is slgn deflnlte In x c [O +oo] If and only If 

V[f(x)] = n 

holds, where V is the number ofsign changes of the most left column of the Modifled I~outh 

Array deLned by 

n lan-1 (-1)nan (~1) - al ao 
( 1) na ( 1)n l(n-1)an-1 ~al 

ao 

Remark 1 
We note that the frst two rows of Routh array above are formed by the coemcients of 

the polynomial f(-x) and f/(_x). And following rows in Routh array are formed by the 

coei~cients of the polynomials remainder sequence generated by Euclidean divisions. This, 

in general, implies tha;t construction of modifled I~outh array for f(x) 

The flrst two rows of Routh array above are formed by the coeficients of the polynomial 

f(-x) and f/(_x), and following rows in Routh array are formed by the coefficients of the 

polynomial remainder sequence generated by Euclidean divisions. Here we enumerate the 

issues when we use the Routh type criterion. 

R In the computation of the remainder sequence by using exact arithmetic, the size of the 

(rational) coefbcients of the polynomials appearing in the sequence grows exponentially 

in the degree of the polynomial. 

~ In the case where the coefiicients contain some parameters, there remains the problem 

concerning specialization of parameters; Since rational functions may appear in the 

sequence due to Euclidean division procedure, "division by O" may occur by substitution 

of parameters by real numbers. Then we have to recompute completely for the special 

values of the parameters. (see an example in S7). ' 

R Moreover, separately from the regular case, we have to take care the singular cases 

which occur when (i) an element of the first column become zero (not all the elements 

in the corresponding row are zero), (ii) all the elements in a row of the array vanish 

sirnultaneously. (See Remark 4 in [37] , or [18] for details.) 

6 Algorithm 
Now we present a robust control system design method based on a more eflicient special 

QE algorithm for SDC using Sturm-Habicht sequence. Usage of Sturm-Habicht sequence 
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o resolves the exponential growth of coefiicients, 

o clears away the specialization problem, 

o makes us free from the care for singular cases (i.e. we can deal with all the cases 

uniformly) , 

by virtue of subresultants instead of remainders by Euclidean divisions. Furthermore, 

Sturm-Habicht sequence has good worst-case computational cornplexity (See [20] for de-

tails.) 

6.1 Sturm-Habicht sequence computation 

Let f(x) e R[x] with degree n. Sturm-Habicht sequence of a polynomial f(x) is deflned 

as the subresultant sequence starting from f(x) and f'(x) modulo some specifled sign 

changes. (See Definition 10,11 in Appendix.) We have the following theorem [20]: 

Theorem 4 (Structure theorem) 

For every k e {O, 1,･ ･ ･ ,n - 1}, Iet Hk = SHk(f) and hk = stk(f) for short. And let 

h~ = 1. Then for every j e {1, ･ ･ ･ ,n - 1} such that hj+1 ~ O and deg(Hj) = r ~ j, we 

have 

1 Ifr < j - I then Hj-1 = ' ' H.1 = O, 

j-' 2 Ifr < 3 then hj+1H,. = 63 "LC(H )j "H3' 

3. hj-'+2H. 1 5j-'+2Prem(Hj+1'Hj)' 
j+1 -

where LC(A) stands for the leading coeificient of a polynomial A and Prem(A, B) is a 

remainder obtained by division of LC(1~)"-~+1A by B for polynomials A, B with degree 

n, m, respectively 

Sturm-Habicht sequence of a polynomial f is constructed according this theorem and then 

we need O(n2) algebraic operations in Q(pl' ' ' ' , p*). 

6.2 Checking SDC 

Let the Sturm-Habicht sequence of f be {SHj(f)} j=0,-' ~ {90 , 9*} Then for 

a e R U {-oo, +00} we deflne WsH(f;a) as the number of sign variations in the list 

{90(a),' ' ' ,g.(a)}. And let WsH(f;ct,p) = WsH(f;a) - WsH(f;p). For every j, the 

principal j-th Sturm-Habicht coefficient is defined as the coefficient of degree j of SHj (f). 

We denote the principal j-th SturmHabicht coeificient by stj (f) and the constant term of 

SHj(f) by ctj(f). 



116 Procedings of NLA99 (2000) 

The sign definiteness of f in the interval [O, +oo] is equivalent to that f has no real 

roots in [O, +oo]. Hence, an equivalent condition to the sign definition condition in [O, +00] 

is obtained according to the following proposition ( cf. Theorem 12 in Appendix) : 

Proposition 5 

A polynomial f(x) is sign deflnite in [O, +oo] if and only if WsH(f; O, +00) = O. 

By definitions we have 

WsH(f; O, +00) = WsH(f; O) - WsH(f; +oo) 

= V({ctn(f), . . . , cto(f)}) -V({stn(f), . . . , st (f)}) (*) 

The last formula (*) gives us how we count the number WsH(f;O,+oo) concretely. 

Since cto(f) = sto(f), we need only 2(n + 1) - I = 2n + I sign evaluations. 

If we have Sturm-Habicht sequence for f, we construct the (quantifier-free) equivalent 

condition for SDC of f by the following procedure. The obtained conditions are of the 

form of the union of semi-algebraic sets. 

1. consider all the 32n+1 (at most) possible sign conditions over the polynomials 

cti(f)'s and sti (f)'s, 

2. choose all sign conditions which satisfy 

WsH(f; O) - WsH(f; +oo) = O 

according to (*), 

3. construct semi-algebraic sets generated by 

cti(f)'s and sti(f)'s 

for each selected sign conditions and combine them as a union. 

Remark 2 
Once we execute this algorithm for the generic polynomial with degree n 

Fn(x) cnxn + cn lxn-1 + . . . + clx + co, 

the result can be used for any other polynomials with degree n by substituting the coefii-

cients ci by those of an input polynomial. (In the case of F2 , see a example in S 7.) So, the 

results for the generic cases should be stored in a database (or table) to be called upon, 

whenever needed. This greatly improves the total emciency of our methods. 
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6 .3 Sunpliflcation 

The result through above procedure obviously tends to be large and complicated, and 

hence we should reduce the result as simple as possible. Some possible simpliflcations are 

as follows: 

o Manual simpliflcations by deleting some sign conditions trivially false (i.e. empty) or 

decreasing the number of unions by using the well-known rules; 

< U >~~~ < U =~~, > U =~~ 

are indicated in [19]. 

e We, fortunately, have some sophisticated softwares for automatic formula simpliflcation 

which are Implemented on a QE package "REDLOG" 3) and another QE package on a 

computer algebra system "Risa/Asrr" 5) 

7 Example 
Here we demonstrate our method by applying it two examples. A11 the computations 

were done by using a computer algebra system Risa/Asir and the results were all obtained 

immediately on a PC with Pentium 200MHZ CPU. 

Example 2 (sensitivity analysis of a PI control system) 

We consider a PI control system shown in Fig.5. The structure of the compensator is flxed 

as C(s) k + ~･ The sensitivity and complementary sensitivity functions are given by 

1 s2 - s 
1 + p(s)C(s) s2 + (k - 1)s + m 

T(s) = P(s)C(s) _ hs + m (8) 
1 + p(s)O(s) ~ s2 + (h - 1)s + m 

The goal is to determine the possible range of the parameters k and m which satisfy the 

s peciLcations 

llS(s)ll[o,~.] < n/$, (9) 
llT(s)ll[~,,oo] < 7t, (10) 

where llGll[~)1,~)2] is a norm de~ned for a restricted frequency domain [~)1' ~)2] i.e. 

l IGll[~i,"2] = sup ~(G(ja))) 
evl <~) <~)2 

3)REDLOG is developed at University of Passau (Germany) on a computer algebra system REDUCE, see 

[14] . It is based on the virtual substitution method of parametric test points proposed by V. Weispfenning 
[38] . 

5)Risa/Asir is developed at Fujitsu labs, see [32] , anonymous -ftp via: 
endeavor .fuj itsu . co .jp : /pub/isis/asir. Virtual substitution method are implemented on Risa/Asir. 
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if we denote the maximal singular value of G by ~(G(j~))). As shown in f27J, the both 

specifcations (9) and (4) are reduced to the sign deLnite conditions. The speciflcation (9j 

is equivalent to the following SDC: 

fs(x) = a2x + alx+a ~ No[O,+00] (11) 

where 
a2 = -~)4 - (2ma + (1 - ka)2)a)2 + m2a, 

al = (2ma + (1-ka)2)~)~ - 2m2ct, 

ao = m2c~ 

with a = 7~ . And the speci~cation (4) is equivalent to the following 
(1-7~) 

ft(x) = b2x2 + blx + bo ~ No[O,+oo] (12) 

wh ere 

b2 = 1, 
bl = -2~)~ + 2m - (1-k)2 + IT~~~~k2 

ao - (2m - (1 - k)2 + :~/'-'~t2)~)~ + m2(1 - 1~7 ' 1
)
 

= ~)t 

Consequently, what we do to obtain the possible range of k, m such that (11),(5) is deter-

mining the SDC for the generic polynomial with degree 2: 

F2(x) = c2x2 + clx + co ~ No[O, +oo] 

Sturm-Habicht sequence {SIlj(F2)}j=2,1,0 of F2(x) consists of 

SH2(F2) = c2x2 + clx+co, 

SH1(F2) = 2c2x + cl' 

SHo(F2) = c2c~ - 4coc~-

Then immediately we have 

~ 4co c~ ) } {cti}i=2,1,0 = {co,cl'(c2c -

{sti}i=2,1,0 - 4coc~) } = {c2,2c2,(c2cl 

Hence we check whether the number WsH(F2; O, +oo) is equal to O or not according to the 

formula (*) for 34 sign conditions {-, O; +}4 over the sequence 

{co cl c2 (c2c~ - 4coc~)}-

Flnally In the case of (1 1; we reaches the results; fs (x) e No[O, +oo] if and only if 

[ ao > O A al > O A a2 > o A (a2a~ - 4aoa~) > o J U 

[ ao > o A al > o A a2 > O A (a2a~ - 4aoa~) < O J U 
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U [ ao < O A al < O A a2 < O A (a2a~ - 4aoa2) < O J. 

If we substitute a)s ' nrs With the appropriate va;1ues, then this result gives the possib]e 

range of the parameters k, m as a uniou of the semi-algebraic sets. The possible range is 

visualized easily by plotting the semi-algebraic sets on k - m plane. 

In the case of (5), since c2 = b2 = I we check whether the number WsH(ft; O, +oo) = O 

or not for 33 sign conditions ovcr the sequence {co, cl , (C~ - 4co)}. 

Remark 3 
For a certain class of plants with structured uncertainties, robust performance problem can 

be reduced to SDC by utilizing Kharitonov's theorem (see [21Jf26J) and hence is solved by 

the our method. For example, in [21Jf26J, it is shown that for the same PI control system 

as in Fig.5 with a plant with structured uncertainties, norm constraints can be decomposed 

to a conjunction of SDCS a;nd the sta;bility ma;rgins constra;int is satisfled if and only if the 

the Kharitonov ,9ystems associated to the open loop system satisfy the constraints. 

Remark 4 
Note that no rational polynomials appears in Sturm-Habicht sequence. On the other ha;nd, 

modiLed Routh array of F2 (x) is given as follows: 

C2 C1 Co 
2cl ~Co 

-coc2+2c2 
2 c ~ Co 

c2 c2 -6c2 co 

c2c0+2ci 

co 

In the most left column; rational functlons appear due to Euclldea;n dlvlslon Thls leads to 

bad specialization property i.e. icdivision by O" by specialization. For example, if cl = O, 

the denominator of ~co~2c+2c vanishes and specialization is impossible. 

Example 3 (a generic quartic polynomial F4)) 

This is the flrst non-trivial case. 

F4 = c4x4 + c3x3 + c2x + clx + co 

Determine the SDC for the generic polynomial with degree 4. Sturm-Habicht sequence 
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{SHj(F4)}j=4 3 2 1 o ofF2(x) are glven as 
,,,, 

= c4x4 + c3x3 + c2x2 + clx+co, SH4 (F4 ) 

= 4c4x3 + 3c3x2 + 2c2x+cl' SH3 (F4 ) 

SH2(F4) = (-8c~c2 + 3c4c~)x2 + (-12c~cl + 2c4c3c2)x + c4c3cl ~ 16coc~, 

4c2 + 2c4c~c2 + 32coc~c2 12coc~c~)x SH1(F4) = (-36c~c~ + (28c~c3c2 - 6c4c~)cl ~ 8c2 3 2 -
= +3c~c3c~ + (-4c~c~ + c4c~c2 - 48coc~)cl + 32coc~c3c2 - 9coc4c~, 

SHo(F4) = -27c~c~ + (18c~c3c2 - 4c4c~)c~ + (-4c~c~ + c4c~c~ + 144coc~c2 

-6coc~c~)c~ + (-80coc~c3c~ + 18coc4c~c2 - 192c~c~c3)cl 

+16coc~c~ - 4coc4c~c~ - 128c~c3c2 + 144c2c2c~c2 - 27c~c4c~ + 256c3c4 
04 04 

Then we have 

{sti}i=4,3,2,1,0 = {c4,4c4, -8c4c2 + 3c4c3' 

22 -36c~c~ + (28c~c3c2 - 6c4c~)ci - 8c~c~ + 2c4c~c~ + 32coc~c2 - 12coc4c3' 

SHo(F4)} 
{cti}i=4,3,2,i,o = {co,cl'c4c3cl - 16coc~ 

3c~c3c~ + (-4c~c~ + c4c2c2 - 48coc~)cl + 32coc~c3c2 - 9coc4c~, SHo(F4)} 

Hence we consider the set of all sign conditions {c7) ' ' ' ) co} (ci ~ {-, O, +}) for {S7, 

So} which satisfy that the number WsH(F4; O, +00) is equal to O. Here Si 's are given by 

S7 = c4, 
= c4(3c~ - 8c2c4), S6 = 3c~c4 - 8c2c~ 

S5 = -36c~c~ + (28c2c3c~ - 6cSc4)cl + 32coc2c~ + (-12coc~ - 8c~)c~ + 2c~c~c4, 

2c4(-18c~c~ + (14c2c3c4 - 3c~)cl + 16coc2c~ + (-6coc~ - 4c~)c4 + c~c~) 

S4 SHO (F4 ) = = c4 ' S/o 
S3 = co, 
S2 = cl' 
S1 = c3c4cl ~ 16coc~ = c4(c3cl ~ 16coc4), 

So = 3c3c~c~ + (-48coc~ - 4c~c~ + c2c~c4)cl + 32coc2c3c~ - 9coc~c4, 

c4(3c3c4c~ + (-48coc~ - 4c~c4 + c2c~)cl + 32coc2c3c4 - 9coc~). 

wh ere 

/ = _27c~ci + (18c2c3c4 - 4c~)c~ + (144coc2c~ + (-6coc~ - 4c~)c4 + c~c~)c~+ S
o
 

(-192c~c3c~ - 80coc~c3c4 + 18coc2c~)cl + 256c~c~ - 128c2c2c2+ 
024 

(144c~c2c~ + 16coc~)c4 - 27c~c~ - 4coc~c~ 

Note that c3 ~ {+, -} since here we assume that co ~ O. Moreover from the algebralc 

properties of Sturm-Habicht sequence it it impossible that more than two consecutive zeros 

appear in the sequence. This also implies that c4 ~ O. Then we have the necessary and 

suificient conditions, the union of the L0110wing 561 semialgebraic sets, such that F4 satis~es 

sign definite condition : 
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[S7>0 A S6>0 A S5>0 A S4>0 A S3>0 A S2>0 A S1>0 A S0>0]n 
[S7>0 A S6<0 A S5>0 A S4>0 A S3>0 A S2>0 A S1<0 A S0>0]n 

[S7<0 A S6<0 A S5<0 A S4<0 A S3<0 A S2<0 A S1<0 A S0<0]. 

Furthermore, this formula can be simplifled by deleting trivially empty semialgebraic 

sets hased on the followings: 

~ S1 =0, S2 = O ~> cl = O,co = O => Thisis contrary toco ~ O. 

- ~~~3c = _~l6c4C1 ~ c~)2 ~ O R S6 O => c2- ~> S5 8c4 

e S O =~> c3 - =~ So = ~c (c2c 96c c4)2 => So,S2 have different sign _ 16c c 
cl 

Finally we have the union of the 477 semialgebraic sets, such that F4 satisfles the sign 

deflnite condition (Total computation time on Risa/Asir is 65.26 seconds). 

8 Computational CompleXity 
Our approach consists of two parts: reduction to SDC and special QE computation. The 

dominant part of our approach is QE part. In particular, the construction of Sturm-Habicht 

sequence occupies the total computation time. Here we show some experimental results 

to demonstrate the tractability of our proposed method for practical control problems. 

A11 the computations were done by using a computer algebra system Risa/Asir and were 

executed on a PC with Pentium 200MHZ CPU. 

8.1 Generic polynomials 

By using QEPCAD9) , we can immediately solve the SDC for generic polynomials 

F~ = ~,~=0 cix', i.e., Vx ( x > O ~> F~ > O ) up to n = 3. However we could not solve the 

QE problems by QEPCAD for n ~ 4 due to the lack of memory. 

On the other hand, we can solve it for generic polynomials up to n = 8 in our method 

as shown in Table 1. Table I shows the timing data to compute Sturm-Habicht sequence 

for generic polynomials F~ (x). Once we compute Sturm-Habicht sequence of F~ (x), the 

result can be used for another polynomials with degree n by substituting the coeflicients 

ci by those of an input polynomial. The results for the generic cases should be stored in 

a database to be called upon, whenever needed. This greatly improves the total efficiency. 

In the case of polynomials with many parameters it seems to be better that we compute 

Sturm-Habicht sequence in this way. 

9)These computation by QEPCAD are executed on sun Ultra sparc I Modcl 140. 
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n time (sec) n time (sec) 

2
 

0.002 6
 

1.533 

3
 

0.006 7
 

34.120 

4
 

0.028 8
 

> 3600 
5
 

0.121 9
 

Table 1: Sturm-Habicht sequence computation for generic polynomials 

8.2 PID-controller synthesis 

Table 2 shows the timing data to compute Sturm-Habicht sequence of the polynomials 
ft(z), for which we check the SDC in analyzing sensitivity of PI control systems with com-

'pensators C(s) = k+ ~ and PID control systems with compensators C(s) = h+ ~ + 1+d~~~l' 

PI and PID control systems have same structure as Fig.1 and the compensator has 2 and 3 
design parameters, respectively. As a target specification, here we consider the frequency 
restricted norm constraint for complementary sensitivity function : I IT(s)jl[20,+-] < ~ 10. 

This is equivalent to a SDC ft(z) > O, Vz > o. The numerators of the plants p(s) are fixed 

as I and the denominators for each degree are given randomly. Noted that the computation 
of ft (z) is achieved immediately. 

Table 2: Sturm-Habicht sequence computation for PI and PID control systems 

As a practical example, we quote the flexible beam example in [17] . The plant transfer 

function is given by 

-6.4750s2 + 4.0302s + 175.7700 
P(s) = s(5s3 + 3.5682s2 + 139.502ls + 0.0929) ' 

We consider the PID control system for this plant with a same controller as above and 

the same frequency restricted norm constraint for complementary sensitivity I IT(s) I I[20,+-i < 

-10. Then ft(z) is obtained in 0.55 sec and Sturm-Habicht for ft(z) is computed in 115.50 

sec. 
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8.3 Combinatorial part 

There are several possibilities to improve the combinatorial part. We can prune the 

impossible sign combinations before counting the number of sign changes owing to the 

followings; 

(a) In the case of positive sign definite condition, we have to add one more condition such 

that "(head coefficrent of f) > O" This Implies that st~ > O and st~_1 > O. Hence all 

possible sign conditions are reduced to 32(~~1). 

(b) I~om the algebraic properties of Sturm-Habicht sequence, it it impossible that more 

than two consecutive zeros appear in the sequence. 

<c) When we determine the design parameters, we usually do not choose the parameter 

values on the boundaries of possible ranges of parameters. This implies that for actual 

design we do not have to check the sign combinations including O (except identically O 

case). Hence we should consider 22~ sign combinations. 

For example, in the case of generic polynomials with degree 4 there are totally 38 = 6561 

sign combinations to verify the number of sign changes. After pruning impossible sign 

combinations by <a), <b), and checking the number of sign changes, we have 561 feasible 

sign combinations. Furthermore, this formula can be simplified by deleting trivially empty 

semialgebraic sets manually. Finally we have 477 feasible sign combinations. For practical 

control problems, the number of possible sign combinations can become rather small as in 

S10. For g(~)) in S10, whose degree is 4, finally we have only one sign combination. 

8 . 4 S ummary 

Here we summarize the computational complexity of our approach based on the com-

putational results above. 

Tractability : Our approach is practically applicable to the systems up to order 15 for 

the case of the number of design parameters in fixed-structure controller is 2 (e.g. PI 

control systems), and to the systems up to order 10 for the case of the number of design 

parameters the is 3 (e.g. PID control systems) . In the case that controller has more than 

3 parameters, our approach is practically applicable to the systems up to order 7 by using 

stored general forms. 

Applicability : Our approach outputs a disjoint union 7~ of semi-algebraic sets Ri which 

describes the possible range of design parameters O; J~ = Ui~=1 Ri. And the obtained 

results are applicable to 
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R visualization of possible region of design parameters by a projection to 2 or 3 dimensional 

space , 

R pre-processing (reduction to sub-problems) for numerical optimization such that 

min F(e) = min ~ min F(O) 
ee:7~ i LeeRi 

where F(O) is an objective function in O, 

~ reduction of the VC-dimension for randomized algorithm 

9 MeChanical SyStem deSign for pOSitiVe-realneSS 

Here we consider applying our method to mechanical system design (for positive-

realness) to examine the tractability of our approach. As shown in [23] it is appropriate 

to design a mechanical system such that the transfer function from the force input to the 

velocity output is "positive real (PR) In this sectron we consider a class of mechanrcal ,
'
 
.
 

systems and show the methods to obtain possible ranges of design parameters for which a 

given system satisfles the positive real condition. 

First we define the positive-real transfer functions as follows. 

Definition 6 

A square transfer function G(s) is called positive real (PR) if 

G(s) + G(s)+ ;~ O, Vl~e(s) ~ O (13) 

bolds where G(s)' denotes its complex conjugate transpose. 

For a scalar transfer function, positive real function is defined as follows: 

Definition 7 

A real function 

q(s) 

G(s) = p(s) (14) 
with relatively prime polynomia;Is p(s) and q(s) is called (strictly) positive real if and only 
i
f
 

(i) the polynomial 

f(s) = p(s) + q(s) (15) 
is Hurwitz; 

(ii) and 

Re[G(icv)] > O (16) 
for all real ~) . 
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Here we establish the positive real property of a given transfer function according to 

Definition 7. The condition (i) is checked by using Lienard-Chipart criterion: 

Theorem 8 (Lienard-Chipart criterion) 

Let f(s) = aosn + alsn-1 + . . . + an-Is + an'ao > o be a given polynomial with real 

coei~icients. Deflne the Hurwitz determinant of order I < i < n as 

al a3 a5 
ao a2 a4 
O al a3 

Di - O ao a2 a4 ak = O for h > n 

ai 

Then f is a Hurwitz polynomial if and only if 

a~ > O,a~_1 > O,a~_4 > O,･･･ ; D > O D > O,D6 >0,･･-

As for the condition (ii), we first convert (ii) to the following equivalent condition. Re[G(i~))] > 

O for all real ~) if and only if 

g(cv) E p.(~))q.(cv) + qi(~))pi(~)) > o for all real cv > o, (iii) 

where G s~ ~~~l , p(ic~) = p.(~)) + ipi(ev) and q(i~)) = q*(~)) + iqi(a)). This type of ( ) = p(*) 

conditions is called sign deflnite condition (SDC). The SDC is verified efEciently by using 

an algebraic method, a special quantifier elimination using Sturm-Habicht sequence. 

As pointed out in [24] it also seems reasonable to design the mechanical system to 

achieve the PR property up to the desired control band width. We define the finite fre 

quency positive-real transfer functions as follows. 

Definition 9 

A square transfer function G(s) is called positive real (PR) up to the frequency ~)o if it has 

no poles in the open right halfplane and satisfies 

G(j~)) + G(jev)' ~ O, Vl~)1 ~ ~)o (17) 

When ~) = oo, in particular, G(s) is PR. 

The frequency restricted positive real condition is converted to a frequency restricted Hoo 

norm condition via a bilinear transformation: 

G(ja)) + G(ja))' > o, V~)1 < cv < ~)2 

~~ IIHll[･,,~2] < I (18) 
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where H(s) = (G - I)(G + I)-1. Frequency restricted norm constraints are reduced to 

SDC (see [27]). Hence this is also checked by a special quantifler elimination using Sturm-

Habicht sequence. 

10 Integrated deSign exampleS 

Here we show some computational results applying our method to practical integrated 

design examples, which demonstrate the tractability of our approach, We note that the 

first example can not be reduced to a convex optimization problem, and hence it is difficult 

to obtain the exact solution by numerical optimization. 

We consider a swing-arm positioning mechanism for small disc storage devices shown in 

Fig.2 taken from [23] . It works basically as follows: when we apply a force input u to the 
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Figure 6: Geometry of the swing-arm 

point B, the swing-arm rotates around the pivot A with i the x - y plane, and the sensing 

point C moves to a desired position. We design the shape of the swing-arm such that the 

resulting transfer function from u to ~ is positive real (PR). We employ the equation of 

motion, Iinearized around the equilibrium state, given in [23] by 

Mq + Dq + Kq bu y = cq 

where 

xg m O O q= M= O m O , yg ' 

nf O O J 
D = dS, K = kS 
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1 Igsin(p) O
 

S = O -lgcos(p) , 1
 

lgsin(p) - I~ lgcos( p) 

sir2i(a) 

b = cos(a) , 
lu ~ Igcos(a + p) 

c = O I Iy - IgCOs(p) . 

and (xg ' yg ) [m] is the displacements of the center of gravity and ~/ [radj is the angle between 

the x-axis and the line AC, measured counter clockwise. 

In this equation, the flexibility of the pivot is modeled by two linear springs in the x 

and the y directions with small damping and assumed that the stiffness and the damping 

coeflicients are the same for both directions. The values of the other swing-arm parameters 

are taken from [33] and shown in Table 3. 

mass of swing-arm 

moment of inertia 
actuator point (angle) 

actuator point (1ength) 

sensor point (length) 

c.g. Iocation (angle) 

c.g. Iocation (length) 

stiffness of pivot 

damping of pivot 

m J
 

a l
~
 l
 
y
 p
 l
g
 k
 
d
 

0.033 
1.7 x 10~5 

10 

0.02 
1.5 x l06 

4.4 

kg 
kg m2 

d eg 

m 
m 

d eg 

m 
N/m 
Ns/m 

Table 3: Swing-arm parameters 

10.1 Simultaneous design of an actuator point B and a sensing 
point C (nonlinear case): 

The goal is to obtain simultaneously the region of actuator point B and a sensing point 

C yielding PR transfer functions. Thus, oi, Iu and 12/ are the design parameters. It is noted 

that the problem can not be reduced to a convex problem, and hence it is very diflicult 

to flnd the exact region by numerical optimization. Instead, our approach can provide the 

exact region as will shown below. We define the new design parameter vector 

= J [ : e 6 sin(O!)/l 
O cos (c~) / l 

and the new control input v = Iuu Then we have 

bu = (bl + b2e)v 
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where 

bl = O , = O 1 
b
2
 

1 Igsin(p) = Igcos(p) 
Note that the transfer function T~u(s) from u to ~ is PR if and only if the transfer function 

T~v(s) from v to ~ is so. Hence we try to compute the region of a for which T~~(s) is PR, 

and then to find the corresponding region in the original parameters. 

A state space realization for T~~ (s) is given by 

-"~' "-,-"""=-･･･': 
I
 

-M-1K -M-1D M-1(bl +b2a) 

Then we have T~~(s) = Q(s)/P(s) where 

Q(s) = (((3781008ly - 1163605212/15625)61 + (-21448944ly + 
- 2859859200)s3 + 15366537516/15625)02 + 1089000000ly 

(171864000000000lyel + (-974952000000000ly + 45300000000000)g2 + 
99019360000000000ly - 974952000000000)s2 + 13200000000000000000lys + 
2250000000000000000000000l y ) , 

P(s) = 1851385 + 6853440s4 + 2336984672000s + 398640000000000s2 + 
67950000000000000000s. 

Then f(s) = P(s) + Q(s) is Hurwitz if and only if 

[D4 >0 A D2 >0 A A4 >0 A A >0 AA >0] (19) 

(see Appendix C for f(s), D4, D2, A4, A2 and Ao). 

Next we compute Sturm-Habicht sequence of g(~)) and we have 

{cti}i=4,3,2,1,0 = {S1,0, S ,O,S } 

{sti}i=4,3,2,1,0 = {S3, S3, S2, S4, S1 } 

(see Appendix C for g(~)) and Si's). Additionally, we need the condition that the head 

coefiicient of g(cJ) is positive i.e. S3 > O to ensure the positivity of g(cJ). Finally, we have 

that the condition (ii) holds if and only if 

[SI >0 A S2 <0 A S3 >0 A S4 >0] U 

[SI > O A S2 < O A S3 > O A S4 <0] U (20) 
[SI >0 A S2 >0 A S3 > O A S4 <0] 

Consequently, by superposing two possible regions (19) and (20) of design parameters el, 

e2 and ly in the parameter space, we have the feasible region of the design parameters for 

positive-realness. 



Josai Mathematical Monographs Vol. 2 (2000) 1 29 

(
 

10.2 Design of an actuator point B Iinear case): 

Here we fix the sensing point and let ly = 0.06[mj . Now we obtain the region of actuator 

point B yielding PR transfer functions. Thus, a and l~ are the design parameters. In this 

case, f(s) is Hurwitz if and only if 

[D~ > O A D~ > O A A~ > o A A~ > O] (21) 

(see Appendix C for D~, D~, A~, A~, and A~). 

As for the condition (ii), after removing the sign conditions which is obviously empty, 

we have necessary and sufficient conditions 

[S >0 A S >0 A S~>0 A S~<0] (22) 
(see Appendix C for S!'s). Consequently, by superposing two possible regions (21) and 

(22) of design parameters el and e2 in the parameter space, we have the feasible region of 

el and e2 for positive-realness 

[D~ > o A D~ > o A A~ > o A A~ > o]U 
[Si > O A S~ > o A S~ > O A S~ < O] (23) 

which is shown in Fig. 8 as a shaded cell. This region is transformed to the region in a 

and l~ and described in the x - y plane as shown in Fig. 9. Integer lattice points in (23) 

are described in Fig. 9 as dots. And the region (23) corresponds to that below the dotted 

line. ~A11 the conrputations needed here has been done in about one minute.) 

1 1 ConcluSlon 

In this paper, we explain roughly about current situation of the application of QE to 

control theory and, in order to aim at pracitical applicability, have proposed a method of 

robust control design based on SDC by a special QE method using Sturm-Habicht sequence. 

Our method, in particular, effective practically for multi-objective control design using low 

degree fixed-structure controller. 

Our approach is more efficient than the method using RouthHurwitz like criterion 

and has a good specialization property. Moreover, compared with the matrix inequality 

approach based on numerical optimizations, our approach based on a special QE has several 

advantages such as applicability to parametric and nonlinear cases, possibility to obtain 

non=conservative results and less complexity for multi-objective design. 

Moreover we have demonstrated our method by applying it to sorne examples and 

showed by computational experiments on a computer algebra system that our approach is 

practically appricable one. 
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Figure 7: Admissible parameter space for PR 
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Appendix 

A. Quantifier elimination : QE deals with the first-order formulas, which consists 

of polynomial equations, inequalities, quantiflers (V, l) and Boolean operators (A, V, -, ~> 
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, etc) . QE procedure is an algorithm to compute equivalent quantifler-free formula for a 

given first-order formula over the real closed fie Id. For example, for the input 

Vx(x2 + bx + c > o), 

QE outputs the equivalent quantifier-free formula; b2 - 4c < O. See [1l] for the details 

about QE. 

B. Sturm-Habicht sequence : We briefly show the definition of Sturm-Habicht 

sequence and the relation between Sturm-Habicht sequence and the number of real roots 

(see [20] for derails). 

Definition lO 

f20J Let P, Q be polynomials in R[x] 

akx Q ~ k =~ k 
k=0 k=0 

where n and m be non-negative integers and let ~ = min(n,m). For i = O, 1, ~ we 

deLne the subresultant associated to P, n, Q and m of index i as follows: 

Sres (P n Q,m) = i M3~(p, Q)x 

j=0 

where M3~(P, Q) is the determinant of the matrix composed by the columns 1, 2, . . . , n + 

m - 2i - I and n + m - i - j in the matrix si(P, n, Q, m): 

n+m-i 

Si -

m-i 

n-i 

Definition 11 

f20J Let P, Q be polynomials in R[x] with degrees n,m, respectively Here n,m be non-
is(k+1) 

negative integers. Let v = n + m - I and 6h = (-1) 2 for every integer k. The 

Sturm-Habicht sequence associated to P and Q is de~ned as the list of the polynomials 

{SHj(P, Q)}j=0,...,v+1 given by 

R SHv+1(P, Q) = P, 
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$ SHv(P.Q) = P/Q, and 

R SHj(P, Q) = 6v-jSresj(P,p, P!Q, v) 

for every j = O, 1, ' ' ' ,v - I where P/ = ~･ When Q = 1, {SHj(P, 1)}j=0,...,v+1 is called 

the Sturm-Habicht sequence of P. 

Sturm-Habicht sequence can be used for real root counting as is Sturm sequence ac-

cording to the following theorem [20] : 

Theorem 12 
Let P(x) e R[x] a;nd a,p e R U {-oo, +00} s.t. oi < p. Then WsH(P a p) glves a 

number of real roots of P in [a, p] . 

C. Results in Swing-arm example : 

f(s) = 289265625s5 + ((590782500001~/ ~ 1163605212)61 + (-335139750000ly + 
15366537516)g2 + 17015625000000lv ~ 228054750000)s4 + (787710000000012/al + 

(-44685300000000ly + 2076250000000)02 + 4537500000000000ly + 
36470700200000000)s3 + (26853750000000000001~/ O1 + (-15233625000000000000ly + 
707812500000000000)02 + 154717750000000000000012/ ~ 9004875000000000000)s2 + 

(206250000000000000000000ly + 1061718750000000000000000)s + 
35156250000000000000000000000ly , 

g(~)) = ((367983649687501~/ _ 208750171781250)w4 + - 1132769673882)61 + (-2087501717812501~/ + 
9499435599951)02 + 463250390625000012/ 

65889145129500000000)el ((-33446517130950000000001*J + +
 

- 869957754281000000000)02 -(18973577229585000000000l y 
18973577229585000000000)w2 421054363125000000000000ly +

 + 
76029679687500000000000000000lyei + (-431302007812500000000000000000ly + 
20039941406250000000000000000)02 + 9571289062500000000000000000000ly -
431302007812500000000000000000. 

il 



！36 〃0Cε伽g80ヅW〃99 （2000）

1）・二（12118山971273000000什！24δ227926435835569921壽2蛎730夏932362舳961；）θ子斗

　　　　　　（（一2062312788蝸！7000000θ・　斗　　3492969766056δ4000◎000）弓

　　　　　　（一211099660756876螂δ168θ・　十　15867003689606143388160）1婁

　　　　　　（王2δ9742402370662五2684θ・　　十　　互363876330191δ31互螂12）1妻

　　　　　　（山129δ39377107螂5900θ2　　＋　　3夏4843棚7790387δ64804）～

　　　　　　鮒醐1獅1脇、十、（燃蛾淵淵鵬

　　　　　　燃欄1駕鵬1淋、（｛鵬；；1欄11鴛1職
　　　　　　932王626228！9095泌2768θ・　十　　322623螂656956820937920）1婁

　　　　　　（33王066391伽ヱ9712400θ；　　　　夏76557565螂16011δ26幽θ・
　　　　　　蝋012828865583769939408）1ザ王707202725m06625θ；十7939！2099472751362796θ・
　　　　　　一王810433744829王872915984）θ1　＋　（’2212228170384王！10◎0000θ婁　十

　　　　　　五12406510175650蝸0000000θ書　　　　王33821302王7500000000◎00θ・　　斗
　　　　　　452955937δ000000000000岬姜　十　（一22468884233376565299744θ婁　十
　　　　　　49！0445709793311455398如θ婁　　十　　5475947729903640000000θ・　　十
　　　　　　40664705m07500000000000）1婁　十　（3146609092838633811972θ婁

　　　　　　9628920醐76舳76舳312θ婁　　十　　2捌5512539904舳4725440θ・　　十
　　　　　　1五392003692328013260000000）弓　十　（一14599600棚3369089100θ婁　斗

　　　　　　23808122956829γ蜘1596θ婁　　　　43閉829208δ姐嚇764014物　　十
　　　　　　10157235王04237蜥024000000）～　　十　　22螂27089797573125θ婁　　十
　　　　　　429249890m93256861θ婁　　十　　王9906686424242796631112θ・
　　　　　　3772163〕一423833878950000◎

D・＝（6409990125000弓　一　1262趾1棚02W芋　十　（（一7272δ325750000θ・　十
　　　　　　5538δ85937δO0000）1婁斗（40730王6765972θ・十18881022006000000）1ザ3327734602δθ・一

　　　　　　δ84538δ23939脳）θ・十（2062785！612δ000θ婁一3王4193δ1562δOOOOOθ・十
　　　　　　1063476562500000000）1姜斗（’19042592903δ98θ婁一10607399780！750000θ・十

　　　　　　2369031δ85937500000）～十43945969032δθ婁十489268676292王332θ2－
　　　　　　78684788175125000
λ0＝～

A2讐42966～θ王十（一243738θ2＋24754840）～斗u325θ2－！44078

ん＝（螂δ625001ザ881δ王91）θ1＋（一2δ38937500θ。十！28906250000）～十1164王3163θ。一

　　　　　　！727687500

31＝2162622～θ至十（一12268五46～十570025）θ2＋272250000～＿12268146，

32二（608118493290～一19798螂69）θ1＋（一34497413幽70ら十158五74137142）θ・十
　　　　　76555338750000～一3必9閉3！4470，

33二（337909687δO～一！0伽92δ38）θ・十（一！9168978至250～十8723◎8亙359）θ。斗

　　　　　42δ3906250000～一王9！689781250，

3・＝（一醐・・脳・…雀・・舳婁　一　・・…舳・・…榊棚砂　キ　舳…㈱・・・・・…1）θ至

　　　　　斗（（・・・・・・・・・・・・・・・…舳書　斗　・δ舳…舳1・蜘…～　一　舳・蜥…舳・…）θ・

　　　　　4u…。狐榊・㈹・。剛　一　・・…王・柵。・・。・・・…。O～　令　・㈱・・・…榊獅搬酬θ1
　　　　　寺（一・・・・・・・・・・・…遂…蜘弓　斗　・…1・…脇・。δ・…～　一　・・・…棚・・・・・・・・…）唱

　　　　　令（・・・・・・・…舳魯蜘・㈱・弓　一　・嚇・・棚・…蜥・…！型　令　・醐蜥・・・・…舳・・）θ・

　　　　　一洲棚卿・㈱・㈱・。。・哨斗・・・…ゲ…舳・醐・㈱1ザ・・・…棚・1・脳・棚。臥

1）二＝31610567683432500147θ芋　　十　　（一14386五788784333667663θ・　　十
　　　　　　9335433271499477426938δ）θ芋　　　十（21290δ040871516052984θ；　　一

　　　　　　4696675虹040螂368974860θ2　　　＋　　　19991935079026618520967000）θ王
　　　　　　一103王0746368δ775488204θ3　　　　　　　－　　　　　　　926至28王7898γ80616398885θ2　　　　　　　－
　　　　　　　　　　　　　　　　　　　　　　　　　　　　2　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　2

　　　　　　9475630689484881777856000θ2　＋4758910299438578王！937500000，
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D~ = 3875223629976~ + (-1267687819167e2 + 14206542644886900)el + 
9876693539780~ -39621569270216700e2 + 1682140565153125000, 

Af2 = 214836i - 2749402 + 11176770, 

A'4 = 180385590i - 3592308762 + 6006687500. 

iJ 
Sl 1 = 32439330i - 4151594e2 + 101671350, 

S~ = 12253632514261 - 24405170863162 + 5717895052650, 

S~ = 987265587el - 277830551662 + 63544593750, 

/ = _108920915586547101576e~ 
S
4
 

+ 
-13673853921481998413400)Cl + 
-2304922021055354781300t2 - 1 162805926020012202500. 

(59689775552633492943662 
1062140138044062176510~ 


