An algorithm for computing the residue of a rational function via \mathcal{D}-modules

Yayoi Nakamura* Shinichi Tajima
Ochanomizu Univ.
Niigata Univ.

In a previous paper [4], we studied residues of a rational function from a view point of D-modules. We considered the system of linear differential equations for the algebraic local cohomology class associated to a given rational function. In particular, we gave there a description of the kernel space of the residue map induced by the cohomology class in terms of adjoint differential operators.

In this paper, we present algorithms for computing residues of a rational function according to the results obtained in [4]. By exploiting properties of adjoint differential operators, we reduce the computation of residues of a rational function to that of a rational function which has simple poles.

In the first section, we recall some facts about D-modules and the algebraic local cohomology groups for the one dimensional case. In the second section, we briefly recall the main results obtained in [4]. In the third section, we describe two algorithms for computing residues of a rational function. We utilize a formula for a squarefree denominator and properties of a logarithmic derivative in each algorithms.

1 D-module and Algebraic local cohomology

Let X be the complex plane $\mathbf{C}, \mathcal{O}_{X}$ the sheaf of holomorphic functions on X. Let A be a set of finitely many points $z=\alpha_{1}, \ldots, \alpha_{n}$ on X. The sheaf $\mathcal{O}_{X}\langle * A\rangle / \mathcal{O}_{X}$ can be understood as the sheaf of principal parts of the meromorphic functions at A . Let \mathcal{D}_{X} be the sheaf of rings on X of linear differential operators of finite order with holomorphic coefficients. Then $\mathcal{O}_{X}\langle * A\rangle / \mathcal{O}_{X}$ is naturally endowed with a structure of \mathcal{D}_{X}-module.

Moreover, we have the following isomorphism.

$$
\begin{equation*}
\mathcal{H}_{[A]}^{1}\left(\mathcal{O}_{X}\right) \simeq \mathcal{O}_{X}\langle * A\rangle / \mathcal{O}_{X} . \tag{1}
\end{equation*}
$$

[^0]Let us illustrate some fundamental properties of the algebraic local cohomology group as \mathcal{D}_{X}-module by using the Dirac's delta function $\delta(z)=\frac{1}{z} \bmod \mathcal{O}_{X}$, which belongs to the algebraic local cohomology group $\mathcal{H}_{[0]}^{1}\left(\mathcal{O}_{X}\right)$ with support at $z=0$. ¿From $\left(\frac{d}{d z}\right)^{k} \frac{1}{z}=$ $(-1)^{k} \frac{k!}{z^{k+1}}$, we see that $\mathcal{H}_{[0]}^{1}\left(\mathcal{O}_{X}\right)$ is generated by $\delta(z)$ over \mathcal{D}_{X}. The annihilators of $\delta(z)$ is generated by the multiplication operator z as an ideal over \mathcal{D}_{X}. We arrive at the following representation :

$$
\mathcal{H}_{[0]}^{1}\left(\mathcal{O}_{X}\right)=\mathcal{D}_{X} / \mathcal{D}_{X} z
$$

Moreover, we have the following fact.

FACT

$$
\mathcal{H}_{[0]}^{1}\left(\mathcal{O}_{X}\right) \text { is simple as } \mathcal{D}_{X} \text {-module }
$$

To see this fact, by example, we put $\sigma(z)=\frac{1}{z^{2}}+\frac{3}{z} \bmod \mathcal{O}_{X}$. Then we have $\delta(z)=$ $z \sigma(z)$ and $\sigma(z)=\left(-\frac{d}{d z}+3\right) \delta(z)$. Thus, the cohomology class $\sigma(z)$ also generates $\mathcal{H}_{[0]}^{1}\left(\mathcal{O}_{X}\right)$. Moreover the annihilator ideal of $\sigma(z)$ over \mathcal{D}_{X} is generated by $z \frac{d}{d z}-3 z+2$ and z^{2}. Thus we have

$$
\mathcal{H}_{[0]}^{1}\left(\mathcal{O}_{X}\right)=\mathcal{D}_{X} / \mathcal{D}_{X}\left(z \frac{d}{d z}-3 z+2\right)+\mathcal{D}_{X} z^{2}
$$

In general, the principal part of a meromorphic function defines an element of the first algebraic local cohomology group with support at the poles and that, it is characterized by the annihilators.

2 Construction and properties of annihilator ideal

Let $q(z)=\left(z-\alpha_{1}\right)^{r_{1}} \cdots\left(z-\alpha_{n}\right)^{r_{n}}$ and $w(z)=1 / q(z)$. Denote by m the residue class $w(z) \bmod \mathcal{O}_{X} \in \mathcal{O}_{X}\langle * A\rangle / \mathcal{O}_{X}$, where $A=\left\{z \in \mathbb{C} \mid z=\alpha_{j}, j=1, \ldots, n\right\}$. Then, in view of the isomorphism (1), m is an element of the algebraic local cohomology group $\mathcal{H}_{[A]}^{1}\left(\mathcal{O}_{X}\right)$ with support at A. Denote by $\mathcal{A} n n$ the set of annihilators of m as \mathcal{D}_{X}-module, $\mathcal{A} n n=\left\{R \in \mathcal{D}_{X} \mid R m=0\right\}$. This is a sheaf of left ideals of \mathcal{D}_{X}.

Put $A_{j}=\left\{\alpha_{j}\right\}, j=1, \ldots, n$. Then the algebraic local cohomology group $\mathcal{H}_{[A]}^{1}\left(\mathcal{O}_{X}\right)$ has a direct sum decomposition by algebraic local cohomology groups with support at each A_{j}, i.e.,

$$
\mathcal{H}_{[A]}^{1}\left(\mathcal{O}_{X}\right)=\mathcal{H}_{\left[A_{1}\right]}^{1}\left(\mathcal{O}_{X}\right) \oplus \cdots \oplus \mathcal{H}_{\left[A_{n}\right]}^{1}\left(\mathcal{O}_{X}\right)
$$

Consequently, for given m, there exist local cohomology classes $m_{j} \in \mathcal{H}_{\left[A_{j}\right]}^{1}\left(\mathcal{O}_{X}\right), j=$ $1, \ldots, n$ so that $m=m_{1}+\ldots+m_{n}$.

The following Theorem asserts that the left ideal $\mathcal{A} n n$ characterizes m_{j}, up to constants.

Theorem 1

([4]) Let $\mathcal{A} n n$ be the annihilator ideal of the algebraic local cohomology class m. Then we have

$$
\left\{f \in \mathcal{H}_{\left[A_{j}\right]}^{1}\left(\mathcal{O}_{X}\right) \mid R f=0,{ }^{\forall} R \in \mathcal{A} n n\right\}=\left\{c m_{j} \mid c \in \mathbb{C}\right\} .
$$

Moreover, $\mathcal{A} n n$ is generated by the following differential operators P and Q with polynomial coefficients.

$$
\begin{gathered}
P=\left(\prod_{j}\left(z-\alpha_{j}\right)\right) \frac{d}{d z}+\sum_{j} r_{j}\left(\prod_{\ell \neq j}\left(z-\alpha_{\ell}\right)\right), \\
Q=\left(z-\alpha_{1}\right)^{r_{1}} \cdots\left(z-\alpha_{n}\right)^{r_{n}} .
\end{gathered}
$$

That is, the principal part m_{j} at each pole A_{j} is characterized as a solution of the following homogeneous differential equations:

$$
P f=Q f=0, \quad f \in \mathcal{H}_{[0]}^{1}\left(\mathcal{O}_{X}\right)
$$

Denote by $q^{\prime}(z)$ the derivative of $q(z)$. Then $q(z) / G C D\left(q(z), q^{\prime}(z)\right)$ is the squarefree part of $q(z)$, where $G C D\left(q(z), q^{\prime}(z)\right)$ is the greatest common divisor of $q(z)$ and $q^{\prime}(z)$. Thus, the differential operator P in Theorem 1 is written in the following form:

Proposition 2

$$
P=\frac{q(z)}{G C D\left(q(z), q^{\prime}(z)\right)} \frac{d}{d z}+\frac{q^{\prime}(z)}{G C D\left(q(z), q^{\prime}(z)\right)} .
$$

For a differential operator $R=\sum_{j} a_{j}(z)\left(\frac{d}{d z}\right)^{j}$ with holomorphic coefficients $a_{j}(z)$, we can define the formal adjoint operator R^{*} of R by $R^{*}=\sum_{j}\left(-\frac{d}{d z}\right)^{j} a_{j}(z)$. Denote by Ω_{X} the sheaf of holomorphic differential forms on X. For $\psi(z) d z \in \Omega_{X}$, we define the action of a differential operator $R \in \mathcal{D}_{X}$ from right by

$$
(\psi(z) d z) R=\left(R^{*} \psi(z)\right) d z .
$$

Then, Ω_{X} has the structure of right \mathcal{D}_{X}-module. From Proposition 1, we have the following result.

Proposition 3

$$
\begin{equation*}
P^{*}=-\frac{q(z)}{G C D\left(q(z), q^{\prime}(z)\right)} \frac{d}{d z}+\frac{q(z)}{G C D\left(q(z), q^{\prime}(z)\right)} \frac{G C D\left(q(z), q^{\prime}(z)\right)^{\prime}}{G C D\left(q(z), q^{\prime}(z)\right)} . \tag{2}
\end{equation*}
$$

For a holomorphic differential form $\psi(z) d z \in \Omega_{X}$, let us consider residues of the differential form $\psi(z) w(z) d z$ at A_{j}. For this purpose, we look at the following linear mapping $\operatorname{Res}_{A_{i}}(\cdot, m)$ from Ω_{X} to \mathbf{C} defined by

$$
\begin{array}{cccc}
\operatorname{Res}_{A_{j}}(\cdot, m): & \Omega_{X} & \rightarrow & \mathbf{C} \\
& \psi(z) d z & \mapsto & \operatorname{Res}_{A_{j}}(\psi(z) d z, m)
\end{array}
$$

where $m=w(z) \bmod \mathcal{O}_{X}$ and $\operatorname{Res}_{A_{j}}(\psi(z) d z, m)=\operatorname{Res}_{A_{j}}(\psi(z) m d z)$ which is equal to the residue of a meromorphic differential form $(\psi(z) / q(z)) d z$ at A_{j}.

Since $R m=0$ holds for any $R \in \mathcal{A} n n$, we have

$$
\operatorname{Res}_{A_{j}}\left(\left(R^{*} \psi(z)\right) d z, m\right)=\operatorname{Res}_{A_{j}}(\psi(z) d z, R m)=0 .
$$

Theorem 4

([4]) Put $K=\left\{\varphi(z) d z \in \Omega_{X} \mid \operatorname{Res}_{A_{j}}(\varphi(z) d z, m)=0, j=1,2, \ldots, n\right\}$. Then we have

$$
K=\left\{\left(R^{*} \phi(z)\right) d z \mid R \in \mathcal{A} n n, \phi(z) d z \in \Omega_{X}\right\} .
$$

Put $r=\operatorname{deg} q(z)$. Let $p_{j}(z)$ be the image of $z^{j}(j=0,1, \ldots, r-n-1)$ by P^{*} in $\Gamma\left(X, \Omega_{X}\right) / \Gamma\left(X, \operatorname{Im}\left(Q^{*}\right)\right)$. For $K=\left\{\varphi(z) d z \in \Omega_{X} \mid \operatorname{Res}_{A_{j}}(\varphi(z) d z, m)=0, j=1,2, \ldots, n\right\}$, we have

Corollary 5

$$
\Gamma(X, K) / \Gamma\left(X, \operatorname{Im}\left(Q^{*}\right)\right) \cong \operatorname{Span}\left\{p_{0}(z), \ldots, p_{r-n-1}(z)\right\}
$$

That is, a differential form $\varphi(z) d z$ which satisfy $\operatorname{Res}_{A_{j}}(\varphi(z) d z, m)=0$ and $\operatorname{deg} \varphi(z) \leq$ $r-1$ can be written in a linear combination of $p_{0}(z) d z, \ldots, p_{r-n-1}(z) d z$.

3 Algorithm

We derive algorithms for computing residues of a rational function by using the results presented in th last section.

Let $u(z)=h(z) / q(z)$ be a rational function where $h(z)$ and $q(z)$ are polynomials in $\mathrm{Q}[z]$ with $\operatorname{deg} h(z)<\operatorname{deg} q(z)=r$. Denote by n the number of different zeros of $u(z)$. Let $q_{s}(z)$ be the square free part of $q(z)$. The degree of $q_{s}(z)$ is equal to n.

Now we introduce three vector spaces:

$$
\begin{gathered}
E=\{e(z) \in \mathbf{Q}[z] \mid \operatorname{deg} e(z)<r, e(z) / q(z) \text { has at most simple poles }\}, \\
F=\left\{f(z) \in \mathbf{Q}[z] \mid \operatorname{deg} f(z)<r, \operatorname{Res}_{A_{j}}\left(\frac{f(z)}{q(z)} d z\right)=0, j=1, \ldots, n\right\}, \\
G=\{g(z) \in \mathbf{Q}[z] \mid \operatorname{deg} g(z)<r\}
\end{gathered}
$$

The dimensions of these spaces are $\operatorname{deg} E=n, \operatorname{deg} F=r-n$ and $\operatorname{deg} G=r$, respectively. We use the vector space G to represent the quotient space $\mathbf{Q}[z] /\langle q(z)\rangle$ which is identified with

$$
\{\varphi(z) d z \mid \varphi(z) \in \mathbb{Q}[z]\} /\{(q(z) \phi(z)) d z \mid \phi(z) \in \mathbf{Q}[z]\}
$$

We denote by $\operatorname{srem}\left(s_{1}, s_{2}\right)$ the remainder of the division of a polynomial s_{1} by a polynomial s_{2}. Let $p_{j}(z)=\operatorname{srem}\left(P^{*} z^{j}, q(z)\right)$.

Then by using the formula (2) in the last section, we get

$$
p_{j}(z)=\operatorname{srem}\left(-q_{s}(z) j z^{j-1}+q_{s}(z) \frac{G C D\left(q(z), q^{\prime}(z)\right)^{\prime}}{G C D\left(q(z), q^{\prime}(z)\right)} z^{j}, q(z)\right) .
$$

Then we have the next proposition.

Proposition 6

1. $G=E \oplus F$.
2. $F=\operatorname{Span}\left\{p_{0}(z), p_{1}(z), \ldots, p_{r-n-1}(z)\right\}$.

Assume that we have $h(z)=h_{E}(z)+h_{F}(z)$, where $h_{E}(z) \in E$ and $h_{F}(z) \in F$. Then we have

$$
\operatorname{Res}_{A_{j}}\left(\frac{h(z)}{q(z)} d z\right)=\operatorname{Res}_{A_{j}}\left(\frac{h_{E}(z)}{q(z)} d z\right)
$$

We use it to reduce the computation to a simple case.

3.1 Algorithm (A1)

Recall that $q(z) / G C D\left(q(z), q^{\prime}(z)\right)$ is the squarefree part $q_{s}(z)$ of $q(z)$. Then we have the following formula:

$$
\begin{equation*}
\frac{b(z)}{q_{s}(z)}=\frac{G C D\left(q(z), q^{\prime}(z)\right) \cdot b(z)}{q(z)} \tag{3}
\end{equation*}
$$

with $b(z) \in \mathbb{Q}[z]$. Since $\left\{G C D\left(q(z), q^{\prime}(z)\right) z^{\ell}, \ell=0, \ldots, n-1\right\}$ constitutes a basis of the vector space E, we can express $h(z)$ in the form

$$
h(z)=h_{E}(z)+h_{F}(z), h_{E}(z) \in E \text { and } h_{F}(z) \in F
$$

where $h_{E}(z)=G C D\left(q(z), q^{\prime}(z)\right) \cdot b(z)$ with $\operatorname{deg} b(z)<n$ and $h_{F}(z)=\sum_{k=0}^{r-n-1} a_{k} p_{k}(z)$. ¿From Theorem 2 and the formula (3), we have

$$
\begin{aligned}
\operatorname{Res}\left(\frac{h(z)}{q(z)} d z\right) & =\operatorname{Res}\left(\frac{h_{F}(z)}{q(z)} d z\right) \\
& =\operatorname{Res}\left(\frac{b(z)}{q_{s}(z)} d z\right)
\end{aligned}
$$

Since $b(z) / q_{s}(z)$ is a rational function with poles of order one, the residue at $z=\alpha \in A$ is equal to $b(\alpha) / q_{s}^{\prime}(\alpha)$. Let I be the ideal of $\mathrm{Q}[z, t]$ generated by $q_{s}(z)$ and $b(z)-t q_{s}^{\prime}(z)$ where t is a new indeterminate. Let $g_{1}(t)$ be a generator of the ideal $I \cap \mathbf{Q}[t]$. Then residues of $u(z)$ satisfy the equation $g_{1}(t)=0$.

Algorithm(A1)
Input: polynomials $q(z), h(z) \in \mathbf{Q}[z]$ with $\operatorname{deg} h(z)<\operatorname{deg} q(z)$

$$
\begin{aligned}
& q_{s}(z) \leftarrow \frac{q(z)}{G C D\left(q(z), q^{\prime}(z)\right)} \\
& r \leftarrow \operatorname{deg} q(z) \\
& n \leftarrow \operatorname{deg} q_{s}(z) \\
& \text { for } j=0 \text { to } r-n-1 \\
& \quad p_{j}(z) \leftarrow \operatorname{srem}\left(-q_{s}(z) j z^{j-1}+q_{s}(z) \frac{G C D\left(q(z), q^{\prime}(z)\right)^{\prime}}{G C D\left(q(z), q^{\prime}(z)\right)} z^{j}, q(z)\right) \\
& H \leftarrow h(z)-\sum_{j=0}^{r-n-1} a_{j} p_{j}(z)-G C D\left(q(z), q^{\prime}(z)\right) \sum_{\ell=0}^{n-1} b_{\ell} z^{\ell} \\
& \left(a_{0}, \ldots, a_{r-n-1}, b_{0}, \ldots, b_{n-1}\right) \leftarrow \operatorname{solve}\left(\operatorname{coefficient}\left(H, z^{k}\right)=0,0 \leq k \leq r-1\right) \\
& I \leftarrow\left\langle q_{s}(z), \sum_{\ell=0}^{n-1} b_{\ell} z^{\ell}-t \cdot q_{s}^{\prime}(z)\right\rangle
\end{aligned}
$$

$\left\{g_{1}(t), g_{2}(t, z)\right\} \leftarrow$ the Gröbner basis of I with respect to the lexicographic order $z \succ t$
Output: $b(z) / q_{s}(z), g_{1}(t)$
Note that the Grönber basis of I with respect to the lexicographic order $z \succ t$ consists of two polynomials $g_{1}(t)$ and $g_{2}(t, z)$ where $g_{1}(t)$ is an univariate polynomial of t of degree n and $g_{2}(t, z)$ is a polynomial of (t, z).

Localization: Let $q(z)=q_{1}^{\gamma_{1}}(z) \cdots q_{N}^{\gamma_{N}}(z)$ be the squarefree factorization. Let us compute residues at $q_{j}(z)=0$ for some j. Since $q_{j}(z)$ and $\prod_{\ell \neq j} q_{\ell}(z)$ are linearly independent, we can compute polynomials $A(z)$ and $B(z)$ such that $A(z) q_{j}(z)+B(z) \prod_{\ell \neq j} q_{\ell}(z)=1$ by using the extended Euclidean algorithm. Then we have

$$
\frac{1}{\prod_{\ell \neq j} q_{\ell}(z)}=B(z)+A(z) \frac{q_{j}(z)}{\prod_{\ell \neq j} q_{\ell}(z)} .
$$

For $z=\beta$ so that $q_{j}(\beta)=0$, we have $1 / \prod_{\ell \neq j} q_{\ell}(\beta)=B(\beta)$. Since $q_{s}^{\prime}(z)=q_{j}^{\prime}(z) \prod_{\ell \neq j} q_{\ell}(z)+$ $q_{j}(z)\left(\prod_{\ell \neq j} q_{\ell}(z)\right)^{\prime}$, the residue of $u(z)$ at $z=\beta$ is given by $(b(\beta) B(\beta)) / q_{j}^{\prime}(\beta)$. Thus we obtain the equation for residues as follows:

Let I_{j} be the ideal of $\mathbf{Q}[z, t]$ generated by $q_{j}(z)$ and $b(z) B(z)-t q_{j}^{\prime}(z)$ where t is a new indeterminate t. Let $g_{1 j}(t)$ be a generator of the ideal $I \cap \mathbf{Q}[t]$. Then residues of $u(z)$ at $q_{j}(z)=0$ satisfy the equation $g_{1 j}(t)=0$.

We can also obtain the localization of (A1) by using the primary decomposition of $\left\{g_{1}(t), g_{2}(t, z)\right\}$ in Algorithm $(A 1)$.

3.2 Algorithm (A2)

In Algorithm (A2), we take advantage of the fact that the logarithmic derivative of $q(z)$ has only simple poles. Let $e_{\ell}(z)$ be the remainder of the division of $q^{\prime}(z) z^{\ell}$ by $q(z)$ for $\ell=0, \ldots, n-1$. Then, by Corolary 1 of Theorem 2, we have $\left\{p_{0}(z), \ldots, p_{r-n-1}(z)\right.$, $\left.e_{0}(z), \ldots, e_{n-1}(z)\right\}$ as the basis of G. Thus, we can decompose $h(z)$ into

$$
\begin{equation*}
h(z)=\sum_{j=0}^{r-n-1} a_{j} p_{j}(z)+\sum_{\ell=0}^{n-1} b_{\ell} e_{\ell}(z) \tag{4}
\end{equation*}
$$

Then we have

$$
\operatorname{Res}\left(\frac{h(z)}{q(z)} d z\right)=\operatorname{Res}\left(\frac{\sum_{\ell=0}^{n-1} b_{\ell} e_{\ell}(z)}{q(z)} d z\right),
$$

which equals to $\operatorname{Res}\left(\left(\frac{q^{\prime}(z)}{q(z)} \sum_{\ell=0}^{n-1} b_{\ell} z^{\ell}\right) d z\right)$.
Let $q(z)=q_{1}^{\gamma_{1}}(z) \cdots q_{N}^{\gamma_{N}}(z)$ be the squarefree factorization. Let $b_{j}(z)$ the remainder of the division of $\sum_{\ell=0}^{n-1} b_{\ell} z^{\ell}$ by $q_{j}(z), j=1, \ldots, N$. The residue of $u(z)$ at β with $q_{j}(\beta)=0$ is equal to $\gamma_{j} b_{j}(\beta)$. Thus, we can compute residues in the following manner:

Let I_{j} be the ideal of $\mathbf{Q}[z, t]$ generated by $q_{j}(z)$ and $\gamma_{j} b_{j}(z)-t$. The Gröbner basis of I_{j} with respect to the lexicographic order $z \succ t$ is given by two polynomials $g_{j 1}(t)$ and $g_{j 2}(t, z)$ where $g_{j 1}(t)$ is a polynomial of t with $\operatorname{deg} g_{j 1}(t)=\operatorname{deg} q_{j}(z)$ and $g_{j 2}(t, z)$ is a polynomial of t and z. Then $g_{j 1}(t)=0$ is the equation for residues of $u(z)$ at $q_{j}(z)=0$.

Algorithm (A2)
Input $q(z), h(z) \in \mathbf{Q}[z]$ with $\operatorname{deg} h(z)<\operatorname{deg} q(z)$
$q_{1}^{\gamma_{1}}(z) \cdots q_{N}^{\gamma_{N}}(z) \leftarrow$ squarefree factorization of $q(z)$
$q_{s}(z) \leftarrow \frac{q(z)}{G C D\left(q(z), q^{\prime}(z)\right)}$
$r \leftarrow \operatorname{deg} q(z)$
$n \leftarrow \operatorname{deg} q_{s}(z)$
for $j=0$ to $r-n-1$

$$
\left.p_{j}(z) \leftarrow \operatorname{srem}\left(-q_{s}(z) j z^{j-1}+q_{s}(z) \frac{G C D\left(q(z), q^{\prime}(z)\right)^{\prime}}{G C D\left(q(z), q^{\prime}(z)\right)}\right) z^{j}, q(z)\right)
$$

for $\ell=1$ to N
$e_{\ell}(z) \leftarrow \operatorname{srem}\left(q^{\prime}(z) z^{\ell}, q(z)\right)$
$H \leftarrow h(z)-\sum_{j=0}^{r-n-1} a_{j} p_{j}(z)+\sum_{\ell=0}^{n-1} b_{\ell} e_{\ell}$
$\left(a_{0}, \ldots, a_{r-n-1}, b_{0}, \ldots, b_{n-1}\right) \leftarrow \operatorname{solve}\left(\operatorname{coefficient}\left(H, z^{k}\right), 0 \leq k \leq r-1\right)$
for $j=1$ to N
$b_{j}(z) \leftarrow \operatorname{srem}\left(\sum_{\ell=0}^{n-1} b_{\ell} z^{\ell}, q_{j}(z)\right)$
$I_{j} \leftarrow\left\langle q_{j}(z), \gamma_{j} b_{j}(z)-t\right\rangle$
$\left\{g_{j 1}(t), g_{j 2}(t, z)\right\} \leftarrow$ Gröbner basis of I_{j} with respect to the lexicographic order $z \succ t$
Output $\left\{g_{11}(t)=0, g_{12}(t, z)=0\right\}, \ldots,\left\{g_{N 1}(t)=0, g_{N 2}(t, z)=0\right\}$

4 Example

Let us compute residues of $u(z)=\frac{\left(z^{3}+z+1\right)^{3}}{z^{4}\left(z^{2}+1\right)^{3}}$. Put $m=1 / q(z) \bmod \mathcal{O}_{X}$ for $q(z)=$ $z^{4}\left(z^{2}+1\right)^{3}$. Then the annihilator ideal $\mathcal{A} n n$ of m is generated by

$$
P=\left(z^{3}+z\right) \frac{d}{d z}+10 z^{2}+4 \quad \text { and } \quad Q=z^{10}+3 z^{8}+3 z^{6}+z^{4}
$$

We have

$$
P^{*}=\left(-z^{3}-z\right) \frac{d}{d z}+7 z^{2}+3 \quad \text { and } \quad Q^{*}=z^{10}+3 z^{8}+3 z^{6}+z^{4}
$$

The squarefree part of $q(z)$ is $q_{s}(z)=z\left(z^{2}+1\right)$. Then $\operatorname{dim} F(=10-3)=7$. The Corolary 1 of Theorem 2 implies that $\left\{p_{k}(z), k=0, \ldots, 6\right\}$ is a basis of F, where $p_{0}(z)=7 z^{2}+3$, $p_{1}(z)=6 z^{3}+2 z, p_{2}(z)=5 z^{4}+z^{2}, p_{3}(z)=4 z^{5}, p_{4}(z)=3 z^{6}-z^{4}, p_{5}(z)=2 z^{7}-2 z^{5}$, $p_{6}(z)=z^{8}-3 z^{6}$.

Along (A1)

We have $G C D\left(q(z), q^{\prime}(z)\right)=z^{7}+2 z^{5}+z^{3}$. Then

$$
\begin{aligned}
\left(z^{3}+z+1\right)^{3}= & \frac{1}{3} p_{0}(z)+\frac{3}{2} p_{1}(z)+\frac{2}{3} p_{2}(z)+\frac{9}{2} p_{3}(z)--\frac{31}{24} p_{4}(z)+3 p_{5}(z)--\frac{11}{8} p_{6}(z) \\
& +G C D\left(q(z), q^{\prime}(z)\right) \cdot\left(z^{2}+\frac{11}{8} z-5\right)
\end{aligned}
$$

Let I be the ideal generated by $\left(z^{2}+1\right) z$ and $\left(z^{2}+\frac{11}{8} z-5\right)-t \cdot\left(3 z^{2}+1\right)$. The Gröbner basis of I with respect to the lexicographic order $z \succ t$ is given by

$$
\left\{-256 t^{3}+256 t^{2}+5255 t-12125,181555 z+32768 t^{2}+67472 t-481840\right\}
$$

Thus we have

$$
-256 t^{3}+256 t^{2}+5255 t-12125=-(t+5)\left(256 t^{2}-1536 t+2425\right)=0
$$

as the equation for residues.
Since the primary decomposition of I is given by

$$
\langle t+5, z\rangle,\left\langle 256 t^{2}-1536 t+2425,11 z+16 t-48\right\rangle
$$

we have $\operatorname{Res}_{z=0}(u(z) d z)=-5$.
Along (A2)
Since $q^{\prime}(z)=10 z^{9}+24 z^{7}+18 z^{5}+4 z^{3}$, we have

$$
\begin{aligned}
& e_{0}(z)=10 z^{9}+24 z^{7}+18 z^{5}+4 z^{3} \\
& e_{1}(z)=-6 z^{8}-12 z^{6}-6 z^{4} \\
& e_{2}(z)=-6 z^{9}-12 z^{7}-6 z^{5}
\end{aligned}
$$

From

$$
\begin{aligned}
\left(z^{3}+z+1\right)^{3}= & \frac{1}{3} p_{0}(z)+\frac{3}{2} p_{1}(z)+\frac{2}{3} p_{2}(z)+\frac{9}{2} p_{3}(z)--\frac{31}{24} p_{4}(z)+3 p_{5}(z)--\frac{11}{8} p_{6}(z) \\
& +\left(-\frac{9}{4} e_{2}(z)-\frac{11}{48} e_{1}(z)-\frac{5}{4} e_{0}(z)\right)
\end{aligned}
$$

we have $b(z)=-\frac{9}{4} z^{2}-\frac{11}{48} z-\frac{5}{4}$. Since the point $z=0$ is the pole of order 4 and $b_{1}(z)=-\frac{5}{4}$, we have

$$
\operatorname{Res}_{z=0}(u(z) d z)=4 \cdot\left(-\frac{5}{4}\right)=-5
$$

as the residue of $u(z)$ at $z=0$.
The points $z^{2}+1=0$ are poles of order 3 of and $b_{2}(z)=-\frac{11}{48} z+1$. Denote by I_{2} the ideal generated by $z^{2}+1$ and $3\left(-\frac{11}{48} z+1\right)-t$. The Gröbner basis of I_{2} with respect to the lexicographic order $z \succ t$ is given by

$$
\left\{-256 t^{2}+1536 t-2425,-11 z-16 t+48\right\}
$$

Thus we have $-256 t^{2}+1536 t-2425=0$ as the equation for residues at $z^{2}+1=0$.

5 Summary

For a given rational function, we gave two algorithms (A1) and (A2) for computing residues. As a rational function which has only simple poles, we utilized a rational function with a squarefree denominator in (A1) and a logarithmic derivative in (A2). By generalizing the Algorithm (A2), we have constructed an algorithm for computing the Grothendieck residue in [5].

References

[1] M. Kashiwara, On the maximally overdetermined system of linear differenial equations, I, Publ. RIMS, Kyoto Univ., 10 (1975), 563-579.
[2] M. Kashiwara, On the holonomic systems of linear differntial eqauations, II, Inventiones mathematicae 49 (1978), 121-135.
[3] J. Briançon et Ph. Masonobe, Idéaux de germes d'opérateur différentiels à une variable, L'Enseignement Math. 30 (1984), 7-38.
[4] S. Tajima and Y. Nakamura, Residue calculus with differential operator, Kyushu J. of Math. 53 (1999), to appear.
[5] S. Tajima and Y. Nakamura, Computing the residues of functions of several variables Sûrikaiseki Kenkyûsyo Kôkyûroku, RIMS Kyoto Univ., 1085 (1999), 71-81.
[6] S. Tajima and Y. Nakamura, Residue calculus and Horowitz's algorithm for rational function by using differential operators, Sûrikaiseki Kenkyûsyo Kôkyûroku, RIMS Kyoto Univ., 1038 (1998), 23-30.
[7] S. Tajima, T. Oaku and Y. Nakamura, Multidimensional local residues and holonomic D-modules, Sûrikaiseki Kenkyûsyo Kôkyûroku, RIMS Kyoto Univ., 1033 (1998), 5970.
[8] D. Lazard and R. Rioboo, Integration of rational functions: rational computation of the logarithmic part, J. Symbolic Comput. 9 (1990), 113-115.
[9] G. Czichowski, A note on gröbner bases and integration of rational functions, J. Symbolic Comput. 20 (1995), 163-167.

[^0]: *nakamura@math.ocha.ac.jp

