
JOSAI MATHEMATICAL MONOGRAPHS
Vol. 2 (2000) pp. 159 - 168

Automatic Algorithm Stabilization System

HirOShi SEKIGAWA*

NTT Communication Science Laboratories

KiyOShi SHIRAYANAGlf

NTT Communication Science Laboratories

Abstract

We propose a method to automatically convert unstable programs in symbolic com-
putation into stable programs based on the stabilization method proposed by Shirayanagi

and Sweedler. We have implemented a prototype of an automatic algorithm stabilization

system whose target symbolic computation program is Maple, in C Ianguage using lex and

yacc, and have reported experimental results.

1 Introduction

In symbolic computation, it is dangerous to naively use an approximation or numerical

approach. "Reasonably approximate results" cannot be obtained if we simply evaluate an

original algorithm on approximate inputs. This is because, even if a sequence converges

to a given input, the sequence of the outputs for the initial sequence does not necessarily

converge to the true output. We will refer to algorithms that have such instability as

unstable algorithms.

Shirayanagi proposed a method for stabilizing Buchberger's algorithm [9][10]. The

method uses interval computation with "zero rewriting," which is the rule of rewriting an

interval into zero if zero lies within the interval. The underlying ideas of this method were

generalized by Shirayanagi and Sweedler as a theory of stabilizing algebraic algorithms [1l] .

However, until now, the conversion of unstable algorithms into stable ones is carried

out manually. In this paper, we propose a method to carry out this process automatically.

In Section 2, we review the stabilization method. In Section 3, we describe an idea to

automatically stabilize algorithms and show experiments. Finally, in Section 4, we describe

some future directions.

*sekigawa@cslab.kecl,ntt.co, jp

tshirayan@cslab , kecl . ntt , co , j p

l 59

1 60 Procedings of NLA99 (2000)

2 Stabilization Method ReVieW

2.1 Method of Stabilizing Algorithms

In this section, we review the stabilization method. Our approach converts an unstable

algorithrn into a new algorithm. If the new algorithm runs utilizing increasingly accurate

approximate computation, the output will converge to the exact output of the original

algorithm. The stabilization method has three points.

1. The syntactic structure of the algorithm is unchanged.

2. The coefficients are converted to interval-coefficients in the data set.

3. Rewriting is performed prior to predicate evaluation.

Interval-coefiicients are coefncients which have the form of intervals from interval analysis,

see, for example [1]. Steps (1) and (2) coincide with existing interval methods and in

general (1) and (2) alone are not suffcient for stabilization. The key is (3). This is a

method which rewrites an interval to a new interval at the discontinuous point(s) of a

predicate. The discontinuous points of a predicate, such as O in a conditional instruction

"If X = O then . .." , are points where the execution path of the algorithm may branch upon

evaluation of the predicate. A common cause of algorithm instability is that approximate

computation causes a predicate to be evaluated incorrectly and the algorithm runs on

a wrong execution path. Rewriting moderates the effect of predicate discontinuity. It

rewrites an interval-coefficient into (an interval signifying) the discontinuity point itself if

the discontinuity point lies within the interval. Otherwise, rewriting leaves an interval-

coefficient unchanged. This may have the same result as if exact computation with exact

input had been done up until that point. In this case the modified algorithm passes

through the branch-point in the same way as the original algorithm evaluated with exact

computation on the exact input. For further details and more general theory see [1l].

2.2 Manual Conversion of Programs

We utilize the stabilization method to stabilize algorithms. In real numbers or complex

numbers, by transforming a predicate if necessary, we can assume that the discontinuous

points of a predicate are empty or one point zero, and the only necessary rewriting is zero

rewriting, that is, rewriting an interval into zero if zero lies within the interval. Since

the syntactic structures of algorithms are unchanged, a slight modiflcation of programs

is enough for stabilization. We need to make functions that correspond to arithmetic

operations and Maple's library functions that are inherently built in the system because

Maple does not allow us to override the deflnitions of these operations and functions. We

will explain the conversion procedure along with the following example.

Josai Mathematical Monographs Vol. 2 (2000) 1 61

Example 1
Consider the following Maple program:

: proc (x) example =
local i;

:= O;

while i < i do

:= i + x;

od ;

print (i) ;

end :

This program corresponds to the following procedure for given x > O.

1. Set i ~ O.

2. While i < I set i ~- i + x.

3. Print the value of i and terminate the procedure.

The instability occurs while testing the termination condition i < I in the while loop. Let x

be 1/3. When the value of i becomes 1, the while loop is terminated, the value I is printed,

and the program is flnished. If we use decimal floating-point approximation to 1/3 with

any high precision, the value of i when the while loop is terminated is approximate to 413,

rather than I .

The resulting manual conversion is:

: proc (x) example =
local i;

:= O;

while bc_sign(i &- i) < O do

:= i &+ x;

od ;

print (i) ;

end :

For representing intervals we use a type list, and for interval computations, we use an

experimental interval arithmetic package "intpak" by Connell and Corless [3] . The symbols

&+ and &- stand for the addition and the subtraction for intervals, respectively. The

function bc_sign, which returns the sign of an interval using zero rewriting, is:

bc_sign := proc(x)

if x[i] > o then
RETURN (i) ;

1 62 Procedings of NLA99 (2000)

elif x[2] < O then

RETURN (i) ;

else # x[i] <= O <= x[2]
RETURN(O) ; # zero rewriting

f i ;

end :

Note that, as written in the comments this program utillzes zero rewntmg for decrdrng

the sign of intervals.

3 Automatic Algorithm StabiliZation

3 . I Idea

In this section, we will describe an idea for automatically stabilizing algorithms. Since

the syntactical structure of algorithms is unchanged, we can easily do automatic conversion.

The idea has two points:

~ converting arithmetic operator names and Maple's library function names into function

names that are previously prepared in the automatic stabilization system:

R preparing the sources of the above functions as a library of the automatic stabilization

system.

Now, Iet us consider Example I in Section 2.2. The following conversion can be automati-

cally and easily carried out.

: proc (x) example =
local i;

i := O;

while larger(1, i) do

i := add2(i, x);

od ;

print (i) ;

end :

Namely, expression i < I is converted into larger(i, i) and addition i + x is converted

into add2 (i, x).

Before explaining functions larger and add2, we explain a function that converts coef-

ficients into intervals. For an input x, a type conversion function convertstab returns an

interval with a tag, [stab , [xi, x2] I , where xi ~ x ~ x2 with a specifled precision.

Here, we use tag stab because Maple has types but no type declarations.

Josai Mathematical Monographs Vol. 2 (2000) 1 63

Example 2
Consider the following fragment of a program:

if a = b then

fi;

Let a and b be lists, say, [-O. i . O . i] and [O. O] , respectively. If the type of a and b is

just list, then we should judge a ~ b; on the other hand, if a and b are intervals in the

stabilization method, then we should judge a = b since the interval a &- b contains zero.

To cope with this problem, we use tag stab, and convert the program as follows:

if equal(a, b) then

f i ;

Here, the function equal looks like:

equal := proc(x, y)

if (at least one of x and y is an interval with tag stab) then

(after converting x or y into an interval with tag stab if necessary)

RETURN(equalstab(x[2] , y [2])) ;

x = [stab,[xi, x2]], y = [stab, [yi, y2]].

el se

RETURN(evalb(x = y)) ;

fi;

end :

The function equalstab is:

equalstab := proc(x, y)

if x[2] < y[i] then

RETURN (f alse) ;

elif x[i] > y[2] then

RETURN (false) ;

else

RETURN(true) ; # zero rewrltlng

fi;

end :

1 64 Procedings of NLA99 (2000)

This program utilizes zero rewriting; see the following equation:

[xl, x2] - [yl, y2] = [xl ~ y2, x2 y J

Namely, x [2] < y [i] and x [l] > y [2] means that the interval x - y is completely in

the negative region in the real line, and completely in the positive region in the real line,

respectively; on the other hand, when both of the inequalities x [2] >= y ti] and x [i] <=

y [2] are satisfied, we judge that the interval x - y is zero because x - y contains zero.

Modifled programs are ready for both exact inputs and interval inputs in this method.

Furthermore, if we use different tags for the same type, we can treat different rules of

computations; for example, we can use a tag strict for intervals and when deciding the

sign of an interval, if the interval contains zero, then we terminate the computation with

an error message "cannot decide sign" .

Next, we explain other initially prepared functions as a library in the automatic stabi-

lization system. For example, function larger looks like:

larger := proc(x, y)

if (x and y are numbers (not intervals with tag stab)) then

RETURN(evalb(x > y)) ;

else
(after converting x or y into an interval with tag stab if necessary)

RETURN(largerstab(x [2] , y [2])) ;

x = [stab,[xi, x2]], y = [stab, [yi; y2]].

fi;

end :

In this case, we suppose that the types of inputs for this function are ordinal numbers or

inter¥'als with tag stab. Note that the type testing order is different from equal, since x

and y are not numbers or intervals in general in equal case; they may be sets, Iists, or all

other types in Maple. The function evalb evaluates an expression as a Boolean expression,

.that is, evaluates x > y as true or false.

The function largerstab is:

largerstab := proc(x, y)

if x[i] > y[2] then

RETURN (true) ;

else

RETURN (false) ;

f i ;

end :

This program also utilizes zero rewriting. When the inequality x[l] <= y [2] is satisfied,

that is, (1) when the interval x - y is completely in the negative region in the real line, or

Josai Mathematical Monographo Vol. 2 (2000) 1 65

(2) when the interval x - y contains zero, we judge that the interval x is not larger than

the interval y; in the case of (2), we judge that x - y is zero and x is not larger than y.

The function add2 Iooks like:

add2 := proc(x, y)

if (x and y are numbers (not intervals with tag stab)) then

RETURN(X + y) ;

el se

(after converting x or y into an interval with tag stab if necessary)

RETURN(add2stab (x[2] , y [2])) ;

x = [stab,[xi, x2]], y = [stab, [yi, y2]].

f i ;

end :

If we use "intpak" for interval computations, then add2stab, the addition between two

intervals, is:

add2stab := proc~(x, y)

RETURN(X &+ y) ;

end :

Other arithmetic operations are also prepared in a similar way.

3.2 Subtle and Complicated Examples

In this section, we describe some subtle and complicated points. First, we consider the

symbol "=" . Note that we should not convert the symbol "=" into equal in some cases.

Let us consider the following examples.

Example 3
Consider the function subs, which substitutes subexpressions into an expression. The

following is a Maple session:

> subs(x = l, sin(x) + x~2);

sin(i) + i

We should not convert x = i into equal (x, i) in this case. Similar situations occur for

functions, for example, seq and subsop.

A complicated example is a treatment of loops.

Example 4
Consider the following loop:

1 66 Procedings of NLA99 (2000)

f or i from a by s to b whlle c(1) do

insideloop (i) ;

od ;

This program corresponds to the following procedure:

1
.

Set i <~ a.

2
.

3
.

4.

If i > b (when s > O) or i < b (when s < O) or c(i) is false, then terminate the procedure.

Do insideloop(i).

Set i ~- i + s. Goto Step 2.

Note that the direction of the inequality in the loop termination condition changes accord-

ing to the sign of s. The result of conversion is:

:= a;

while c(i) do

if larger(mul(sig(s) , i) ,

break ;

fi;

insideloop (i) ;

i := add2(i, s);

od ;

mul(sig(s) , b)) then

The function mul is a multiplication for two arguments, and we use the function name sig

because sign is already used in Maple.

3 .3 Implementation

We have implemented a prototype in C Ianguage on an HP9000/735, using lex as a

lexical analyzer generator and yacc as a parser generator. For details of these tools see

UNIX manuals or [2] . The Backus Naur form grammar of the Maple language is in [4] .

Since the prototype uses only standard tools on UNlX, practically the same programs for

the stabilization system can be compiled on other platforms; we have checked a DEC Alpha

station and a Toshiba TECRA530 (Linux).

3.4 Experiments

We compare the quality of programs that are automatically and manually converted.

The original program constructs two dimensional convex hulls using Graham's algorithm [6]

(or see, for example, [8]).

Josai Mathematical Monographs Vol. 2 (2000) 167

Table I : Cpu times of automatrcally/manually converted programs

We have implemented Graham's algorithm in Maple V Release 3 on an HP9000/735.

The size of the program is approximately 450 Iines. It takes less than 0.1 seconds to '

automatically convert the program into a stabilized program. We show the cpu times for

both of the automatically and manually converted programs for constructing convex hulls

of 100, 1000 and 10000 points in Table 1. We use decimal floatingpoints with precision

digits 10 for representing intervals and exclude the process times in converting inputs into

intervals. The table shows the cpu times increase by approximately 15% with automatic

conversion. The computation expense of type testing causes the increase in the cpu times.

4 Concluslon
We have implemented a prototypical automatic stabilization system and carried out

some experiments.

Some future directions are:

~ To carry out experiments for other algorithms than Graham's to examine the quality

of the system.

$ To enrich the library.

~ To make the systern user-friendly. For example, in the present prototype, users should

decide whether a function should be converted in a program.

e To construct systems for other target symbolic computation systems, for example,

Risa/Asir [7].

c To construct a preprocessor for the Gauss system [5] in Maple using the idea of the

present paper.

168 Procedings of NLA99 (2000)
ReferenceS

[1] Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic

Press, 1983.

[2] Aho, A. V., Sethi, R. and Ullman, J. D.: Compilers, Principles. Techniques, and

Tools, Addison-Wesley, 1986.

[3] Connell, A. E. and Corless, R. M.: An experimental interval arithmetic package in

Maple, Interval Computations, No. 2, 1993, 120-134.

[4] Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B. and Watt,

S. M.: Maple V Language Reference Manual, Springer-Verlag, 1991.

[5] Grunts, D. and Monagan, M.: Introduction to Gauss, SIGSAM L1ulletin, 28, No. 2,

1994, 319.

[6] Graham, R. L.: An efficient algorithm for determining the convex hull of a flnite

planar set, Inform. Proc. Letters, 1, 1972, 132-133.

[7] Noro, M. and Takeshima, T.: Risa/Asir-A computer algebra system, Proc. IS-

SAC'92, 1992, 387396.

[8] Preparata, F. P. and Shamos, M. I.: Computational Geometry, Springer-Verlag, 1985.

[9] Shirayanagi, K.: An algorithm to compute floating point Gr6bner bases, Mathematical

Computation with Maple V, Ideas and Applications (Lee, T. ed.), Birkh~user, 1993,

95-106.

[lO] Shirayanagi, K.: Floating point Gr6bner bases, Mathematics and Oomputers in Sim-

ulation, 42, 1996, 509-528.

[1l] Shirayanagi, K. and Sweedler, M.: A theory of stabilizing algebraic algorithms, Tech-

nical Report 95-28. Mathematical Sciences Institute. Cornell University, 1995.

