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Abstract 

We propose a method to automatically convert unstable programs in symbolic com-
putation into stable programs based on the stabilization method proposed by Shirayanagi 

and Sweedler. We have implemented a prototype of an automatic algorithm stabilization 

system whose target symbolic computation program is Maple, in C Ianguage using lex and 

yacc, and have reported experimental results. 

1 Introduction 

In symbolic computation, it is dangerous to naively use an approximation or numerical 

approach. "Reasonably approximate results" cannot be obtained if we simply evaluate an 

original algorithm on approximate inputs. This is because, even if a sequence converges 

to a given input, the sequence of the outputs for the initial sequence does not necessarily 

converge to the true output. We will refer to algorithms that have such instability as 

unstable algorithms. 

Shirayanagi proposed a method for stabilizing Buchberger's algorithm [9][10]. The 

method uses interval computation with "zero rewriting," which is the rule of rewriting an 

interval into zero if zero lies within the interval. The underlying ideas of this method were 

generalized by Shirayanagi and Sweedler as a theory of stabilizing algebraic algorithms [1l] . 

However, until now, the conversion of unstable algorithms into stable ones is carried 

out manually. In this paper, we propose a method to carry out this process automatically. 

In Section 2, we review the stabilization method. In Section 3, we describe an idea to 

automatically stabilize algorithms and show experiments. Finally, in Section 4, we describe 

some future directions. 
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2 Stabilization Method ReVieW 

2.1 Method of Stabilizing Algorithms 

In this section, we review the stabilization method. Our approach converts an unstable 

algorithrn into a new algorithm. If the new algorithm runs utilizing increasingly accurate 

approximate computation, the output will converge to the exact output of the original 

algorithm. The stabilization method has three points. 

1. The syntactic structure of the algorithm is unchanged. 

2. The coefficients are converted to interval-coefficients in the data set. 

3. Rewriting is performed prior to predicate evaluation. 

Interval-coefiicients are coefncients which have the form of intervals from interval analysis, 

see, for example [1]. Steps (1) and (2) coincide with existing interval methods and in 

general (1) and (2) alone are not suffcient for stabilization. The key is (3). This is a 

method which rewrites an interval to a new interval at the discontinuous point(s) of a 

predicate. The discontinuous points of a predicate, such as O in a conditional instruction 

"If X = O then . .." , are points where the execution path of the algorithm may branch upon 

evaluation of the predicate. A common cause of algorithm instability is that approximate 

computation causes a predicate to be evaluated incorrectly and the algorithm runs on 

a wrong execution path. Rewriting moderates the effect of predicate discontinuity. It 

rewrites an interval-coefficient into (an interval signifying) the discontinuity point itself if 

the discontinuity point lies within the interval. Otherwise, rewriting leaves an interval-

coefficient unchanged. This may have the same result as if exact computation with exact 

input had been done up until that point. In this case the modified algorithm passes 

through the branch-point in the same way as the original algorithm evaluated with exact 

computation on the exact input. For further details and more general theory see [1l]. 

2.2 Manual Conversion of Programs 

We utilize the stabilization method to stabilize algorithms. In real numbers or complex 

numbers, by transforming a predicate if necessary, we can assume that the discontinuous 

points of a predicate are empty or one point zero, and the only necessary rewriting is zero 

rewriting, that is, rewriting an interval into zero if zero lies within the interval. Since 

the syntactic structures of algorithms are unchanged, a slight modiflcation of programs 

is enough for stabilization. We need to make functions that correspond to arithmetic 

operations and Maple's library functions that are inherently built in the system because 

Maple does not allow us to override the deflnitions of these operations and functions. We 

will explain the conversion procedure along with the following example. 
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Example 1 
Consider the following Maple program: 

: proc (x) example = 
local i; 

:= O; 

while i < i do 

:= i + x; 

od ; 

print (i) ; 

end : 

This program corresponds to the following procedure for given x > O. 

1. Set i ~ O. 

2. While i < I set i ~- i + x. 

3. Print the value of i and terminate the procedure. 

The instability occurs while testing the termination condition i < I in the while loop. Let x 

be 1/3. When the value of i becomes 1, the while loop is terminated, the value I is printed, 

and the program is flnished. If we use decimal floating-point approximation to 1/3 with 

any high precision, the value of i when the while loop is terminated is approximate to 413, 

rather than I . 

The resulting manual conversion is: 

: proc (x) example = 
local i; 

:= O; 

while bc_sign(i &- i) < O do 

:= i &+ x; 

od ; 

print (i) ; 

end : 

For representing intervals we use a type list, and for interval computations, we use an 

experimental interval arithmetic package "intpak" by Connell and Corless [3] . The symbols 

&+ and &- stand for the addition and the subtraction for intervals, respectively. The 

function bc_sign, which returns the sign of an interval using zero rewriting, is: 

bc_sign := proc(x) 

if x[i] > o then 
RETURN ( i ) ; 
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elif x[2] < O then 

RETURN (  i ) ; 

else # x[i] <= O <= x[2] 
RETURN(O) ; # zero rewriting 

f i ; 

end : 

Note that, as written in the comments this program utillzes zero rewntmg for decrdrng 

the sign of intervals. 

3 Automatic Algorithm StabiliZation 

3 . I Idea 

In this section, we will describe an idea for automatically stabilizing algorithms. Since 

the syntactical structure of algorithms is unchanged, we can easily do automatic conversion. 

The idea has two points: 

~ converting arithmetic operator names and Maple's library function names into function 

names that are previously prepared in the automatic stabilization system: 

R preparing the sources of the above functions as a library of the automatic stabilization 

system. 

Now, Iet us consider Example I in Section 2.2. The following conversion can be automati-

cally and easily carried out. 

: proc (x) example = 
local i; 

i := O; 

while larger(1, i) do 

i := add2(i, x); 

od ; 

print (i) ; 

end : 

Namely, expression i < I is converted into larger(i, i) and addition i + x is converted 

into add2 (i, x). 

Before explaining functions larger and add2, we explain a function that converts coef-

ficients into intervals. For an input x, a type conversion function convertstab returns an 

interval with a tag, [stab , [xi, x2] I , where xi ~ x ~ x2 with a specifled precision. 

Here, we use tag stab because Maple has types but no type declarations. 
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Example 2 
Consider the following fragment of a program: 

if a = b then 

fi; 

Let a and b be lists, say, [-O. i . O . i] and [O. O] , respectively. If the type of a and b is 

just list, then we should judge a ~ b; on the other hand, if a and b are intervals in the 

stabilization method, then we should judge a = b since the interval a &- b contains zero. 

To cope with this problem, we use tag stab, and convert the program as follows: 

if equal(a, b) then 

f i ; 

Here, the function equal looks like: 

equal := proc(x, y) 

if (at least one of x and y is an interval with tag stab) then 

(after converting x or y into an interval with tag stab if necessary) 

RETURN(equalstab(x[2] , y [2] ) ) ; 

# x = [stab,[xi, x2]], y = [stab, [yi, y2]]. 

el se 

RETURN(evalb(x = y)) ; 

fi; 

end : 

The function equalstab is: 

equalstab := proc(x, y) 

if x[2] < y[i] then 

RETURN (f alse ) ; 

elif x[i] > y[2] then 

RETURN (false) ; 

else 

RETURN(true) ; # zero rewrltlng 

fi; 

end : 
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This program utilizes zero rewriting; see the following equation: 

[xl, x2] - [yl, y2] = [xl ~ y2, x2 y J 

Namely, x [2] < y [i] and x [l] > y [2] means that the interval x - y is completely in 

the negative region in the real line, and completely in the positive region in the real line, 

respectively; on the other hand, when both of the inequalities x [2] >= y ti] and x [i] <= 

y [2] are satisfied, we judge that the interval x - y is zero because x - y contains zero. 

Modifled programs are ready for both exact inputs and interval inputs in this method. 

Furthermore, if we use different tags for the same type, we can treat different rules of 

computations; for example, we can use a tag strict for intervals and when deciding the 

sign of an interval, if the interval contains zero, then we terminate the computation with 

an error message "cannot decide sign" . 

Next, we explain other initially prepared functions as a library in the automatic stabi-

lization system. For example, function larger looks like: 

larger := proc(x, y) 

if (x and y are numbers (not intervals with tag stab)) then 

RETURN(evalb(x > y)) ; 

else 
(after converting x or y into an interval with tag stab if necessary) 

RETURN(largerstab(x [2] , y [2] ) ) ; 

# x = [stab,[xi, x2]], y = [stab, [yi; y2]]. 

fi; 

end : 

In this case, we suppose that the types of inputs for this function are ordinal numbers or 

inter¥'als with tag stab. Note that the type testing order is different from equal, since x 

and y are not numbers or intervals in general in equal case; they may be sets, Iists, or all 

other types in Maple. The function evalb evaluates an expression as a Boolean expression, 

.that is, evaluates x > y as true or false. 

The function largerstab is: 

largerstab := proc(x, y) 

if x[i] > y[2] then 

RETURN (true) ; 

else 

RETURN (false) ; 

f i ; 

end : 

This program also utilizes zero rewriting. When the inequality x[l] <= y [2] is satisfied, 

that is, (1) when the interval x - y is completely in the negative region in the real line, or 
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(2) when the interval x - y contains zero, we judge that the interval x is not larger than 

the interval y; in the case of (2), we judge that x - y is zero and x is not larger than y. 

The function add2 Iooks like: 

add2 := proc(x, y) 

if (x and y are numbers (not intervals with tag stab)) then 

RETURN(X + y) ; 

el se 

(after converting x or y into an interval with tag stab if necessary) 

RETURN(add2stab (x[2] , y [2] ) ) ; 

# x = [stab,[xi, x2]], y = [stab, [yi, y2]]. 

f i ; 

end : 

If we use "intpak" for interval computations, then add2stab, the addition between two 

intervals, is: 

add2stab := proc~(x, y) 

RETURN(X &+ y) ; 

end : 

Other arithmetic operations are also prepared in a similar way. 

3.2 Subtle and Complicated Examples 

In this section, we describe some subtle and complicated points. First, we consider the 

symbol "=" . Note that we should not convert the symbol "=" into equal in some cases. 

Let us consider the following examples. 

Example 3 
Consider the function subs, which substitutes subexpressions into an expression. The 

following is a Maple session: 

> subs(x = l, sin(x) + x~2); 

sin(i) + i 

We should not convert x = i into equal (x, i) in this case. Similar situations occur for 

functions, for example, seq and subsop. 

A complicated example is a treatment of loops. 

Example 4 
Consider the following loop: 
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f or i from a by s to b whlle c(1) do 

insideloop (i) ; 

od ; 

This program corresponds to the following procedure: 

1
.
 

Set i <~ a. 

2
.
 

3
.
 

4. 

If i > b (when s > O) or i < b (when s < O) or c(i) is false, then terminate the procedure. 

Do insideloop(i). 

Set i ~- i + s. Goto Step 2. 

Note that the direction of the inequality in the loop termination condition changes accord-

ing to the sign of s. The result of conversion is: 

:= a; 

while c(i) do 

if larger(mul(sig(s) , i) , 

break ; 

fi; 

insideloop (i) ; 

i := add2(i, s); 

od ; 

mul(sig(s) , b)) then 

The function mul is a multiplication for two arguments, and we use the function name sig 

because sign is already used in Maple. 

3 .3 Implementation 

We have implemented a prototype in C Ianguage on an HP9000/735, using lex as a 

lexical analyzer generator and yacc as a parser generator. For details of these tools see 

UNIX manuals or [2] . The Backus Naur form grammar of the Maple language is in [4] . 

Since the prototype uses only standard tools on UNlX, practically the same programs for 

the stabilization system can be compiled on other platforms; we have checked a DEC Alpha 

station and a Toshiba TECRA530 (Linux). 

3.4 Experiments 

We compare the quality of programs that are automatically and manually converted. 

The original program constructs two dimensional convex hulls using Graham's algorithm [6] 

(or see, for example, [8]). 
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Table I : Cpu times of automatrcally/manually converted programs 

We have implemented Graham's algorithm in Maple V Release 3 on an HP9000/735. 

The size of the program is approximately 450 Iines. It takes less than 0.1 seconds to ' 

automatically convert the program into a stabilized program. We show the cpu times for 

both of the automatically and manually converted programs for constructing convex hulls 

of 100, 1000 and 10000 points in Table 1. We use decimal floatingpoints with precision 

digits 10 for representing intervals and exclude the process times in converting inputs into 

intervals. The table shows the cpu times increase by approximately 15% with automatic 

conversion. The computation expense of type testing causes the increase in the cpu times. 

4 Concluslon 
We have implemented a prototypical automatic stabilization system and carried out 

some experiments. 

Some future directions are: 

~ To carry out experiments for other algorithms than Graham's to examine the quality 

of the system. 

$ To enrich the library. 

~ To make the systern user-friendly. For example, in the present prototype, users should 

decide whether a function should be converted in a program. 

e To construct systems for other target symbolic computation systems, for example, 

Risa/Asir [7]. 

c To construct a preprocessor for the Gauss system [5] in Maple using the idea of the 

present paper. 
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