An algorithm for computing the residue of a rational function via \mathcal{D} -modules

Yayoi NAKAMURA*

Shinichi TAJIMA

Ochanomizu Univ.

Niigata Univ.

In a previous paper [4], we studied residues of a rational function from a view point of D-modules. We considered the system of linear differential equations for the algebraic local cohomology class associated to a given rational function. In particular, we gave there a description of the kernel space of the residue map induced by the cohomology class in terms of adjoint differential operators.

In this paper, we present algorithms for computing residues of a rational function according to the results obtained in [4]. By exploiting properties of adjoint differential operators, we reduce the computation of residues of a rational function to that of a rational function which has simple poles.

In the first section, we recall some facts about D-modules and the algebraic local cohomology groups for the one dimensional case. In the second section, we briefly recall the main results obtained in [4]. In the third section, we describe two algorithms for computing residues of a rational function. We utilize a formula for a squarefree denominator and properties of a logarithmic derivative in each algorithms.

1 D-module and Algebraic local cohomology

Let X be the complex plane C, \mathcal{O}_X the sheaf of holomorphic functions on X. Let A be a set of finitely many points $z = \alpha_1, \ldots, \alpha_n$ on X. The sheaf $\mathcal{O}_X \langle *A \rangle / \mathcal{O}_X$ can be understood as the sheaf of principal parts of the meromorphic functions at A. Let \mathcal{D}_X be the sheaf of rings on X of linear differential operators of finite order with holomorphic coefficients. Then $\mathcal{O}_X \langle *A \rangle / \mathcal{O}_X$ is naturally endowed with a structure of \mathcal{D}_X -module.

Moreover, we have the following isomorphism.

$$\mathcal{H}^{1}_{[A]}(\mathcal{O}_{X}) \simeq \mathcal{O}_{X} \langle *A \rangle / \mathcal{O}_{X}.$$
(1)

^{*}nakamura@math.ocha.ac.jp

Let us illustrate some fundamental properties of the algebraic local cohomology group as \mathcal{D}_X -module by using the Dirac's delta function $\delta(z) = \frac{1}{z} \mod \mathcal{O}_X$, which belongs to the algebraic local cohomology group $\mathcal{H}^1_{[0]}(\mathcal{O}_X)$ with support at z = 0. From $(\frac{d}{dz})^k \frac{1}{z} =$ $(-1)^k \frac{k!}{z^{k+1}}$, we see that $\mathcal{H}^1_{[0]}(\mathcal{O}_X)$ is generated by $\delta(z)$ over \mathcal{D}_X . The annihilators of $\delta(z)$ is generated by the multiplication operator z as an ideal over \mathcal{D}_X . We arrive at the following representation :

$$\mathcal{H}^1_{[0]}(\mathcal{O}_X) = \mathcal{D}_X/\mathcal{D}_X z$$

Moreover, we have the following fact. FACT

$$\mathcal{H}^1_{[0]}(\mathcal{O}_X)$$
 is simple as \mathcal{D}_X -module.

To see this fact, by example, we put $\sigma(z) = \frac{1}{z^2} + \frac{3}{z} \mod \mathcal{O}_X$. Then we have $\delta(z) = z\sigma(z)$ and $\sigma(z) = (-\frac{d}{dz}+3)\delta(z)$. Thus, the cohomology class $\sigma(z)$ also generates $\mathcal{H}^1_{[0]}(\mathcal{O}_X)$. Moreover the annihilator ideal of $\sigma(z)$ over \mathcal{D}_X is generated by $z\frac{d}{dz} - 3z + 2$ and z^2 . Thus we have

$$\mathcal{H}^1_{[0]}(\mathcal{O}_X) = \mathcal{D}_X/\mathcal{D}_X(z\frac{d}{dz} - 3z + 2) + \mathcal{D}_X z^2.$$

In general, the principal part of a meromorphic function defines an element of the first algebraic local cohomology group with support at the poles and that, it is characterized by the annihilators.

2 Construction and properties of annihilator ideal

Let $q(z) = (z - \alpha_1)^{r_1} \cdots (z - \alpha_n)^{r_n}$ and w(z) = 1/q(z). Denote by m the residue class $w(z) \mod \mathcal{O}_X \in \mathcal{O}_X \langle *A \rangle / \mathcal{O}_X$, where $A = \{z \in \mathbb{C} | z = \alpha_j, j = 1, \ldots, n\}$. Then, in view of the isomorphism (1), m is an element of the algebraic local cohomology group $\mathcal{H}^1_{[A]}(\mathcal{O}_X)$ with support at A. Denote by $\mathcal{A}nn$ the set of annihilators of m as \mathcal{D}_X -module, $\mathcal{A}nn = \{R \in \mathcal{D}_X | Rm = 0\}$. This is a sheaf of left ideals of \mathcal{D}_X .

Put $A_j = \{\alpha_j\}, j = 1, ..., n$. Then the algebraic local cohomology group $\mathcal{H}^1_{[A]}(\mathcal{O}_X)$ has a direct sum decomposition by algebraic local cohomology groups with support at each A_j , i.e.,

$$\mathcal{H}^{1}_{[A]}(\mathcal{O}_{X}) = \mathcal{H}^{1}_{[A_{1}]}(\mathcal{O}_{X}) \oplus \cdots \oplus \mathcal{H}^{1}_{[A_{n}]}(\mathcal{O}_{X}).$$

Consequently, for given m, there exist local cohomology classes $m_j \in \mathcal{H}^1_{[A_j]}(\mathcal{O}_X), j = 1, \ldots, n$ so that $m = m_1 + \ldots + m_n$.

The following Theorem asserts that the left ideal Ann characterizes m_j , up to constants.

Theorem 1

([4]) Let Ann be the annihilator ideal of the algebraic local cohomology class m. Then we have

$$\{f \in \mathcal{H}^1_{[A_j]}(\mathcal{O}_X) | Rf = 0, \forall R \in \mathcal{A}nn\} = \{cm_j | c \in \mathbf{C}\}$$

Moreover, Ann is generated by the following differential operators P and Q with polynomial coefficients.

$$P = (\prod_{j} (z - \alpha_j)) \frac{a}{dz} + \sum_{j} r_j (\prod_{\ell \neq j} (z - \alpha_\ell)),$$
$$Q = (z - \alpha_1)^{r_1} \cdots (z - \alpha_n)^{r_n}.$$

That is, the principal part m_j at each pole A_j is characterized as a solution of the following homogeneous differential equations:

$$Pf = Qf = 0, \quad f \in \mathcal{H}^1_{[0]}(\mathcal{O}_X).$$

Denote by q'(z) the derivative of q(z). Then q(z)/GCD(q(z), q'(z)) is the squarefree part of q(z), where GCD(q(z), q'(z)) is the greatest common divisor of q(z) and q'(z). Thus, the differential operator P in Theorem 1 is written in the following form:

Proposition 2

$$P = \frac{q(z)}{GCD(q(z), q'(z))} \frac{d}{dz} + \frac{q'(z)}{GCD(q(z), q'(z))}$$

For a differential operator $R = \sum_{j} a_{j}(z) (\frac{d}{dz})^{j}$ with holomorphic coefficients $a_{j}(z)$, we can define the formal adjoint operator R^{*} of R by $R^{*} = \sum_{j} (-\frac{d}{dz})^{j} a_{j}(z)$. Denote by Ω_{X} the sheaf of holomorphic differential forms on X. For $\psi(z)dz \in \Omega_{X}$, we define the action of a differential operator $R \in \mathcal{D}_{X}$ from right by

$$(\psi(z)dz)R = (R^*\psi(z))dz.$$

Then, Ω_X has the structure of right \mathcal{D}_X -module. From Proposition 1, we have the following result.

Proposition 3

$$P^* = -\frac{q(z)}{GCD(q(z), q'(z))} \frac{d}{dz} + \frac{q(z)}{GCD(q(z), q'(z))} \frac{GCD(q(z), q'(z))'}{GCD(q(z), q'(z))}.$$
 (2)

For a holomorphic differential form $\psi(z)dz \in \Omega_X$, let us consider residues of the differential form $\psi(z)w(z)dz$ at A_j . For this purpose, we look at the following linear mapping $\operatorname{Res}_{A_j}(\cdot, m)$ from Ω_X to **C** defined by

$$\begin{aligned} Res_{A_j}(\cdot,m): \quad \Omega_X &\to \mathbf{C} \\ \psi(z)dz &\mapsto Res_{A_j}(\psi(z)dz,m), \end{aligned}$$

where $m = w(z) \mod \mathcal{O}_X$ and $\operatorname{Res}_{A_j}(\psi(z)dz,m) = \operatorname{Res}_{A_j}(\psi(z)mdz)$ which is equal to the residue of a meromorphic differential form $(\psi(z)/q(z))dz$ at A_j .

Since Rm = 0 holds for any $R \in Ann$, we have

$$\operatorname{Res}_{A_i}((R^*\psi(z))dz,m) = \operatorname{Res}_{A_i}(\psi(z)dz,Rm) = 0.$$

Theorem 4

([4]) Put $K = \{\varphi(z)dz \in \Omega_X | Res_{A_j}(\varphi(z)dz, m) = 0, j = 1, 2, \dots, n\}$. Then we have

$$K = \{ (R^*\phi(z))dz | R \in \mathcal{A}nn, \phi(z)dz \in \Omega_X \}.$$

Put $r = \deg q(z)$. Let $p_j(z)$ be the image of $z^j(j = 0, 1, ..., r - n - 1)$ by P^* in $\Gamma(X, \Omega_X)/\Gamma(X, Im(Q^*))$. For $K = \{\varphi(z)dz \in \Omega_X | Res_{A_j}(\varphi(z)dz, m) = 0, j = 1, 2, ..., n\}$, we have

Corollary 5

$$\Gamma(X,K)/\Gamma(X,Im(Q^*)) \cong Span\{p_0(z),\ldots,p_{r-n-1}(z)\}.$$

That is, a differential form $\varphi(z)dz$ which satisfy $\operatorname{Res}_{A_j}(\varphi(z)dz,m) = 0$ and $\deg \varphi(z) \leq r-1$ can be written in a linear combination of $p_0(z)dz, \ldots, p_{r-n-1}(z)dz$.

3 Algorithm

We derive algorithms for computing residues of a rational function by using the results presented in th last section.

Let u(z) = h(z)/q(z) be a rational function where h(z) and q(z) are polynomials in $\mathbf{Q}[z]$ with deg $h(z) < \deg q(z) = r$. Denote by *n* the number of different zeros of u(z). Let $q_s(z)$ be the square free part of q(z). The degree of $q_s(z)$ is equal to *n*.

Now we introduce three vector spaces:

$$\begin{split} E &= \{e(z) \in \mathbf{Q}[z] | \deg e(z) < r, \ e(z)/q(z) \text{ has at most simple poles} \}, \\ F &= \{f(z) \in \mathbf{Q}[z] | \deg f(z) < r, \ Res_{A_j}(\frac{f(z)}{q(z)}dz) = 0, \ j = 1, \dots, n\}, \\ G &= \{g(z) \in \mathbf{Q}[z] | \deg g(z) < r\}. \end{split}$$

The dimensions of these spaces are deg E = n, deg F = r - n and deg G = r, respectively. We use the vector space G to represent the quotient space $\mathbf{Q}[z]/\langle q(z) \rangle$ which is identified with

$$\{\varphi(z)dz|\varphi(z)\in \mathbf{Q}[z]\}/\{(q(z)\phi(z))dz|\phi(z)\in \mathbf{Q}[z]\}.$$

We denote by $srem(s_1, s_2)$ the remainder of the division of a polynomial s_1 by a polynomial s_2 . Let $p_j(z) = srem(P^*z^j, q(z))$.

Then by using the formula (2) in the last section, we get

$$p_j(z) = srem(-q_s(z)jz^{j-1} + q_s(z)\frac{GCD(q(z), q'(z))'}{GCD(q(z), q'(z))}z^j, q(z)).$$

Then we have the next proposition.

Proposition 6

- 1. $G = E \oplus F$.
- 2. $F = Span\{p_0(z), p_1(z), \dots, p_{r-n-1}(z)\}.$

Assume that we have $h(z) = h_E(z) + h_F(z)$, where $h_E(z) \in E$ and $h_F(z) \in F$. Then we have

$$\operatorname{Res}_{A_j}(\frac{h(z)}{q(z)}dz) = \operatorname{Res}_{A_j}(\frac{h_E(z)}{q(z)}dz).$$

We use it to reduce the computation to a simple case.

3.1 Algorithm(A1)

Recall that q(z)/GCD(q(z), q'(z)) is the squarefree part $q_s(z)$ of q(z). Then we have the following formula:

$$\frac{b(z)}{q_s(z)} = \frac{GCD(q(z), q'(z)) \cdot b(z)}{q(z)},\tag{3}$$

with $b(z) \in \mathbb{Q}[z]$. Since $\{GCD(q(z), q'(z))z^{\ell}, \ell = 0, \dots, n-1\}$ constitutes a basis of the vector space E, we can express h(z) in the form

$$h(z) = h_E(z) + h_F(z), h_E(z) \in E \text{ and } h_F(z) \in F,$$

where $h_E(z) = GCD(q(z), q'(z)) \cdot b(z)$ with deg b(z) < n and $h_F(z) = \sum_{k=0}^{r-n-1} a_k p_k(z)$. ¿From Theorem 2 and the formula (3), we have

$$\operatorname{Res}(\frac{h(z)}{q(z)}dz) = \operatorname{Res}(\frac{h_F(z)}{q(z)}dz)$$
$$= \operatorname{Res}(\frac{b(z)}{q_s(z)}dz)$$

Since $b(z)/q_s(z)$ is a rational function with poles of order one, the residue at $z = \alpha \in A$ is equal to $b(\alpha)/q'_s(\alpha)$. Let *I* be the ideal of $\mathbf{Q}[z,t]$ generated by $q_s(z)$ and $b(z) - tq'_s(z)$ where *t* is a new indeterminate. Let $g_1(t)$ be a generator of the ideal $I \cap \mathbf{Q}[t]$. Then residues of u(z) satisfy the equation $g_1(t) = 0$.

$\operatorname{Algorithm}(A1)$

Input: polynomials $q(z), h(z) \in \mathbf{Q}[z]$ with deg $h(z) < \deg q(z)$ $q_s(z) \leftarrow \frac{q(z)}{GCD(q(z), q'(z))}$ $r \leftarrow \deg q(z)$ $n \leftarrow \deg q_s(z)$ for j = 0 to r - n - 1 $p_j(z) \leftarrow srem(-q_s(z)jz^{j-1} + q_s(z)\frac{GCD(q(z), q'(z))'}{GCD(q(z), q'(z))}z^j, q(z))$ $H \leftarrow h(z) - \sum_{j=0}^{r-n-1} a_j p_j(z) - GCD(q(z), q'(z)) \sum_{\ell=0}^{n-1} b_\ell z^\ell$ $(a_0, \dots, a_{r-n-1}, b_0, \dots, b_{n-1}) \leftarrow solve(coefficient(H, z^k) = 0, 0 \le k \le r - 1)$ $I \leftarrow \langle q_s(z), \sum_{\ell=0}^{n-1} b_\ell z^\ell - t \cdot q'_s(z) \rangle$ $\{g_1(t), g_2(t, z)\} \leftarrow$ the Gröbner basis of I with respect to the lexicographic order $z \succ t$ Output: $b(z)/q_s(z), g_1(t)$

Note that the Grönber basis of I with respect to the lexicographic order $z \succ t$ consists of two polynomials $g_1(t)$ and $g_2(t,z)$ where $g_1(t)$ is an univariate polynomial of t of degree n and $g_2(t,z)$ is a polynomial of (t,z).

Localization: Let $q(z) = q_1^{\gamma_1}(z) \cdots q_N^{\gamma_N}(z)$ be the squarefree factorization. Let us compute residues at $q_j(z) = 0$ for some j. Since $q_j(z)$ and $\prod_{\ell \neq j} q_\ell(z)$ are linearly independent, we can compute polynomials A(z) and B(z) such that $A(z)q_j(z) + B(z)\prod_{\ell \neq j} q_\ell(z) = 1$ by using the extended Euclidean algorithm. Then we have

$$\frac{1}{\prod_{\ell \neq j} q_{\ell}(z)} = B(z) + A(z) \frac{q_j(z)}{\prod_{\ell \neq j} q_{\ell}(z)}$$

For $z = \beta$ so that $q_j(\beta) = 0$, we have $1/\prod_{\ell \neq j} q_\ell(\beta) = B(\beta)$. Since $q'_s(z) = q'_j(z) \prod_{\ell \neq j} q_\ell(z) + q_j(z)(\prod_{\ell \neq j} q_\ell(z))'$, the residue of u(z) at $z = \beta$ is given by $(b(\beta)B(\beta))/q'_j(\beta)$. Thus we obtain the equation for residues as follows:

Let I_j be the ideal of $\mathbf{Q}[z, t]$ generated by $q_j(z)$ and $b(z)B(z) - tq'_j(z)$ where t is a new indeterminate t. Let $g_{1j}(t)$ be a generator of the ideal $I \cap \mathbf{Q}[t]$. Then residues of u(z) at $q_j(z) = 0$ satisfy the equation $g_{1j}(t) = 0$.

We can also obtain the localization of (A1) by using the primary decomposition of $\{g_1(t), g_2(t, z)\}$ in Algorithm(A1).

Algorithm(A2)3.2

In Algorithm (A2), we take advantage of the fact that the logarithmic derivative of q(z) has only simple poles. Let $e_{\ell}(z)$ be the remainder of the division of $q'(z)z^{\ell}$ by q(z)for $\ell = 0, \ldots, n-1$. Then, by Corolary 1 of Theorem 2, we have $\{p_0(z), \ldots, p_{r-n-1}(z), \ldots, p_{r-n-1}(z)\}$ $e_0(z), \ldots, e_{n-1}(z)$ as the basis of G. Thus, we can decompose h(z) into

$$h(z) = \sum_{j=0}^{r-n-1} a_j p_j(z) + \sum_{\ell=0}^{n-1} b_\ell e_\ell(z).$$
(4)

Then we have

$$\operatorname{Res}(\frac{h(z)}{q(z)}dz) = \operatorname{Res}(\frac{\sum_{\ell=0}^{n-1} b_{\ell}e_{\ell}(z)}{q(z)}dz),$$

which equals to $\operatorname{Res}((\frac{q'(z)}{q(z)}\sum_{\ell=0}^{n-1}b_{\ell}z^{\ell})dz).$ Let $q(z) = q_1^{\gamma_1}(z)\cdots q_N^{\gamma_N}(z)$ be the squarefree factorization. Let $b_j(z)$ the remainder of the division of $\sum_{\ell=0}^{n-1} b_{\ell} z^{\ell}$ by $q_j(z), j = 1, \ldots, N$. The residue of u(z) at β with $q_j(\beta) = 0$ is equal to $\gamma_j b_j(\beta)$. Thus, we can compute residues in the following manner:

Let I_j be the ideal of $\mathbf{Q}[z,t]$ generated by $q_j(z)$ and $\gamma_j b_j(z) - t$. The Gröbner basis of I_j with respect to the lexicographic order $z \succ t$ is given by two polynomials $g_{j1}(t)$ and $g_{j2}(t,z)$ where $g_{j1}(t)$ is a polynomial of t with $\deg g_{j1}(t) = \deg q_j(z)$ and $g_{j2}(t,z)$ is a polynomial of t and z. Then $g_{i1}(t) = 0$ is the equation for residues of u(z) at $q_i(z) = 0$.

$\operatorname{Algorithm}(A2)$

Input $q(z), h(z) \in \mathbf{Q}[z]$ with deg $h(z) < \deg q(z)$ $q_1^{\gamma_1}(z) \cdots q_N^{\gamma_N}(z) \leftarrow$ squarefree factorization of q(z) $q_s(z) \leftarrow \frac{q(z)}{GCD(q(z), q'(z))}$ $r \leftarrow \deg q(z)$ $n \leftarrow \deg q_s(z)$ for j = 0 to r - n - 1 $p_j(z) \leftarrow srem(-q_s(z)jz^{j-1} + q_s(z)\frac{GCD(q(z),q'(z))'}{GCD(q(z),q'(z))})z^j,q(z))$ for $\ell = 1$ to N $e_{\ell}(z) \leftarrow srem(q'(z)z^{\ell}, q(z))$ $H \leftarrow h(z) - \sum_{j=0}^{r-n-1} a_j p_j(z) + \sum_{\ell=0}^{n-1} b_\ell e_\ell$ $(a_0, \ldots, a_{r-n-1}, b_0, \ldots, b_{n-1}) \leftarrow \text{solve}(\text{coefficient}(H, z^k), 0 \le k \le r-1)$ for i = 1 to N $b_i(z) \leftarrow srem(\sum_{\ell=0}^{n-1} b_\ell z^\ell, q_j(z))$ $I_i \leftarrow \langle q_i(z), \gamma_i b_i(z) - t \rangle$ $\{g_{j1}(t), g_{j2}(t, z)\} \leftarrow$ Gröbner basis of I_j with respect to the lexicographic order $z \succ t$ Output $\{g_{11}(t) = 0, g_{12}(t, z) = 0\}, \dots, \{g_{N1}(t) = 0, g_{N2}(t, z) = 0\}$

4 Example

Let us compute residues of $u(z) = \frac{(z^3 + z + 1)^3}{z^4(z^2 + 1)^3}$. Put $m = 1/q(z) \mod \mathcal{O}_X$ for $q(z) = z^4(z^2 + 1)^3$. Then the annihilator ideal $\mathcal{A}nn$ of m is generated by

$$P = (z^3 + z)\frac{d}{dz} + 10z^2 + 4$$
 and $Q = z^{10} + 3z^8 + 3z^6 + z^4$.

We have

$$P^* = (-z^3 - z)\frac{d}{dz} + 7z^2 + 3$$
 and $Q^* = z^{10} + 3z^8 + 3z^6 + z^4$.

The squarefree part of q(z) is $q_s(z) = z(z^2 + 1)$. Then dim F(=10-3) = 7. The Corolary 1 of Theorem 2 implies that $\{p_k(z), k = 0, ..., 6\}$ is a basis of F, where $p_0(z) = 7z^2 + 3$, $p_1(z) = 6z^3 + 2z$, $p_2(z) = 5z^4 + z^2$, $p_3(z) = 4z^5$, $p_4(z) = 3z^6 - z^4$, $p_5(z) = 2z^7 - 2z^5$, $p_6(z) = z^8 - 3z^6$.

Along (A1) We have $GCD(q(z), q'(z)) = z^7 + 2z^5 + z^3$. Then

$$(z^{3} + z + 1)^{3} = \frac{1}{3}p_{0}(z) + \frac{3}{2}p_{1}(z) + \frac{2}{3}p_{2}(z) + \frac{9}{2}p_{3}(z) - \frac{31}{24}p_{4}(z) + 3p_{5}(z) - \frac{11}{8}p_{6}(z) + GCD(q(z), q'(z)) \cdot (z^{2} + \frac{11}{8}z - 5)$$

Let I be the ideal generated by $(z^2 + 1)z$ and $(z^2 + \frac{11}{8}z - 5) - t \cdot (3z^2 + 1)$. The Gröbner basis of I with respect to the lexicographic order $z \succ t$ is given by

$$\{-256t^3 + 256t^2 + 5255t - 12125, 181555z + 32768t^2 + 67472t - 481840\}.$$

Thus we have

$$-256t^{3} + 256t^{2} + 5255t - 12125 = -(t+5)(256t^{2} - 1536t + 2425) = 0$$

as the equation for residues.

Since the primary decomposition of I is given by

$$\langle t+5, z \rangle, \langle 256t^2 - 1536t + 2425, 11z + 16t - 48 \rangle,$$

we have $\operatorname{Res}_{z=0}(u(z)dz) = -5.$

Along (A2) Since $q'(z) = 10z^9 + 24z^7 + 18z^5 + 4z^3$, we have

 $\begin{array}{rcl} e_0(z) &=& 10z^9+24z^7+18z^5+4z^3,\\ e_1(z) &=& -6z^8-12z^6-6z^4,\\ e_2(z) &=& -6z^9-12z^7-6z^5. \end{array}$

From

$$(z^3 + z + 1)^3 = \frac{1}{3}p_0(z) + \frac{3}{2}p_1(z) + \frac{2}{3}p_2(z) + \frac{9}{2}p_3(z) - \frac{31}{24}p_4(z) + 3p_5(z) - \frac{11}{8}p_6(z) + (-\frac{9}{4}e_2(z) - \frac{11}{48}e_1(z) - \frac{5}{4}e_0(z)),$$

we have $b(z) = -\frac{9}{4}z^2 - \frac{11}{48}z - \frac{5}{4}$. Since the point z = 0 is the pole of order 4 and $b_1(z) = -\frac{5}{4}$, we have

$$\operatorname{Res}_{z=0}(u(z)dz) = 4 \cdot (-\frac{5}{4}) = -5$$

as the residue of u(z) at z = 0.

The points $z^2 + 1 = 0$ are poles of order 3 of and $b_2(z) = -\frac{11}{48}z + 1$. Denote by I_2 the ideal generated by $z^2 + 1$ and $3(-\frac{11}{48}z + 1) - t$. The Gröbner basis of I_2 with respect to the lexicographic order $z \succ t$ is given by

$$\{-256t^2 + 1536t - 2425, -11z - 16t + 48\}.$$

Thus we have $-256t^2 + 1536t - 2425 = 0$ as the equation for residues at $z^2 + 1 = 0$.

5 Summary

For a given rational function, we gave two algorithms (A1) and (A2) for computing residues. As a rational function which has only simple poles, we utilized a rational function with a squarefree denominator in (A1) and a logarithmic derivative in (A2). By generalizing the Algorithm (A2), we have constructed an algorithm for computing the Grothendieck residue in [5].

References

- M. Kashiwara, On the maximally overdetermined system of linear differential equations, I, Publ. RIMS, Kyoto Univ., 10 (1975), 563–579.
- [2] M. Kashiwara, On the holonomic systems of linear differntial equations, II, Inventiones mathematicae 49 (1978), 121–135.
- [3] J. Briançon et Ph. Masonobe, Idéaux de germes d'opérateur différentiels à une variable, L'Enseignement Math. 30 (1984), 7–38.
- [4] S. Tajima and Y. Nakamura, Residue calculus with differential operator, Kyushu J. of Math. 53 (1999), to appear.
- [5] S. Tajima and Y. Nakamura, Computing the residues of functions of several variables Sûrikaiseki Kenkyûsyo Kôkyûroku, RIMS Kyoto Univ., 1085 (1999), 71–81.

- [6] S. Tajima and Y. Nakamura, Residue calculus and Horowitz's algorithm for rational function by using differential operators, Sûrikaiseki Kenkyûsyo Kôkyûroku, RIMS Kyoto Univ., 1038 (1998), 23–30.
- [7] S. Tajima, T. Oaku and Y. Nakamura, Multidimensional local residues and holonomic D-modules, Sûrikaiseki Kenkyûsyo Kôkyûroku, RIMS Kyoto Univ., 1033 (1998), 59– 70.
- [8] D. Lazard and R. Rioboo, Integration of rational functions: rational computation of the logarithmic part, J. Symbolic Comput. 9 (1990), 113-115.
- [9] G. Czichowski, A note on gröbner bases and integration of rational functions, J. Symbolic Comput. 20 (1995), 163-167.