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CONSTRUCTION OF FLAT TORI IN THE 3-SPHERE AND ITS
APPLICATIONS
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INTRODUCTION

In 1975, Yau [16, p.87] posed the problem of the classification of flat tori in the
unit 3-sphere S3. Concerning this problem, there is a method for constructing flat
surfaces in S® which was obseved by Lawson ([12]). Let p : S* — 52 be the Hopf
fibration, and let v be a curve in S?. Then the inverse image p~'(v) is a flat surface
in S3. If the curve 7 is closed, the inverse image p~*() is a flat torus in $® and it is
called the Hopf torus corresponding to -y ([10]). On the other hand, there is another
method for constructing flat surfaces in S* which was obtained by Bianchi[l] and
Sasaki[11]. Let a and 3 be curves in S* whose torsions satisfy 7, = 1 and 75 = —1.
Using the group structure on S*, define a surface F : R? — S% by

F(s1,82) = a(s1)f(sq).

Then F'is a flat surface such that the s;-curves are the asymptotic curves of the sur-
face ([13, p.139 - 163]). Infinitely many complete flat surfaces in S* are constructed
by this method.

Recently, using the Hopf fibration, the author obtained a method for constructing
closed curves in $% with 7 = 41. Combining this result with the method of Bianchi
and Sasaki, the author established a method for constructing all the flat tori iso-
metrically immersed in S* (Theorem 1). Applying this method, we obtain some
interesting results on flat tori in S3. For example, by using the Arf invariant for
knots, we see that every embedded flat torus in S? is invariant under the antipodal
map of S* (Theorem 4). This implies a rigidity theorem for the Clifford tori in S*
(Theorem 5). Furthermore, we obtain the classification of undeformable flat tori in
53 (Theorem 8).

The outline of this article is as follows. In Section 1 we explain the method for
constructing all the flat tori isometrically immersed in S®. In Section 2 we deal with
embedded flat tori in S?. and in Section 3 we explain the result of the classification
of undeformable flat tori in S3.
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1. CONSTRUCTION OF FLAT TORI IN 5°

We first explain a method for constructing closed curves in S® with 7 = £1. Let
H denote the set of all quaternions, and let R* be the 4-dimensional Euclidean space
identified with H as follows:

(21,29, 3, T4) — 1 + Tl + 23] + z4k.
Then the unit spheres S? and S* are given by
SP={relmH:|z|=1}, S*={zeH:|z|=1}
Note that the unit sphere S* has a group structure induced by the multiplicative

structure of H. Let US? denote the unit tangent bundle of S? identified with a
subset of S% x S? as follows:

US? = {(z,v) € S* x §*: (z,v) = 0},

where the canonical projection p; : US* — S? is given by pi(z,v) = z. Let po :
S% — US? be a double covering map defined by ps(a) = (aia™!,aja™!). Then the
Hopf fibration p : S* — S2 is given by p = p; o po. We now consider a regular curve
v : R — S? with a period [ > 0, and define a curve 4 : R — US? by

A(s) = (3(8):7 (8)/ 17 ()]

We denote by I(v) the element of the homology group H;(US?) represented by the
closed curve % : [0,{] — US?. Let ¢: R — S be a lift of the curve 4 with respect
to the covering pp. Since H,(US?) = Z, and the double covering p, satisfies the
relation pa(—a) = pa(a), we obtain

(1) c(s+1)

On the other hand we obtain
/ 1 7 .
d$”d$=§h@mk+ﬂﬂm

where k(s) denotes the geodesic curvature of v(s). This implies that the torsions of
the curves ¢ and ¢! satisfy

(2) Te = 1 Te-1 = _1

Combining the observations above with the method of Bianchi and Sasaki, we
obtain a method for constructing all the flat tori isometrically immersed in S°.

Definition . A periodic admissible pair (p.a.p.) is a pair of periodic regular curves
v t R — S2% i =1,2, such that
(a)  k1(s1) > ko(se) for all 51,89 € R,

(b) ()1 +ki(s)? =2,

where k;(s) denotes the geodesic curvature of ;(s).
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Let I = (71, 72) be a p.a.p., and let ¢; be a lift of 4; with respect to the covering
p2. Using the group structure of S*, we define the map Fr : R? — S by
(3) Fr(s1,sy) = c1(s1)ca(s9) 7
Then it follows that the map Fr is an immersion and induces a flat Riemannian
metric gr on R%. We now consider the group
Since each element of G(I') is a parallel translation of R?, we identify the group
G(I') with a subgroup of R?. Then we obtain a flat torus Mr = (R?, gr)/G(I"), and
an isometric immersion

friMp—S3

satisfying the relation fr o7y = Fp, where mp : R?2 — M denotes the canonical
projection.
Theorem 1 ([5, 7). Let f : M — S* be an isometric immersion of a flat torus M
into the unit sphere S®. Then there exist a p.a.p. I" and a covering map p: M — Mp
such that Ao f = fr o p for some isometry A : S® — S3.
Remark 1. If the image of fr contains a great circle of S3, either ; or 7, is a circle
in S2. So it follows that there exists a p.a.p. I such that the image of fr is not
congruent to any Hopf torus in S°.

Remark 2. Let [; be the period of ;. Then

(11,0), (0,12) if I(n)=0, I(y) =0,

-ator ) (20,0), (0,13) if I(m)=1 I(y) =0,

(4)  generators of G(I') = (1 0). (0,20) I =0, I(m) = 1.
(ll, lg), (ll, -“lz) if I(’}’l) = 1, ]("/2) = 1.

Remark 3. Consider two curves a1 and as in Mp given by
(5) ai(s) = 7r(s,0), as(s)=nr(0,s).
Then it follows from (4) that they are simple closed curves in Mp.

Remark 4. Weiner [14, 15] studied the Gauss map of a flat torus in S*, and obtained
a method for constructing all the flat tori in S® which is different from ours. For
the Gauss map of the immersion fr: Mr — S*, see Section 7 of [7]

In the rest of this section we deal with the intrinsic structure of Mp. For each
p.a.p. I' = (7,72). we set

I 1
Liv) = / i()lds,  K(m) = / k() (5)lds,

where [; denotes the period of v;. Then it follows that the intrinsic structure of the
flat torus Mp = (R? gr)/G(I') is determined by the following data:

{1(7), K (i), L) fima 2
More precisely, we obtain
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Theorem 2 ([8]). Let W(I") be a lattice of R* generated by the following vectors.

171, 52 ’Lf ](71) 0

211, U if I(m)=1, I{

Uy, 209 if I{m) =0, I(yw) =1,
U1 &= Ty if I 1, I(

where U; = L(K(v:), L(v:)). Then the flat torus Mp is isometric to R*/W (I").

L
2

2. EMBEDDED FLAT TORI IN S°

In this section, using the method explained in Section 1, we study the embedded
flat tori in S3. Let I = (vy1,72) be a p.a.p., and let I(I") = (I(m), (7))

Theorem 3 ([7]). If fr: Mpr — S* is an embedding, then I(I") = (1,1).

Proof (Outline). Assume that I(I") # (1,1). Using the embedding fr, we identify
Mp with a subset of S%. Let a; and as be the simple closed curves in My given by
(5), and let a;” be a simple closed curve in S* — Mr obtained by pushing the curve a;
a very small amount along a unit normal vector field £ of Mp. Then we obtain the
links {a;,a{} and {a,,ai} in S3 and it follows that the linking numbers of these
links satisfy

(6) k(ay,af) =lk(ag,af) =1, mod 2.

We now consider a disk D C Mp which does not intersect the union a; U a0, and
let K be a knot in S% given by K = 9D. Since I(I') # (1,1), it follows from (4)
that {a1,as} is a canonical basis of the homology group H;(V), where V is a Seifert
surface of the knot K given by V = Mpr — D. So, by using [4, Chapter10], we see
that the Arf invariant of K is given by

Arf(K) =1k(a,,af ) 1k(ay, al), mod 2.

Hence, (6) implies Arf(K)} = 1. On the other hand, since K = 9D, we obtain
Arf(K) = 0. This is a contradiction. O

It follows from Theorem 3 and (1) that if fr is an embedding, then the image
of fr is invariant under the antipodal map of S Hence, Theorem 1 implies the
following
Theorem 4 ([7)). If f: M — S% is an isometric embedding of a flat torus M, then
the tmage f(M) is invariant under the antipodal map of S3.

As an application of this theorem, we obtain a rigidity theorem for the Clifford tori
in S3. For positive numbers Ry and Ry satisfying R? + R2 = 1, let S'(R;) x SY(R»)
denote the Clifford torus in S* given by

SYRy) x SY(Rg) = {z € R* : 22 + 22 = R?, 22+ 22 = R2},
and let 7 : SY(R;) x SY(Ry) — 52 denote the inclusion map.
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Theorem 5 ([3]). If f : S*(R1) x SY(Ry) — S* is an isometric embedding, then
there exists an isometry A of S® such that f = Aoi.

Proof (Outline). We can show that if f: S'(R;) x S} (Ry) — S® is an isometric
immersion whose extrinsic diameter is equal to m, then there exists an isometry A
of 5% such that f = Aoi. So the assertion follows from Theorem 4. O

Remark 5. RecentlyCDadok-Sha [2] obtained the same result as we have proved in
Theorem 4. Their proof is different from ours.

Remark 6. In Theorem 4 the word “embedding” cannot be replaced by “immersion”.
In fact, there exists an isometric immersion of a flat torus into S* whose image is not
invariant under the antipodal map of S® ([7, Theorem 4.4]). However the author does
not know whether the extrinsic diameter of any flat torus isometrically immersed
in S% is equal to 7. If this is true, the conclusion of Theorem 5 is valid for every
isometric immersion f : ST(R;) x SY(Ry) — S°.

3. THE CLASSIFICATION OF UNDEFORMABLE FLAT TORI IN S3

An isometric immersion f : M — 5% is said to be deformable if there exists a
nontrivial isometric deformation of f. As a corollary of Theorem 5, it follows that
the inclusion map 7 : S'(R;) x S}(Ry) — S? is not deformable ([6]). In this section
we give the classification of undeformable flat tori isometrically immersed in S*.

Theorem 6 ([8]). Let f: M — S% be an isometric immersion of a flat torus M into
S3. If the mean curvature of the immersion f is not constant, then f is deformable.

Proof (Outline). It follows from Theorem 1 that there exist a p.a.p. I' = (71, 72)
and a covering map p: M — Mp such that

where A denotes an isometry of S3. So it is sufficient to show that fr is deformable.
On the other hand, we see that the mean curvature of fr is constant if and only if
both ; and 7, are circles in the unit sphere S%. So, by the assumption, either v, or
vy is not a circle. This ensures the existence of a nontrivial deformation of I" which
preserves the data {I(v:), K (), L(7i) }i=1,2. Hence, Theorem 2 implies a nontrivial
isometric deformation of fr. O

We now consider an isometric immersion f : M — S® of a flat torus M into S*
with constant mean curvature. In this case, it is easy to see that f is congruent to
the immersion
(7 F/G:R*/G — S°,
where F' is a covering map of R? onto a Clifford torus SI(RI) x SY(Ry) defined by

F(zy,22) = (H;cos ;;] Ry sm—ﬁI Rg(OS Rg Ry sin %)
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and G is a subgroup of the covering transformation group of F such that R?*/G
is compact. The covering transformation group of F, which consists of parallel
translations of R?, is generated by the vectors €, = (27 Ry, 0) and & = (0,27 Ry).
So the group G is generated by

(8) a = a1€) + aés, b= biey + baeo,
where a;,b; € Z and a by — agby # 0.

Theorem 7 ([9]). The following statements (a) and (b) are equivalent.
(a) F/G:R*/G — S® is not deformable,
(b) g.cd(ar+as, by +by) = g.cd(ay —as, by —by) = 1.

Proof (Outline). (a) = (b). Assume that g.c.d.(ay + a2,by + by) = n > 2. Let
Gy denote the covering transformation group of F', which is generated by €} and €5,
and let W{(n) be a subgroup of Gy given by

I/V(n) = {n1€1 -+ n2€2 1Ny +ng € HZ}

Then G C W(n) and the immersion F/W (n) is congruent to the Hopf torus p~*(v),
where v denotes a n-fold circle in S?. Since the Hopf torus p~!(v) is deformable
for n > 2, we see that the immersion F/W{(n) is deformable. So it follows from
G C W(n) that the immersion F/G is deformable. Similarly, the immersion F/G is
deformable if g.c.d.(a; — ag, by — by) # 1.

(b) = (a). Let f; : R?/G — S° be an isometric deformation of F/G, and let F} be
the isometric deformation of F : R?> — S® induced by f;. Then each F} is invariant
under the group G. Furthermore we can show that each F; is o(G)-invariant, where
o denotes an automorphism of G¢ satisfying

0(€1) :52, 0(52):—“51.

On the other hand, the assumption (b) implies G + o(G) = Gy, and so F; is Go-
invariant. Hence we obtain an isometric deformation F;/Gy of the isometric embed-
ding F/Gy : R?/Gy — S*. Since the embedding is congruent to the inclusion map
i: SYRy) x SY(Ry) — S3, it follows from Theorem 5 that for each ¢ there exists an
isometry A; of S% such that F;/Gy = A, 0 (F/Gy). Hence f, = F,/G = A, o (F/G),
and so the immersion F/G is not deformable. O

By Theorems 6 and 7, we obtain the following classification of undeformable flat
tori in S%.

Theorem 8. Let f : M — S be an isometric immersion of a flat torus M into S®.
Then the immersion f is not deformable if and only if it is congruent to the immer-
sion F/G defined by (7) such that the group G is generated by @ and b satisfying (8)
and g.c.d.(ay + as, by + by) = g.c.d.(a; — az, by — b)) = 1.



CONSTRUCTION OF FLAT TORI IN THE 3-SPHERE AND ITS APPLICATIONS 9
REFERENCES

[1] L. Bianchi, Sulle superficie a curvatura nulla in geometrica ellittica, Ann. Mat. Pura Appl.
24 (1896), 93-129.
[2] J. Dadok, J. Sha, On embedded flat surfaces in S®, J. Geometric Analysis 7 (1997), 47-55.
[3] K. Enomoto, Y. Kitagawa and J. L. Weiner, 4 rigidity theorem for the Clifford tori in S3,
Proc. A.M.S. 124 (1996), 265-268.
[4] L. H. Kauffman, On Knots, Ann. of Math. Stud., 115, Princeton Univ. Press, Princeton NJ,
1987.
[5] Y. Kitagawa, Periodicity of the asymptotic curves on flat tori in S*, J. Math. Soc. Japan, 40
(1988), 457-476.
(6] Y. Kitagawa, Rigidity of the Clifford tori in S°, Math. Z., 198 (1988), 591-599.
[7] Y. Kitagawa, Embedded flat tori in the unit 5-sphere, J. Math. Soc. Japan, 47 (1995), 275-296.
[8] Y. Kitagawa, Isometric deformations of a flat torus in the 3-sphere with nonconstant mean
curvature, Téhoku Math. J. 52 (2000), 283-298.
[9] Y. Kitagawa, Deformable flat tori in S* with constant mean curvature, preprint.
[10] U. Pinkall, Hopf tori in S, Invent. math., 81 (1985), 379-386.
[11] S. Sasaki, On complete surfaces with Gaussian curvature zero in 3-sphere, Collog. Math., 26
(1972), 165-174.
[12] M. Spivak, Some left-over problems from classical differential geometry, Proc. Sympos. Pure
Math., 27 (1975), 245-252.
[13] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol.4, Publish or Perish,
Berkeley, 1977.
[14] J. L. Weiner, The Gauss map of flat tori in S*, Proc. Meet, Marseille 1987, (1989), 209-221.
[15] J. L. Weiner, Flat tors in S® and their Gauss maps, Proc. London Math. Soc.(3), 62 (1991),
54-76.
[16] S. T. Yau, Submanifolds with constant mean curvature II, Amer. J. Math., 97 (1975), 76-100.

DEPARTMENT OF MATHEMATICS, UTSUNOMIYA UNIVERSITY, MINE-MACHI, UTSUNOMIYA
321-8505, JAPAN
E-mail address: kitagawa@@cc.utsunomiya-u.ac. jp



