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Abstract
In this paper we focus on the applications of Quantifier Eliminations (QE) to Control
Theory and we aim at actual applicability of QE methods to industrial size problems. This
is also regarded as a typical case study about how we can resolve the unsolved important
engineering problems.

Introduction

Quantifier elimination approach covers wide range of many mathematical and industrial

problems as follows;

@

Real implicitization of parametric algebraic surfaces.
Automatic theorem proving and finding in real geometry.

Geometric reasoning about three-dimensional objects, including parallel and central projec-
tions of objects, the reconstruction of objects from projections, lighting and shading, equi-
distance surfaces.

Rounding, blending and boundary representation of solids.

Collision and motion planing in robotics.

The Birkhoff interpolation problem.

Sign behavior of univariate polynomials.

Implementation of guarded expressions for coping with degenerate cases in the evaluation of
algebraic expressions.

Stability analysis for ODE’s and PDE’s.

Control theory.

Simulation and error diagnosis of technical networks.

Non-convex parametric linear, quadratic and hyperbolic optimization problems.
Parametric scheduling.

(See [3], [40].) In this article, we focus on control theory and first we briefly explain the

historical outline about applications of QE to control theory. Then we, in particular, give

attention to “robust control problems” which is one of main concerns of control community.

*anai@flab.fujitsu.co.jp

105



106 Procedings of NLA99 (2000)

2 Quantifier Elimination

Many mathematical and industrial problems can be translated to formulas consisting
of polynomial equations, inequalities, quantifiers (V,d) and Boolean operators (A,V, -, —
,etc). Such formulas construct sentences in the so-called first-order theory of real closed
fields and are called first-order formulas.

Let fi(X,U) € Q[X,U],i=1,2,---,t, where Q is the fields of rational numbers, X =
(z1, - -,zn) € R™ a vector of quantified variables, and U = (uy,---,um) € R™ a vector
of unquantified parameter variables. Let F; = f;(X,U) #; 0, where #; € {=,>,>,#},
fori=1,---,s, Q; € {V,3}, and X; a block of ¢; quantified variables for j =1,---,s. In
general, quantified formula ¢ is given

o= (DX, @X,)GF,-, F) (1)

where G(Fy, -+, Fy) is a quantifier-free (qf) Boolean formula.

QE procedure is an algorithm to compute equivalent gf formula for a given first-order
formula. If all variables are quantified, i.e. m = 0, QE procedure decides whether the
given formula (1) is true or false. This problem is called decision problem. When there are
some unquantified variables U, QE procedure find a gf formula ©(U) describing the range
of possible U where ¢(U) is true. If there is no such range QFE outputs false. This problem
is called general quantifier elimination problem.

The history of the algorithms for QE begins with Tarski-Seidenberg decision procedure in
1950’s [36], [9]. But this is very intricate and far from feasible. In 1975, Collins presented a
more efficient general purpose QE algorithm based on Cylindrical Algebraic Decomposition
(CAD) [12]. The algorithm has improved by Collins and Hong [13] and was implemented
on SACLIB as “QEPCAD” by Hong. Weispfenning has presented other QE algorithm by
using Comprehensive Grébner basis and the real root counting for multivariate polynomial
systems [41].

Weispfenning presented a more efficient QE algorithm based on test terms [38],[29],[39].
Though there is some degree restriction of a quantified variable in input formulas for
test terms approach, this approach seems very practical. Implementation of the method
was done on Reduce as “REDLOG” and Risa/Asir ¥ by Sturm [34], [35]. Moreover,
L.Gonzélez-Vega et.al. also presented a special QE algorithm based on Sturm-Habicht
sequence for particular inputs some “sign definite” conditions [19]. We can say that the
relevance of these special QE algorithms consists in its applicability to the actual important

problems.

U Risa/Asir is a computer algebra system [32] developed at Fujitsu Labs Ltd.
FTP:endeavor. fujitsu.co.jp:/pub/isis/asir
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3 Application of QE in Control Theory

Roughly speaking, control systems consists of a plant and a controller (compensator)
and control problems are usually described as follows : “Design the controller so that the
controlled systems satisfy the desired properties (specifications) for a given plant.” If we
consider all admissible noise, disturbance, and model uncertainties within the plants, the
problems are called “Robust control problem”. Usually, a plant and a controller are given
by rational functions in s (s : Laplace variable), say P(s), C(s) respectively, and C(s) has
some control parameters, say pi,---,p:. And specifications are given by using functions ®;
in P(s),C(s) and specific value v;: ®;(P(s),C(s)) < ;. Then, control problem is described
by

e e C(s;p1,- -, pt) s.t. ®(P(s),C(s)) < i for a fized plant P(c)

and robust control problem is
de € C(s;p1,---,pt) s.t. B;(P(s),C(s)) < i for all plants p € P.
where P is some family of plants.

CDntrQlier i ‘planl‘ . i control agrameters

i

~ setof plants Uncertainties :
* nonlinearity
* identification error

* parametric perturbation
*unmadeled dynamics

Figure 1: Robust Control Problems

These are surely constraint solving problems and usually solved by numerical methods.

QE is regarded as one of powerful methods of “constraint solving” and enables us to
(a) obtain not only one feasible solution but also the feasible (possible) range of solutions,
(b) deal with non-convex optimization and

(c) examine decision problems exactly.
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These features (advantages) of QE is useful to resolve many unsolved problems in engi-

neering and industrial problems if we utilize numerical methods only.

Many interesting control system design and analysis problems can be reduced to quan-
tifier elimination problems as shown in the followings (see Fig.2);
1. In 1975, Anderson et.al. [8]
Application of Tarski-Seidenberg decision theory ([36},[9]) to the solution of the static
output feedback stabilization problem,
2. In 1995, Dorato et.al.[15], in 1996 Abdallah et.al. [1] and in 1997 Doraot et.al.[16]

Application of QE theory to a robust multi-objective design for linear systems (stability,
robust stability, robust performance),

3. In 1996, Jirstrand [25]

Application of QE theory to linear systems (stabilization, feedback design) and nonlin-
ear systems (computation of stationary points and curve following in the state space).

4. In 1997, Neubacher [31]

Application of QE theory to various stability problems and developing a specialized
(more efficient) method which solves them either symbolically or numerically.

5. In 1998, Anai [4]

Solving Semidefinite Programming (SDP) problems which are one of the generic Linear
Matriz Inequality (LMI) problems by QE, in particular, when we consider the real

parametric uncertainties.

6. In 1998, Nesié [30], in 1999 Anai et.al [7]
Checking the fundamental properties (observability, accessibility) of discrete-time poly-
nomial systems in finite time step by using QE and Grébner basis.

7. In 1998, Yovine [28]
Checking the observability of an important class of Hybrid Systems finite time step by
using QE.

8. In 1999, Anai & Hara [5]
Efficient robust control analysis and synthesis method by a special QE using a Sturm-

Habicht sequence.

The first attempt to reduce some control problems to QE problems by Anderson et
al.[8] was made in 1970’s. But at that time the algorithm of QE was very intricate and no

appropriate software was available. However, recently some improved algorithms have been
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Figure 2: History of QE and its applications to Control Theory

developed (see [12],[13],[29], [39]) and implemented on computers (see [22],[34],[35]). By
virtue of the considerable developments of both algorithms and software in QE methods,
we explore the application of the QE theory to control problems of great practical interest.

4 Robust Control System Design

Multi-objective design and robust control synthesis are of great practical interest and
main concerns in the control system design. However, in general, they are hard to solve
and there are no analytical solutions. Recently, for such problems, the methods based on
Quantifier Elimination (QE) were proposed by several researchers (see [16][25][31][4]).

For example, in [16] it is shown that how certain robust multi-objective design problems
can be reduced to QE problems and actually solved by using “QEPCAD”. QEPCAD is a
symbolic computation package for QE based on the Cylindrical Algebraic Decomposition
(CAD) algorithm presented by G.E.Collins [12]. In [25] it is shown that, in feedback
design of linear time-invariant systems, robustness and several performance specifications
(H norm constraint, gain and phase margins) on the close-loop system can also be solved
as QE problems by using QEPCAD.

In this article, we consider this kind of problem, in particular, focus on a robust con-
trol system design methods based on QE. QE based approach is really effective for such
problems. However, unfortunately the size of the problems which can be solved by QE
based approach is limited, because the computational complexity of the general QE algo-
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Figure 3: Scheme for solving Control Problems by QE

rithm based on CAD algorithm is doubly exponential in the number of quantified variables
(including parameter variables).

In applications of QE to control problems so far, QE method is applied to the first-
order formulas derived from the control problems by a direct translation. For the efficient
computation, it is important to reduce the target problems to a first-order formula as
simple as possible. Furthermore, it is preferable to use special QE algorithm which is
effective for a particular input. (See Fig. 3.) Hence, we should try to translate the control
system design problem to a formula to which a special QE algorithm is applicable. As one
of such formulas, there is a “Sign Definite Condition (SDC)” for robust control system
design problems.

A parameter space design method is known to be one of the useful tools to deal with
multi-objective design problems. A parameter space approach for robust control system de-
sign is developed by reducing important design specifications such as Ho, norm constraint,
stability margins etc, which are frequently used as indices of the robustness, to sign def-
inite condition. See [21][26][27]. The sign definite condition is a very simple (first-order)
formula and suited for a QE procedure in view of computational efficiency. Moreover, In
[21] it is also proposed that SDC is checked by using Routh-Hurwitz like criterion proposed
by D.Siljak for positive realness [37]. A parameter space approach based on SDC using

D.éiljak’s criterion is essentially equivalent to performing QE for the particular inputs
Yz >0, f(z) >0 (2)

where f(z) is a polynomial with real coefficients. So this method is regarded as a special
QE algorithm for the particular input first-order formula (2) and more efficient than the
general QE algorithm based on CAD algorithm. However in the method using D .Siljak’s
criterion, there remains some issues related to singular cases (see [18]) and specialization

of parameters.
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Figure 4: Relevance of our approach

Hence, in this paper, we propose a parameter space approach for robust control system
design based on a special QE method for SDC using Sturm-Habicht sequence. A combina-
torial algorithm to solve the particular QE problem Vz, f(z) > 0 based on Sturm-Habicht
sequence is proposed by L.Gonzalez-Vega et.al.[19]. We utilize their algorithm with some
modification for a sign definite condition (2). The method proposed here is more efficient
than the method using Routh-Hurwitz like criterion by D.Siljak and moreover has a good

specialization property.

5 Sign definite condition (SDC)

In this paper we use R and Q for the fields of real numbers and rational numbers,

respectively.

Definition 1
Let f(z) be a polynomial in z over R i.e. f(z) € Rlz]. f(z) is sign definite in the interval
z € [a,b] such that a < b (€ R), denoted by f(z) € Nola, b, if f(z) preserves its sign in

la,b], or does not cross zero in [a, b].

Note that in actual computation we consider the polynomial f(z) over Q. This restric-
tion is needed since we utilize a computer algebra system. In this paper we, in particular,
consider the parametric case that is the coefficients of f(z) contain some real parameters,
say, p1,- -+, ps- Strictly speaking, this means f(z) is a polynomial over the rational function
fields R(p1,---,ps) i-e. f(z) € R(p1, -, ps)[a].

The sign definition condition have emerged as the important problem in a parameter

space approach for robust control system design. The specifications such as
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e H., norm constraint,
e frequency restricted norm constraint,
e gain and phase margin constraint, and

e pole location,

that are frequently used as indices of robustness of feedback control systems, are reduced
to sign definite condition (see [21][26][27][37]). This fact makes it appealing to look into
the SDC.

5.1 H, norm constraint

Among the specifications that can be reduced to SDC, here we show how Hy, norm
constraint is transformed to SDC (see [21]). First we have the following lemma:

Lemma 2
[10] A stable transfer function G(s) = C(sI — A)~'B + D with degree n satisfies

1G(s)lloo <y

if and only if the following conditions hold;

i) DTD < 421,
ii) Hamilton matrix

A o | | B
ctc -AT cTD

has no eigenvalues on imaginary axis.

x (y*I — DTD)"[-DTC BT]

Since the characteristic polynomials h of Hamilton matrices are even polynomials, i.e.,
n
Ws®) =|sI — H| =Y h*,
=0

this condition is equivalent that A has no root in pure imaginary number and on the origin.
Let s> = z then the condition is that h(z) = Y I, h;z* has no negative real roots and no

root, on the origin. Finally we have the sign definite condition:
fl@&)=(=1)"h(z) >0, VYz>0.
Moreover, frequency restricted norm, a generalization of Hy, norm, defined by

Gl wrwa) = sup  3(G(jw))

w1 <w<lwsy
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can be also reduced to SDC:
f(z) € No[—w3, —uwi]

where 7(G(jw)) is the maximal singular value of G.

Example 1

We consider a PI control system shown in Fig.1. The compensator is fixed as C(s) = k+ 7.

C(s) P(s)
r m | 1 y
k+ s sl -

Figure 5: PI control system

The complementary sensitivity function is given by

T(s) = P(s)C(s) ks+m
) = T PeICE) ~ k- Dstm’

Now we consider the specifications

1T ()lfwe,00) < e- (4)

From the characteristic polynomial of the Hamilton matrix concerning with complementary
sensitivity, the specification (4) is reduced to SDC:

ft(SL‘) = 521172 +biz+b € NO[O, +OO] (5)
where
b = 1,
b= 2P +2m— (1K) + 5
ay = w?-—(2m~(1—k)2+%)w§+m2(l— %)

Hereafter, without loss of generality, it is enough to consider the problem
f(z) € No[ 0, +00], (6)

because the condition f(z) € Nola, b] can be translated to the condition f(z) € Ny[0, +0]

by a bilinear transformation
z—a

z-b
In [21][26][27], it is shown that SDC can be readily checked by the following lemma based
on the Routh-Hurwitz like criterion proposed by D.Siljak [37):
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Lemma 3
[26] Let f(z) = Y i, a:x’ € Rlz]. f(z) is sign definite in z € [0, +00] if and only if

Vif(@)]=n

holds, where V' is the number of sign changes of the most left column of the Modified Routh
Array defined by

(=D ay, (-1 lay1 S —ar ag
(-D"na, (D) '(n-Dap1 -+ —-a
ag

Remark 1

We note that the first two rows of Routh array above are formed by the coefficients of
the polynomial f(—z) and f'(—z). And following rows in Routh array are formed by the
coeflicients of the polynomials remainder sequence generated by Euclidean divisions. This,

in general, implies that construction of modified Routh array for f(z)

The first two rows of Routh array above are formed by the coefficients of the polynomial
f(—z) and f'(—z), and following rows in Routh array are formed by the coefficients of the
polynomial remainder sequence generated by Euclidean divisions. Here we enumerate the

issues when we use the Routh type criterion.

e In the computation of the remainder sequence by using exact arithmetic, the size of the
(rational) coefficients of the polynomials appearing in the sequence grows exponentially

in the degree of the polynomial.

o In the case where the coefficients contain some parameters, there remains the problem
concerning specialization of parameters; Since rational functions may appear in the
sequence due to Euclidean division procedure, “division by 0” may occur by substitution
of parameters by real numbers. Then we have to recompute completely for the special

values of the parameters. (see an example in §7).

e Moreover, separately from the regular case, we have to take care the singular cases
which occur when (i) an element of the first column become zero (not all the elements
in the corresponding row are zero), (i) all the elements in a row of the array vanish
simultaneously. (See Remark 4 in [37], or [18] for details.)

6 Algorithm

Now we present a robust control system design method based on a more efficient special
QE algorithm for SDC using Sturm-Habicht sequence. Usage of Sturm-Habicht sequence
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o resolves the exponential growth of coefficients,
o clears away the specialization problem,

o makes us free from the care for singular cases (i.e. we can deal with all the cases

uniformly),

by virtue of subresultants instead of remainders by Euclidean divisions. Furthermore,
Sturm-Habicht sequence has good worst-case computational complexity (See [20] for de-
tails.)

6.1 Sturm-Habicht sequence computation

Let f(z) € R[z] with degree n. Sturm-Habicht sequence of a polynomial f(z) is defined
as the subresultant sequence starting from f(z) and f'(z) modulo some specified sign
changes. (See Definition 10,11 in Appendix.) We have the following theorem [20]:

Theorem 4 (Structure theorem)

For every k € {0,1,---,n — 1}, let Hy, = SHy(f) and hy = sty(f) for short. And let
hn = 1. Then for every j € {1,---,n — 1} such that h;y; # 0 and deg(H;) = r < j, we
have

lifr<j—1lthenH; 1 =---=H,_1=0,

2. ifr < j then W [H, = 6;_,LC(H,)?~" Hj,

3. h;__*_;+2H,~_1 = 5j_r+2Prem(Hj+1,Hj).

where LC(A) stands for the leading coefficient of a polynomial A and Prem(A, B) is a
remainder obtained by division of LC(B)* ™' A by B for polynomials A, B with degree

n,m, respectively.

Sturm-Habicht sequence of a polynomial f is constructed according this theorem and then

we need O(n?) algebraic operations in Q(py, -+, ps)-

6.2 Checking SDC

Let the Sturm-Habicht sequence of f be {SH;(f)} j=0,-n = {90, -, 9s}. Then for
a € RU {~o00,+00} we define Wspy(f;a) as the number of sign variations in the list
{go{a), -+, 9s()}. And let Wsu(f;a,8) = Wsu(f;a) — Wsu(f;5). For every j, the
principal j-th Sturm-Habicht coeflicient is defined as the coefficient of degree j of SH;(f).
We denote the principal j-th Sturm-Habicht coefficient by st;(f) and the constant term of

SH;(f) by ct;(f)-
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The sign definiteness of f in the interval [0,+00] is equivalent to that f has no real
roots in [0, +00]. Hence, an equivalent condition to the sign definition condition in [0, 4+00]
is obtained according to the following proposition (¢f. Theorem 12 in Appendix):

Proposition 5
A polynomial f(z) is sign definite in [0, +oo] if and only if Weg (f;0,400) = 0.

By definitions we have

Wsu(f;0,400) = Wsu(f;0) = Wsg(f;+o0)
= V({ctalf)s - cto(£)}) =V{stal(f),- -, sto(F)}) (*)

The last formula (*) gives us how we count the number Wgg(f;0,+00) concretely.
Since cto(f) = sto(f), we need only 2(n + 1) — 1 = 2n + 1 sign evaluations.

If we have Sturm-Habicht sequence for f, we construct the (quantifier-free) equivalent
condition for SDC of f by the following procedure. The obtained conditions are of the

form of the union of semi-algebraic sets.

1. consider all the 32"*1 (at most) possible sign conditions over the polynomials
cti(f)’s and st; (f)’s,
2. choose all sign conditions which satisfy
Wsnu(f;0) = Wsn (f;+00) =0
according to (),
3. construct semi-algebraic sets generated by
cti(f)’s and st;(f)’s
for each selected sign conditions and combine them as a union.

Remark 2
Once we execute this algorithm for the generic polynomial with degree n

Fn(x) = cp2" + Cn—lxn_1 + -+ caz + co,

the result can be used for any other polynomials with degree n by substituting the coefhi-
cients ¢; by those of an input polynomial. (In the case of Fs, see a example in §7.) So, the
results for the generic cases should be stored in a database (or table) to be called upon,

whenever needed. This greatly improves the total efficiency of our methods.



Josai Mathematical Monographs Vol. 2 (2000) 117

6.3 Simplification

The result through above procedure obviously tends to be large and complicated, and
hence we should reduce the result as simple as possible. Some possible simplifications are
as follows:

e Manual simplifications by deleting some sign conditions trivially false (i.e. empty) or

decreasing the number of unions by using the well-known rules;
<U>9#, <U=><, >U=>>
are indicated in [19].

o We, fortunately, have some sophisticated softwares for automatic formula simplification
which are implemented on a QE package “REDLOG” ® and another QE package on a
computer algebra system “Risa/Asir” 3.

7 Example

Here we demonstrate our method by applying it two examples. All the computations
were done by using a computer algebra system Risa/Asir and the results were all obtained
immediately on a PC with Pentium 200MHz CPU.

Example 2 (sensitivity analysis of a PI control system)
We consider a PI control system shown in Fig.5. The structure of the compensator is fixed
as C(s) = k + . The sensitivity and complementary sensitivity functions are given by

1 s2—s
SO =TT PEeE ~ Fr - Dsim Q)
T(s) P(s)C(s) ks +m ®)

TI1+P(6)C6E) 2+ (k-1s+m
The goal is to determine the possible range of the parameters k and m which satisfy the

specifications
HS(S)”[O,ws] < s, (9)

T (8) | [wer00) < Ve ‘ (10)

where ||G||[w, w,) is @ norm defined for a restricted frequency domain [w,ws] i.e.

”GH[w1,w2] = Ssup 5(G(.7w))

w1 Lw<lwa

3)REDLOG is developed at University of Passau (Germany) on a computer algebra system REDUCE, see
[14]. It is based on the virtual substitution method of parametric test points proposed by V. Weispfenning
[38].

5)Risa/Asir is  developed at  Fujitsu labs, see  [32], anonymous  -ftp  via:
endeavor.fujitsu.co.jp:/pub/isis/asir. Virtual substitution method are implemented on Risa/Asir.
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if we denote the maximal singular value of G by (G(jw)). As shown in [27], the both
specifications (9) and (4) are reduced to the sign definite conditions. The specification (9)
is equivalent to the following SDC:

fs(z) = a22® + a12 + ag € Np[0, +o0] (11)
where
as = -w?—(2ma+ (1-ka)*)w?+mia,
a; = (2ma+ (1 —ka)*)w? - 2m?a,
ap = mia

with a = (—1—1% And the specification (4) is equivalent to the following:

fi(z) = byt + byz + by € N[0, +00] (12)
where
by = 1,
ag = wf—(@m—(1-k)?+ 5w +m(1- %)

Consequently, what we do to obtain the possible range of k,m such that (11),(5) is deter-
mining the SDC for the generic polynomial with degree 2:

FQ(ZII) = 02.272 +cx+cy € No[O, +OO]

Sturm-Habicht sequence {SH;(F3)}j=2,1,0 of Fa(x) consists of

SHy(Fp) = cox® +ciz+ co,
SHl(Fg) = 2023) + ¢,
SH()(F2) e CQC% - 4(3()(,3

Then immediately we have

{ctitizano = {co,c1,(cac] —4cocd)}
{sti}izon0 = {c2,2¢o,(coc? —4cocd)}

Hence we check whether the number Wgg (Fs; 0, +00) is equal to 0 or not according to the

formula (*) for 34 sign conditions "«,0, + 4 over the sequemnce
g
{C(), C1,Ca, (Czc‘f et 46003)}.

Finally, in the case of (11), we reaches the results; fs(z) € Ny[0, +o0] if and only if

[ao >0Aa; >0Aay > 0A (a20? —4aga3) > 0] U
[ao >0Aa; >0Aas >0A (aza? — 4aga3) < 0] U
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Ulao<0Aa; <0Aay <O0A (aza? —4agad) <0].

If we substitute ws,ys with the appropriate values, then this result gives the possible
range of the parameters k,m as a union of the semi-algebraic sets. The possible range is
visualized easily by plotting the semi-algebraic sets on k — m plane.

In the case of (5), since ¢y = by = 1 we check whether the number Wgg (f¢;0, +00) =0

or not for 3% sign conditions over the sequence {cy, c1, (¢ — 4cg)}.

Remark 3

For a certain class of plants with structured uncertainties, robust performance problem can
be reduced to SDC by utilizing Kharitonov’s theorem (see [21][26]) and hence is solved by
the our method. For example, in [21][26], it is shown that for the same PI control system
as in Fig.5 with a plant with structured uncertainties, norm constraints can be decomposed
to a conjunction of SDCs and the stability margins constraint is satisfied if and only if the
the Kharitonov systems associated to the open loop system satisfy the constraints.

Remark 4
Note that no rational polynomials appears in Sturm-Habicht sequence. On the other hand,
modified Routh array of Fy(z) is given as follows:

Ca —C1 Co
2c1 —Cy

2
coca+2¢]
2C1 CO

c2 czg —6c2] co

—caco+2c]

Co

In the most left column, rational functions appear due to Euclidean division. This leads to
bad specialization property i.e. “division by 0” by specialization. For example, if ¢c; = 0,

. — 2¢2 . C e e . .
the denominator of ~—C—°%JC~C~1 vanishes and specialization is impossible.

Example 3 (a generic quartic polynomial Fy))

This is the first non-trivial case.
Fy = cqz* + C3x3 + o + iz + cg-

Determine the SDC for the generic polynomial with degree 4. Sturm-Habicht sequence
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{SH;(Fy)}j=4,32,1,0 of F5(x) are given as

SHy(Fy) = cazt+ c32® + cx® + 1z + o,

SH3(Fy) deqz® + 3c3x? + 2z + ¢4,

SHy(Fy) = (—8cicy + 3cacd)z? + (—12cicr + 2cqczea)z + caczer — 16coc],

SHi(Fy) = (=36cic? + (28cicscy — 6cacd)cy — 8cics + 2cq4cic? + 32¢ociea — 12¢pcicd)

+3cieacd + (—4cied + cacien — 48cocd)er + 32¢pciesca — Yegeacs,
SHo(Fy) = —27cict+ (18cicacy — deqch)cd + (—4c3cs + cacics + 144cocics

—6cocics)c? + (—80cocieach + 18cocacicr — 192c3cies)ar

I

+16ccics — deoeacicl — 128c2cic3 + 144cicicier — 2Tckesch + 256c3cs.

Then we have

]

{c4,4ca, —8c5ca + 3cack,

—36¢3c? + (28c2cacy — 6cacd)er — 8c2el + 2cacicl + 32¢cocice — 12¢0cics,
SHo(F4)}

{co,¢1,cacac1 — 16cocs,

3cicact + (—4cicd + caches — 48cock)er + 32cocicaca — 9cocacs, SHo(Fa)}

{sti}i=4,3,2,1,0

I

{cti}i=a,3,2,1,0

Hence we consider the set of all sign conditions {e7,---,e0} (¢; € {—,0,+}) for {S7, ---,
So} which satisfy that the number Wgp (Fy; 0, +00) is equal to 0. Here S;’s are given by

S7 = ¢,

Se = 3cics —8cacl = ca(3c2 — 8cacy),

Ss = —=36cic + (28cacsc; — 6c3ca)er + 32¢ocac] + (—12¢ock — 8c3)ci + 2¢3c3 e,
= 2c4(—18c%c? + (14cocscy — 3c3)er + 16cgeact + (— 6006% —4cd)eq + i)

Sy = SHy(Fy) =cq -8,

S3 = co,

Sy = o,

S1 = escqc; — 16coci = calezcr — 16¢pcy),

So = 3escicd + (—48coch — Ackc? + caciey)er + 32¢pcacact — 9epcica,
= c4(3czecact + (—48coc? — Acdey + cacd)er + 32¢qcacacy — 9coc3).

where

Sy = —27cict + (18cacscy — 4cd)cd + (144coeaci + (—6cock — 4cd)es + 3k )i+
(—192c3csc — 80cociescs + 18cocacd)er + 256¢ics — 128c3c3ca+
(144c3coc3 + 16¢oc)ca — 27ckch — depcicl

Note that €3 € {+, —} since here we assume that ¢y # 0. Moreover from the algebraic
properties of Sturm-Habicht sequence it it impossible that more than two consecutive zeros
appear in the sequence. This also implies that ¢4 # 0. Then we have the necessary and
sufficient conditions, the union of the following 561 semialgebraic sets, such that Iy satisfies

sign definite condition :
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[S7>0 A S>0AS5>0A8>0A8>0A8>0AS8>0A S>0]n
[S7>0 A Se<0AS5>0AS;>0A8>0A8>0A8<0AS>0]n

[S7<O/\Sﬁ<0/\S5<O/\S4<O/\Sg<0/\52<0/\31<0/\50<0}.

Furthermore, this formula can be simplified by deleting trivially empty semialgebraic
sets based on the followings:

e S =0, S5=0 = ¢; =0,¢0 =0 == This is contrary to cy # 0.

2 .
S5 =0 = =42 = S5=—(16c3c1 —c3)> <0

Ca

n2( a2 QB a2 \2 . .
05 =0 = ¢3= 04 — G = Mﬁgﬁﬁﬁ‘ﬁ— => Spy, Sy have different sign.
1

C1

Finally we have the union of the 477 semialgebraic sets, such that Fy satisfies the sign
definite condition (Total computation time on Risa/Asir is 65.26 seconds).

8 Computational Complexity

Our approach consists of two parts: reduction to SDC and special QE computation. The
dominant part of our approach is QE part. In particular, the construction of Sturm-Habicht
sequence occupies the total computation time. Here we show some experimental results
to demonstrate the tractability of our proposed method for practical control problems.
All the computations were done by using a computer algebra system Risa/Asir and were
executed on a PC with Pentium 200MHz CPU.

8.1 Generic polynomials

By using QEPCAD? , we can immediately solve the SDC for generic polynomials
F,=%1 ¢zt ie,Vz (z>0— F,>0) up ton = 3. However we could not solve the
QE problems by QEPCAD for n > 4 due to the lack of memory.

On the other hand, we can solve it for generic polynomials up to n = 8 in our method
as shown in Table 1. Table 1 shows the timing data to compute Sturm-Habicht sequence
for generic polynomials F,(z). Once we compute Sturm-Habicht sequence of F,(z), the
result can be used for another polynomials with degree n by substituting the coefficients
¢; by those of an input polynomial. The results for the generic cases should be stored in
a database to be called upon, whenever needed. This greatly improves the total efficiency.
In the case of polynomials with many parameters it seems to be better that we compute

Sturm-Habicht sequence in this way.

9)These computation by QEPCAD are executed on Sun Ultra Sparc 1 Model 140.



122 Procedings of NLA99 (2000)

|

ltime (sec) ]Ln [ time (sec) 1

n
2 0.002 || 6 1.533
3 0.006 || 7 34.120
4 0.028 || 8 > 3600
5 0.121 9 -

Table 1: Sturm-Habicht sequence computation for generic polynomials

8.2 PID-controller synthesis

Table 2 shows the timing data to compute Sturm-Habicht sequence of the polynomials
ft(2), for which we check the SDC in analyzing sensitivity of PI control systems with com-
pensators C(s) = k+ % and PID control systems with compensators C'(s) = k+ 2t + 5 f(‘f'ls.
PI and PID control systems have same structure as Fig.1 and the compensator has 2 and 3
design parameters, respectively. As a target specification, here we consider the frequency
restricted norm constraint for complementary sensitivity function : [|7(s)|l[20,400) < —10.
This is equivalent to a SDC fi(z) > 0,Vz > 0. The numerators of the plants p(s) are fixed
as 1 and the denominators for each degree are given randomly. Noted that the computation
of fi(z) is achieved immediately.

degree of p(s) PI PID
w.rt. s (sec) (sec)
2 0.001 0.3709
3 0.029 1.931
4 0.111 9.807
5 0.459 35.840
6 1.528 145.700
7 4.718 | 443.200
8 13.090 | 1346.000
9 35.630 | 3644.000
10 82.700 | 7689.000
11 266.600 —
12 443.200 —
13 1176.000 —
14 1838.000 —
15 4333.000 —

Table 2: Sturm-Habicht sequence computation for PI and PID control systems

As a practical example, we quote the flexible beam example in [17]. The plant transfer
function is given by

—6.4750s% + 4.0302s + 175.7700

P(s) = .
(8) = (5% + 3.568257 1 139.50215 1 0.0929)

We consider the PID control system for this plant with a same controller as above and
the same frequency restricted norm constraint for complementary sensitivity ||T'(s)||(20,4-00] <
—10. Then f:(z) is obtained in 0.55 sec and Sturm-Habicht for f¢(z) is computed in 115.50
sec.
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8.3 Combinatorial part

There are several possibilities to improve the combinatorial part. We can prune the
impossible sign combinations before counting the number of sign changes owing to the

followings;

(a) In the case of positive sign definite condition, we have to add one more condition such
that “(head coefficient of f) > 0”. This implies that st, > 0 and st,—; > 0. Hence all
possible sign conditions are reduced to 32(»~1),

(b) From the algebraic properties of Sturm-Habicht sequence, it it impossible that more
than two consecutive zeros appear in the sequence.

(¢) When we determine the design parameters, we usually do not choose the parameter
values on the boundaries of possible ranges of parameters. This implies that for actual
design we do not have to check the sign combinations including 0 (except identically 0
case). Hence we should consider 22" sign combinations.

For example, in the case of generic polynomials with degree 4 there are totally 3% = 6561
sign combinations to verify the number of sign changes. After pruning impossible sign
combinations by {a), (b), and checking the number of sign changes, we have 561 feasible
sign combinations. Furthermore, this formula can be simplified by deleting trivially empty
semialgebraic sets manually. Finally we have 477 feasible sign combinations. For practical
control problems, the number of possible sign combinations can become rather small as in
§10. For g(w) in §10, whose degree is 4, finally we have only one sign combination.

8.4 Summary

Here we summarize the computational complexity of our approach based on the com-

putational results above.

Tractability : Our approach is practically applicable to the systems up to order 15 for
the case of the number of design parameters in fixed-structure controller is 2 (e.g. PI
control systems), and to the systems up to order 10 for the case of the number of design
parameters the is 3 (e.g. PID control systems). In the case that controller has more than
3 parameters, our approach is practically applicable to the systems up to order 7 by using

stored general forms.

Applicability : Our approach outputs a disjoint union R of semi-algebraic sets F; which
describes the possible range of design parameters ©; R = |J, R;. And the obtained

results are applicable to
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o visualization of possible region of design parameters by a projection to 2 or 3 dimensional

space,

e pre-processing (reduction to sub-problems) for numerical optimization such that

min F(©) = min { min F(@)}
OeR 7 ©€R;

where F(©) is an objective function in ©,

o reduction of the VC-dimension for randomized algorithm

9 Mechanical system design for positive-realness

Here we consider applying our method to mechanical system design (for positive-
realness) to examine the tractability of our approach. As shown in [23] it is appropriate
to design a mechanical system such that the transfer function from the force input to the
velocity output is “positive real (PR)”. In this section, we consider a class of mechanical
systems and show the methods to obtain possible ranges of design parameters for which a
given system satisfies the positive real condition.

First we define the positive-real transfer functions as follows.
Definition 6
A square transfer function G(s) is called positive real (PR) if
G(5) +G(s)* >0, VRe(s) >0 (13)
holds where G(s)* denotes its complex conjugate transpose.

For a scalar transfer function, positive real function is defined as follows:

Definition 7

A real function

G(s) = g{_; (14)

with relatively prime polynomials p(s) and q(s) is called (strictly) positive real if and only
if
(i) the polynomial
f(s) = p(s) +q(s) (15)
is Hurwitz;
(ii) and
Re[G(iw)] > 0 (16)

for all real w.
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Here we establish the positive real property of a given transfer function according to

Definition 7. The condition (i) is checked by using Lienard-Chipart criterion:

Theorem 8 (Lienard-Chipart criterion)
Let f(s) = aps™ + a18™" ! + -+ + an_15 + an,a0 > 0 be a given polynomial with real
coefficients. Define the Hurwitz determinant of order 1 <1 < n as

ap a3 as
ag G2 Q4
0 a; as

D; = 0 ar ay ag , ar=0 for k>n

(273
Then f is a Hurwitz polynomial if and only if
an > 0,an-1>0,8,-4>0,---; Dy >0,D4 >0,Dg >0,---

As for the condition (ii}, we first convert (ii) to the following equivalent condition. Re[G(iw)] >

0 for all real w if and only if
(#41) g(w) = pr(w)gr(w) + gi(w)pi(w) > 0 for all real w > 0,

where G(s) = g%% , pliw) = pr(w) + ip;{w) and q(iw) = ¢p(w) + ig;(w). This type of

conditions is called sign definite condition (SDC). The SDC is verified efficiently by using
an algebraic method, a special quantifier elimination using Sturm-Habicht sequence.

As pointed out in [24] it also seems reasonable to design the mechanical system to
achieve the PR property up to the desired control band width. We define the finite fre-

quency positive-real transfer functions as follows.

Definition 9
A square transfer function G(s) is called positive real (PR) up to the frequency wy if it has
no poles in the open right half plane and satisfies

G(jw) +G(jw)™ 20, V]w| < wo (17)
When wg = oo, In particular, G(s) is PR.

The frequency restricted positive real condition is converted to a frequency restricted He,

norm condition via a bilinear transformation:
G(jw) + GHw)* >0, VYw Sw <L ws

= |[H|ljwr w0 <1 (18)
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where H(s) = (G — I)(G + I)™!. Frequency restricted norm constraints are reduced to
SDC (see [27]). Hence this is also checked by a special quantifier elimination using Sturm-

Habicht sequence.

10 Integrated design examples

Here we show some computational results applying our method to practical integrated
design examples, which demonstrate the tractability of our approach, We note that the
first example can not be reduced to a convex optimization problem, and hence it is difficult
to obtain the exact solution by numerical optimization.

We consider a swing-arm positioning mechanism for small disc storage devices shown in
Fig.2 taken from [23]. It works basically as follows: when we apply a force input u to the

Figure 6: Geometry of the swing-arm

‘point B, the swing-arm rotates around the pivot A with i the z — y plane, and the sensing
point C moves to a desired position. We design the shape of the swing-arm such that the
resulting transfer function from w to ¥ is positive real (PR). We employ the equation of
motion, linearized around the equilibrium state, given in [23] by

MG+ D4+ Kq=bu, y=cq

where
T, m 0 0
q=|y |, M= 0 m 0|,
¥ 0 0 J
D=dS, K=kS
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1 0 lgsin(p)
S = 0 1 —lgcos(B) |,
lysin(B) —lgcos(B) 5
sin{a)
b= cos(a) )

ly — lycos(a + f)

c= [ 0 1 Iy, —lgcos(p) ]

and (z4,y,) [m] is the displacements of the center of gravity and v [rad] is the angle between
the z-axis and the line AC, measured counter clockwise.

In this equation, the flexibility of the pivot is modeled by two linear springs in the z
and the y directions with small damping and assumed that the stiffness and the damping
coefficients are the same for both directions. The values of the other swing-arm parameters

are taken from [33] and shown in Table 3.

mass of swing-arm m 0.033 kg
moment of inertia J 17x107°% kgm?
actuator point (angle) @ — deg
actuator point (length) I, - m
sensor point (length) ly — m
c.g. location (angle) B8 10 deg
c.g. location (length) ly 0.02 m
stiffness of pivot k 1.5x10° N/m
damping of pivot d 44 Ns/m

Table 3: Swing-arm parameters

10.1 Simultaneous design of an actuator point B and a sensing
point C (nonlinear case):

The goal is to obtain simultaneously the region of actuator point B and a sensing point
C yielding PR transfer functions. Thus, «, {,, and [, are the design parameters. It is noted
that the problem can not be reduced to a convex problem, and hence it is very difficult
to find the exact region by numerical optimization. Instead, our approach can provide the

exact region as will shown below. We define the new design parameter vector

- 61 | | sin(a)/lu
| 6 || cos(a)/l.
and the new control input v = [,u. Then we have

bu = (by + b2f)v
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where
0 1 0
b1 = 0 5 bz = 0 1
1 lgsin(B) =l,cos(B)

Note that the transfer function Ty, (s) from u to g is PR if and only if the transfer function
Tyv(s) from v to y is so. Hence we try to compute the region of 8 for which Ty, (s) is PR,
and then to find the corresponding region in the original parameters.

A state space realization for Ty,(s) is given by

0 I 0
A|B@
O\ 2| “M—k —M=1D | M2, 4 bot)
cl o
0 c | 0

Then we have Ty, (s) = Q(s)/P(s) where

Q(s) = (((37810081,  —  1163605212/15625)6; -+  (—21448944l,  +
15366537516/15625)6,  + 10890000001,  —  2859859200)s®  +
(171864000000000,6; + (—974952000000000L, + 45300000000000)8> -+
990193600000000001, — 974952000000000)s> + 13200000000000000000L, s +
22500000000000000000000001,, ),

P(s) = 18513s° + 68534405 + 2336984672000s® -+ 398640000000000s> +
67950000000000000000s.

Then f(s) = P(s) + Q(s) is Hurwitz if and only if
[D4>0/\D2>O/\A4>O/\A2>0/\A0>O] (19)

(see Appendix C for f(s), D4, Dy, Ay, A and Ap).
Next we compute Sturm-Habicht sequence of g(w) and we have

{cti}i=a,3,2,1,0 = {51,0,—51,0,51 }

{sti}i=a,3,2,1,0 = {53,55,52, 54,51}

(see Appendix C for g(w) and S;’s). Additionally, we need the condition that the head
coefficient of g(w) is positive i.e. S3 > 0 to ensure the positivity of g(w). Finally, we have
that the condition (ii) holds if and only if

[S1>0 A S <0 A S3>0 A S4>0]U
[S1>0 A S3<0 A S3>0 A Sy<0]U (20)
[Sl>0 NSy >0 A Sg>0/\54<0}

Consequently, by superposing two possible regions (19) and (20) of design parameters 61,
6, and [, in the parameter space, we have the feasible region of the design parameters for

positive-realness.
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10.2 Design of an actuator point B (linear case):

Here we fix the sensing point and let [, = 0.06[m]. Now we obtain the region of actuator
point B yielding PR transfer functions. Thus, « and [,, are the design parameters. In this
case, f(s) is Hurwitz if and only if

Dy >0 A Dy>0 A A >0 A A, >0] (21)

(see Appendix C for Dy, Dj, A}y, A}, and Ap).
As for the condition (ii), after removing the sign conditions which is obviously empty,
we have necessary and sufficient conditions

[S1>0 A S;>0A S>>0 A S;<0) ‘ (22)

(see Appendix C for Sj’s). Consequently, by superposing two possible regions (21) and
(22) of design parameters 0; and 6, in the parameter space, we have the feasible region of
0y and 65 for positive-realness

[Dy>0ADL>0AAy >0A AL > 0)U (23)
[S1>0AS,>0A S5>0A S;<0]
which is shown in Fig. 8 as a shaded cell. This region is transformed to the region in «
and [, and described in the z — y plane as shown in Fig. 9. Integer lattice points in (23)
are described in Fig. 9 as dots. And the region (23) corresponds to that below the dotted
line. (All the computations needed here has been done in about one minute.)

11 Conclusion

In this paper, we explain roughly about current situation of the application of QE to
control theory and, in order to aim at pracitical applicability, have proposed a method of
robust control design based on SDC by a special QE method using Sturm-Habicht sequence.
Our method, in particular, effective practically for multi-objective control design using low
degree fixed-structure controller.

Our approach is more efficient than the method using Routh-Hurwitz like criterion
and has a good specialization property. Moreover, compared with the matrix inequality
approach based on numerical optimizations, our approach based on a special QE has several
advantages such as applicability to parametric and nonlinear cases, possibility to obtain
non-conservative results and less complexity for multi-objective design.

Moreover we have demonstrated our method by applying it to some examples and
showed by computational experiments on a computer algebra system that our approach is
practically appricable one.
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Appendix

A. Quantifier elimination : QFE deals with the first-order formulas, which consists
of polynomial equations, inequalities, quantifiers (V, 3) and Boolean operators (A, V, -, —
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,etc). QE procedure is an algorithm to compute equivalent quantifier-free formula for a
given first-order formula over the real closed fie 1d. For example, for the input

Va(z? + bz + ¢ > 0),

QE outputs the equivalent quantifier-free formula; b? — 4c < 0. See [11] for the details
about QE.

B. Sturm-Habicht sequence : We briefly show the definition of Sturm-Habicht
sequence and the relation between Sturm-Habicht sequence and the number of real roots
(see [20] for derails). '

Definition 10
[20] Let P,Q be polynomials in R[z]

P= iakzk Q= ibkwk
k=0 k=0

where n and m be non-negative integers and let £ = min{n,m). Fori = 0,1,---,{ we
define the subresultant associated to P,n,Q and m of index i as follows:

Sres;(P,n,Q,m) = Z M;(P,Q):cj
j=0

where M }(P, Q) is the determinant of the matrix composed by the columns 1,2,---,n +
m—2i—1andn+m —i— j in the matrix s;(P,n,Q,m):

n+m—i
Anp -~ Q9
m —1
an, -+ Qag
S; =
by -+ b
n—1
bn b()

Definition 11
[20] Let P,Q be polynomials in R[z] with degrees n,m, respectively. Here n,m be non-

negative integers. Let v = n+ m — 1 and §, = (—1)k(k2+1) for every integer k. The

Sturm-Habicht sequence associated to P and @) is defined as the list of the polynomials
{SH;(P,Q)}j=0,u+1 given by

© SHU+1(P7 Q) - P;
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° SH,(P,Q) = P'Q, and
° SHJ(PaQ) = 5U—jSTeSj(P)pa PlQ;”)

for every j = 0,1,---,v — 1 where P' = %’5. When Q =1, {SH;(P,1)}j=o0,...,v+1 Is called
the Sturm-Habicht sequence of P.

Sturm-Habicht sequence can be used for real root counting as is Sturm sequence ac-
cording to the following theorem [20]:

Theorem 12

Let P(z) € R[z] and o, € R U {—00, +00} s.t. a < . Then Wsg(P;a, ) gives a
number of real roots of P in [a, f].

C. Results in Swing-arm example :

f(s) = 2892656255° + ((59078250000(, — 1163605212)0; + (—335139750000L
15366537516)02 + 170156250000000, — 228054750000)s% + (7877100000000l 81
(—44685300000000L,  +  2076250000000)8>  +  4537500000000000L
36470700200000000)s% + (26853750000000000001, 61 + (—152336250000000000001,
707812500000000000)82 -+ 1547177500000000000000, — 9004875000000000000)s2
(2062500000000000000000001,, + 1061718750000000000000000)s
351562500000000000000000000001 ,

g(w) = ((367983649687501,  —  1132769673882)¢  +  (—208750171781250L,
9499435599951)0,  +  4632503906250000L,  —  208750171781250)w?
((~33446517130950000000001, + 65889145129500000000)6;
(189735772295850000000001, - 869957754281000000000) 8
4210543631250000000000001,, + 18973577229585000000000)w?
760296796875000000000000000001, 6; + (—4313020078125000000000000000001,
20039941406250000000000000000)62 4+  9571289062500000000000000000000L,
431302007812500000000000000000.

l++14++4+ ++++++

(19)
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Dy = (1211811 1971273000000l5 + 12452279264358355699%2 —2457301932362396196@ )H‘;’ +

((—20623127884751700000002 + 3492969766056540000000)l;j +
(—211099662756875455516867 + 15867003689606143388160)13 +
(12597424023706621268465 + 1363876330191531 144912)@ +
(—12953937710749959000> + 3148437917790387564804 )1, -
143516675897398795761)87 + ((116991107954513100000062 -
3962991504161844000000062 + 2358994522500000000000)ly +
(1192884625954250734982402 - 1765715797389667812057608 +
80773895102420520000000)£y -+ (-1 1902326700350474816129% +
93216262281909522127680> + 322623496656956820937920)l% +
(331066391421197124000% —~ 1765575654351601152614402 +
474012828865583769939408)1,, — 1707202725111056256% + 7939120994727513627966
—18104337448291872915984)6, + (»22122281703841110000000% +
1124065101756504600000000% - 1338213021750000000000062 +
452955937500000000000000)lg + (—224688842333765652997440;5 +
4910445709793311455398409% + 54759477299036400000008 +
406647051 1207500000000000)l§ -+ (314660909283863381197293 -
9628920154766147661 13129% + 24545512539904570472544002 +
11392003692328013260000000)l§ + (—14599600419336908910003 +
23808122956829744415969% - 4374882920854115576401446- +
10157235104237487024000000)1, + 22545270897975731259% +
429249890174932568619% + - 1990668642424279663111202 -
377216314238338789500000

Dy = (640999012500015 - 1262511655021, )9% + ((—7272532575000002 +
5538585937500000)l5 +(40730167659726, 4 18881022006000000)1, — 3327734602502 —
584538523939524)0;  + (2062785161250009% —  314193515625000000>  +
1063476562500000000)&3 + (= 190425929035980% — 1060739978017500006, -+
2369031585937500000)1y + 4394596903250% + 489268676292133262 -
78684788175125000

A() = ly

Ao = 429661, 0, + (—2437380, + 24754840)l, + 113250 — 144078

Ay = (4475625001, — 8815191)8; + (—253893750003 + 128906250000)!, + 11641316302 —
1727687500

I

(20)

S1 = 21626221, 61 + (—12268146l, + 570025)82 + 2722500001, — 12268146,

Sy = (6081184932901, — 11979844569)0;1 + (—3449741314470(, + 158174137142)62 +
765553387500001, — 3449741314470,

S3 = (337909687501, — 1040192538)6; + (—191689781250l, + 8723081359)02 -+
4253906250000, — 191689781250,

54 - (—1315259047878465690015 - 2892742972310903758201y + 13046970536127163251)9%
+((14922432146897615340013 -+ 15830176410011743210201y - 71642355796305376236)60
-—331152902157577500000015 - 362671847510200463466001y -+ 1640998432679595634260)6
+(—42326069061822498810013 + 3289140762955605373201y - 13962545539331773576)6%
+(18785678458800825000000!121 -— 81456566598242949762001, + 328914076295560537320)68

—208442292764062500000000l!2/ + 187856784588008250000001y — 423260690618224988100.

(21)

:1 = 3161056768343250014?9‘;’ + (—14386178878433366766302 +
93354332714994774269385)9% +(2129050408715150529849% -
4696675410404133689748600, + 19991935079026618520967000)01
- 10310746368577548820465’ - 926128178987806163988859% -

947563068948488177785600002 +475891029943857811937500000,
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i

Dl = 3875223629977 + (—12676878191678; -+ 14206542644886900)0: -+
98766935397803 —396215692702167006, + 1682140565153125000,
Al = 214830, ~ 274946, + 11176770,

i = 180385596; — 359230876 + 6006687500.

(22)

Si = 32439336, — 41515940, + 101671350,
S} = 1225363251426, — 24405170863160> + 5717895052650,
S§ = 98726558701 — 277830551662 + 63544593750,

Sy = —10892091558654710157662 + (5968977555263349294360;
—13673853921481998413400)6, + 10621401380440621765162
—2304922021055354781300£2 — 1162805926020012202500.

|



