CONSTRUCTION OF FLAT TORI IN THE 3-SPHERE AND ITS APPLICATIONS

YOSHIHISA KITAGAWA

Introduction

In 1975, Yau [16, p.87] posed the problem of the classification of flat tori in the unit 3 -sphere S^{3}. Concerning this problem, there is a method for constructing flat surfaces in S^{3} which was obseved by Lawson ([12]). Let $p: S^{3} \rightarrow S^{2}$ be the Hopf fibration, and let γ be a curve in S^{2}. Then the inverse image $p^{-1}(\gamma)$ is a flat surface in S^{3}. If the curve γ is closed, the inverse image $p^{-1}(\gamma)$ is a flat torus in S^{3} and it is called the Hopf torus corresponding to $\gamma([10])$. On the other hand, there is another method for constructing flat surfaces in S^{3} which was obtained by Bianchi[1] and Sasaki[11]. Let α and β be curves in S^{3} whose torsions satisfy $\tau_{\alpha}=1$ and $\tau_{\beta}=-1$. Using the group structure on S^{3}, define a surface $F: \mathbb{R}^{2} \rightarrow S^{3}$ by

$$
F\left(s_{1}, s_{2}\right)=\alpha\left(s_{1}\right) \beta\left(s_{2}\right) .
$$

Then F is a flat surface such that the s_{i}-curves are the asymptotic curves of the surface ([13, p.139-163]). Infinitely many complete flat surfaces in S^{3} are constructed by this method.

Recently, using the Hopf fibration, the author obtained a method for constructing closed curves in S^{3} with $\tau= \pm 1$. Combining this result with the method of Bianchi and Sasaki, the author established a method for constructing all the flat tori isometrically immersed in S^{3} (Theorem 1). Applying this method, we obtain some interesting results on flat tori in S^{3}. For example, by using the Arf invariant for knots, we see that every embedded flat torus in S^{3} is invariant under the antipodal map of S^{3} (Theorem 4). This implies a rigidity theorem for the Clifford tori in S^{3} (Theorem 5). Furthermore, we obtain the classification of undeformable flat tori in S^{3} (Theorem 8).

The outline of this article is as follows. In Section 1 we explain the method for constructing all the flat tori isometrically immersed in S^{3}. In Section 2 we deal with embedded flat tori in S^{3}, and in Section 3 we explain the result of the classification of undeformable flat tori in S^{3}.

1. Construction of flat tori in S^{3}

We first explain a method for constructing closed curves in S^{3} with $\tau= \pm 1$. Let \mathbb{H} denote the set of all quaternions, and let \mathbb{R}^{4} be the 4 -dimensional Euclidean space identified with \mathbb{H} as follows:

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \longleftrightarrow x_{1}+x_{2} \mathbf{i}+x_{3} \mathbf{j}+x_{4} \mathbf{k} .
$$

Then the unit spheres S^{2} and S^{3} are given by

$$
S^{2}=\{x \in \operatorname{Im} \mathbb{H}:|x|=1\}, \quad S^{3}=\{x \in \mathbb{H}:|x|=1\}
$$

Note that the unit sphere S^{3} has a group structure induced by the multiplicative structure of \mathbb{H}. Let $U S^{2}$ denote the unit tangent bundle of S^{2} identified with a subset of $S^{2} \times S^{2}$ as follows:

$$
U S^{2}=\left\{(x, v) \in S^{2} \times S^{2}:\langle x, v\rangle=0\right\}
$$

where the canonical projection $p_{1}: U S^{2} \rightarrow S^{2}$ is given by $p_{1}(x, v)=x$. Let p_{2} : $S^{3} \rightarrow U S^{2}$ be a double covering map defined by $p_{2}(a)=\left(a \mathbf{i} a^{-1}, a \mathbf{j} a^{-1}\right)$. Then the Hopf fibration $p: S^{3} \rightarrow S^{2}$ is given by $p=p_{1} \circ p_{2}$. We now consider a regular curve $\gamma: \mathbb{R} \rightarrow S^{2}$ with a period $l>0$, and define a curve $\hat{\gamma}: \mathbb{R} \rightarrow U S^{2}$ by

$$
\hat{\gamma}(s)=\left(\gamma(s), \gamma^{\prime}(s) /\left|\gamma^{\prime}(s)\right|\right)
$$

We denote by $I(\gamma)$ the element of the homology group $H_{1}\left(U S^{2}\right)$ represented by the closed curve $\hat{\gamma}:[0, l] \rightarrow U S^{2}$. Let $c: \mathbb{R} \rightarrow S^{3}$ be a lift of the curve $\hat{\gamma}$ with respect to the covering p_{2}. Since $H_{1}\left(U S^{2}\right) \cong \mathbb{Z}_{2}$ and the double covering p_{2} satisfies the relation $p_{2}(-a)=p_{2}(a)$, we obtain

$$
c(s+l)=\left\{\begin{align*}
c(s) & I(\gamma)=0 \tag{1}\\
-c(s) & I(\gamma)=1
\end{align*}\right.
$$

On the other hand we obtain

$$
c(s)^{-1} c^{\prime}(s)=\frac{1}{2}\left|\gamma^{\prime}(s)\right|(\mathbf{k}+k(s) \mathbf{i})
$$

where $k(s)$ denotes the geodesic curvature of $\gamma(s)$. This implies that the torsions of the curves c and c^{-1} satisfy

$$
\begin{equation*}
\tau_{c}=1, \quad \tau_{c^{-1}}=-1 \tag{2}
\end{equation*}
$$

Combining the observations above with the method of Bianchi and Sasaki, we obtain a method for constructing all the flat tori isometrically immersed in S^{3}.

Definition . A periodic admissible pair (p.a.p.) is a pair of periodic regular curves $\gamma_{i}: \mathbb{R} \rightarrow S^{2}, i=1,2$, such that
(a) $k_{1}\left(s_{1}\right)>k_{2}\left(s_{2}\right)$ for all $s_{1}, s_{2} \in \mathbb{R}$,
(b) $\left|\gamma_{i}^{\prime}(s)\right| \sqrt{1+k_{i}(s)^{2}}=2$,
where $k_{i}(s)$ denotes the geodesic curvature of $\gamma_{i}(s)$.

Let $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ be a p.a.p., and let c_{i} be a lift of $\hat{\gamma}_{i}$ with respect to the covering p_{2}. Using the group structure of S^{3}, we define the map $F_{\Gamma}: \mathbb{R}^{2} \rightarrow S^{3}$ by

$$
\begin{equation*}
F_{\Gamma}\left(s_{1}, s_{2}\right)=c_{1}\left(s_{1}\right) c_{2}\left(s_{2}\right)^{-1} \tag{3}
\end{equation*}
$$

Then it follows that the map F_{Γ} is an immersion and induces a flat Riemannian metric g_{Γ} on \mathbb{R}^{2}. We now consider the group

$$
G(\Gamma)=\left\{\varphi \in \operatorname{Diff}\left(\mathbb{R}^{2}\right): F_{\Gamma} \circ \varphi=F_{\Gamma}\right\}
$$

Since each element of $G(\Gamma)$ is a parallel translation of \mathbb{R}^{2}, we identify the group $G(\Gamma)$ with a subgroup of \mathbb{R}^{2}. Then we obtain a flat torus $M_{\Gamma}=\left(\mathbb{R}^{2}, g_{\Gamma}\right) / G(\Gamma)$, and an isometric immersion

$$
f_{\Gamma}: M_{\Gamma} \rightarrow S^{3}
$$

satisfying the relation $f_{\Gamma} \circ \pi_{\Gamma}=F_{\Gamma}$, where $\pi_{\Gamma}: \mathbb{R}^{2} \rightarrow M_{\Gamma}$ denotes the canonical projection.
Theorem 1 ([5, 7]). Let $f: M \rightarrow S^{3}$ be an isometric immersion of a flat torus M into the unit sphere S^{3}. Then there exist a p.a.p. Γ and a covering map $\rho: M \rightarrow M_{\Gamma}$ such that $A \circ f=f_{\Gamma} \circ \rho$ for some isometry $A: S^{3} \rightarrow S^{3}$.
Remark 1. If the image of f_{Γ} contains a great circle of S^{3}, either γ_{1} or γ_{2} is a circle in S^{2}. So it follows that there exists a p.a.p. Γ such that the image of f_{Γ} is not congruent to any Hopf torus in S^{3}.
Remark 2. Let l_{i} be the period of γ_{i}. Then

$$
\text { generators of } G(\Gamma)= \begin{cases}\left(l_{1}, 0\right),\left(0, l_{2}\right) & \text { if } I\left(\gamma_{1}\right)=0, I\left(\gamma_{2}\right)=0 \tag{4}\\ \left(2 l_{1}, 0\right),\left(0, l_{2}\right) & \text { if } I\left(\gamma_{1}\right)=1, I\left(\gamma_{2}\right)=0 \\ \left(l_{1}, 0\right),\left(0,2 l_{2}\right) & \text { if } I\left(\gamma_{1}\right)=0, I\left(\gamma_{2}\right)=1 \\ \left(l_{1}, l_{2}\right),\left(l_{1},-l_{2}\right) & \text { if } I\left(\gamma_{1}\right)=1, I\left(\gamma_{2}\right)=1\end{cases}
$$

Remark 3. Consider two curves a_{1} and a_{2} in M_{Γ} given by

$$
\begin{equation*}
a_{1}(s)=\pi_{\Gamma}(s, 0), \quad a_{2}(s)=\pi_{\Gamma}(0, s) \tag{5}
\end{equation*}
$$

Then it follows from (4) that they are simple closed curves in M_{Γ}.
Remark 4. Weiner $[14,15]$ studied the Gauss map of a flat torus in S^{3}, and obtained a method for constructing all the flat tori in S^{3} which is different from ours. For the Gauss map of the immersion $f_{\Gamma}: M_{\Gamma} \rightarrow S^{3}$, see Section 7 of [7]

In the rest of this section we deal with the intrinsic structure of M_{Γ}. For each p.a.p. $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$, we set

$$
L\left(\gamma_{i}\right)=\int_{0}^{l_{i}}\left|\gamma_{i}^{\prime}(s)\right| d s, \quad K\left(\gamma_{i}\right)=\int_{0}^{l_{i}} k_{i}(s)\left|\gamma_{i}^{\prime}(s)\right| d s
$$

where l_{i} denotes the period of γ_{i}. Then it follows that the intrinsic structure of the flat torus $M_{\Gamma}=\left(\mathbb{R}^{2}, g_{\Gamma}\right) / G(\Gamma)$ is determined by the following data:

$$
\left\{I\left(\gamma_{i}\right), K\left(\gamma_{i}\right), L\left(\gamma_{i}\right)\right\}_{i=1,2}
$$

More precisely, we obtain

Theorem $2([8])$. Let $W(\Gamma)$ be a lattice of \mathbb{R}^{2} generated by the following vectors.

$$
\begin{cases}\vec{v}_{1}, \vec{v}_{2} & \text { if } I\left(\gamma_{1}\right)=0, I\left(\gamma_{2}\right)=0, \\ 2 \vec{v}_{1}, \vec{v}_{2} & \text { if } I\left(\gamma_{1}\right)=1, I\left(\gamma_{2}\right)=0, \\ \vec{v}_{1}, 2 \vec{v}_{2} & \text { if } I\left(\gamma_{1}\right)=0, I\left(\gamma_{2}\right)=1 \\ \vec{v}_{1} \pm \vec{v}_{2} & \text { if } I\left(\gamma_{1}\right)=1, I\left(\gamma_{2}\right)=1,\end{cases}
$$

where $\vec{v}_{i}=\frac{1}{2}\left(K\left(\gamma_{i}\right), L\left(\gamma_{i}\right)\right)$. Then the flat torus M_{Γ} is isometric to $\mathbb{R}^{2} / W(\Gamma)$.

2. Embedded flat tori in S^{3}

In this section, using the method explained in Section 1, we study the embedded flat tori in S^{3}. Let $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ be a p.a.p., and let $I(\Gamma)=\left(I\left(\gamma_{1}\right), I\left(\gamma_{2}\right)\right)$.
Theorem 3 ([7]). If $f_{\Gamma}: M_{\Gamma} \rightarrow S^{3}$ is an embedding, then $I(\Gamma)=(1,1)$.
Proof (Outline). Assume that $I(\Gamma) \neq(1,1)$. Using the embedding f_{Γ}, we identify M_{Γ} with a subset of S^{3}. Let a_{1} and a_{2} be the simple closed curves in M_{Γ} given by (5), and let a_{i}^{+}be a simple closed curve in $S^{3}-M_{\Gamma}$ obtained by pushing the curve a_{i} a very small amount along a unit normal vector field ξ of M_{Γ}. Then we obtain the links $\left\{a_{1}, a_{1}^{+}\right\}$and $\left\{a_{2}, a_{2}^{+}\right\}$in S^{3}, and it follows that the linking numbers of these links satisfy

$$
\begin{equation*}
\operatorname{lk}\left(a_{1}, a_{1}^{+}\right) \equiv \operatorname{lk}\left(a_{2}, a_{2}^{+}\right) \equiv 1, \quad \bmod 2 \tag{6}
\end{equation*}
$$

We now consider a disk $D \subset M_{\Gamma}$ which does not intersect the union $a_{1} \cup a_{2}$, and let K be a knot in S^{3} given by $K=\partial D$. Since $I(\Gamma) \neq(1,1)$, it follows from (4) that $\left\{a_{1}, a_{2}\right\}$ is a canonical basis of the homology group $H_{1}(V)$, where V is a Seifert surface of the knot K given by $V=M_{\Gamma}-D$. So, by using [4, Chapter10], we see that the Arf invariant of K is given by

$$
\operatorname{Arf}(K) \equiv \operatorname{lk}\left(a_{1}, a_{1}^{+}\right) \operatorname{lk}\left(a_{2}, a_{2}^{+}\right), \quad \bmod 2
$$

Hence, (6) implies $\operatorname{Arf}(K)=1$. On the other hand, since $K=\partial D$, we obtain $\operatorname{Arf}(K)=0$. This is a contradiction.

It follows from Theorem 3 and (1) that if f_{Γ} is an embedding, then the image of f_{Γ} is invariant under the antipodal map of S^{3}. Hence, Theorem 1 implies the following

Theorem 4 ([7]). If $f: M \rightarrow S^{3}$ is an isometric embedding of a flat torus M, then the image $f(M)$ is invariant under the antipodal map of S^{3}.

As an application of this theorem, we obtain a rigidity theorem for the Clifford tori in S^{3}. For positive numbers R_{1} and R_{2} satisfying $R_{1}^{2}+R_{2}^{2}=1$, let $S^{1}\left(R_{1}\right) \times S^{1}\left(R_{2}\right)$ denote the Clifford torus in S^{3} given by

$$
S^{1}\left(R_{1}\right) \times S^{1}\left(R_{2}\right)=\left\{x \in \mathbb{R}^{4}: x_{1}^{2}+x_{2}^{2}=R_{1}^{2}, x_{3}^{2}+x_{4}^{2}=R_{2}^{2}\right\}
$$

and let $i: S^{1}\left(R_{1}\right) \times S^{1}\left(R_{2}\right) \rightarrow S^{3}$ denote the inclusion map.

Theorem 5 ([3]). If $f: S^{1}\left(R_{1}\right) \times S^{1}\left(R_{2}\right) \rightarrow S^{3}$ is an isometric embedding, then there exists an isometry A of S^{3} such that $f=A \circ i$.

Proof (Outline). We can show that if $f: S^{1}\left(R_{1}\right) \times S^{1}\left(R_{2}\right) \rightarrow S^{3}$ is an isometric immersion whose extrinsic diameter is equal to π, then there exists an isometry A of S^{3} such that $f=A \circ i$. So the assertion follows from Theorem 4 .

Remark 5. RecentlyCDadok-Sha [2] obtained the same result as we have proved in Theorem 4. Their proof is different from ours.

Remark 6. In Theorem 4 the word "embedding" cannot be replaced by "immersion". In fact, there exists an isometric immersion of a flat torus into S^{3} whose image is not invariant under the antipodal map of $S^{3}([7$, Theorem 4.4]). However the author does not know whether the extrinsic diameter of any flat torus isometrically immersed in S^{3} is equal to π. If this is true, the conclusion of Theorem 5 is valid for every isometric immersion $f: S^{1}\left(R_{1}\right) \times S^{1}\left(R_{2}\right) \rightarrow S^{3}$.

3. The classification of undeformable flat tori in S^{3}

An isometric immersion $f: M \rightarrow S^{3}$ is said to be deformable if there exists a nontrivial isometric deformation of f. As a corollary of Theorem 5 , it follows that the inclusion map $i: S^{1}\left(R_{1}\right) \times S^{1}\left(R_{2}\right) \rightarrow S^{3}$ is not deformable ([6]). In this section we give the classification of undeformable flat tori isometrically immersed in S^{3}.

Theorem 6 ([8]). Let $f: M \rightarrow S^{3}$ be an isometric immersion of a flat torus M into S^{3}. If the mean curvature of the immersion f is not constant, then f is deformable.

Proof (Outline). It follows from Theorem 1 that there exist a p.a.p. $\Gamma=\left(\gamma_{1}, \gamma_{2}\right)$ and a covering map $\rho: M \rightarrow M_{\Gamma}$ such that

$$
f=A \circ f_{\Gamma} \circ \rho,
$$

where A denotes an isometry of S^{3}. So it is sufficient to show that f_{Γ} is deformable. On the other hand, we see that the mean curvature of f_{Γ} is constant if and only if both γ_{1} and γ_{2} are circles in the unit sphere S^{2}. So, by the assumption, either γ_{1} or γ_{2} is not a circle. This ensures the existence of a nontrivial deformation of Γ which preserves the data $\left\{I\left(\gamma_{i}\right), K\left(\gamma_{i}\right), L\left(\gamma_{i}\right)\right\}_{i=1,2}$. Hence, Theorem 2 implies a nontrivial isometric deformation of f_{Γ}.

We now consider an isometric immersion $f: M \rightarrow S^{3}$ of a flat torus M into S^{3} with constant mean curvature. In this case, it is easy to see that f is congruent to the immersion

$$
\begin{equation*}
F / G: \mathbb{R}^{2} / G \rightarrow S^{3} \tag{7}
\end{equation*}
$$

where F is a covering map of \mathbb{R}^{2} onto a Clifford torus $S^{1}\left(R_{1}\right) \times S^{1}\left(R_{2}\right)$ defined by

$$
F\left(x_{1}, x_{2}\right)=\left(R_{1} \cos \frac{x_{1}}{R_{1}}, R_{1} \sin \frac{x_{1}}{R_{1}}, R_{2} \cos \frac{x_{2}}{R_{2}}, R_{2} \sin \frac{x_{2}}{R_{2}}\right)
$$

and G is a subgroup of the covering transformation group of F such that \mathbb{R}^{2} / G is compact. The covering transformation group of F, which consists of parallel translations of \mathbb{R}^{2}, is generated by the vectors $\vec{e}_{1}=\left(2 \pi R_{1}, 0\right)$ and $\vec{e}_{2}=\left(0,2 \pi R_{2}\right)$. So the group G is generated by

$$
\begin{equation*}
\vec{a}=a_{1} \vec{e}_{1}+a_{2} \vec{e}_{2}, \quad \vec{b}=b_{1} \vec{e}_{1}+b_{2} \vec{e}_{2} \tag{8}
\end{equation*}
$$

where $a_{i}, b_{i} \in \mathbb{Z}$ and $a_{1} b_{2}-a_{2} b_{1} \neq 0$.
Theorem 7 ([9]). The following statements (a) and (b) are equivalent.
(a) $F / G: \mathbb{R}^{2} / G \rightarrow S^{3}$ is not deformable,
(b) g.c.d. $\left(a_{1}+a_{2}, b_{1}+b_{2}\right)=$ g.c.d. $\left(a_{1}-a_{2}, b_{1}-b_{2}\right)=1$.

Proof (Outline). (a) \Rightarrow (b). Assume that g.c.d. $\left(a_{1}+a_{2}, b_{1}+b_{2}\right)=n \geq 2$. Let G_{0} denote the covering transformation group of F, which is generated by \vec{e}_{1} and \vec{e}_{2}, and let $W(n)$ be a subgroup of G_{0} given by

$$
W(n)=\left\{n_{1} \vec{e}_{1}+n_{2} \vec{e}_{2}: n_{1}+n_{2} \in n \mathbb{Z}\right\}
$$

Then $G \subset W(n)$ and the immersion $F / W(n)$ is congruent to the Hopf torus $p^{-1}(\gamma)$, where γ denotes a n-fold circle in S^{2}. Since the Hopf torus $p^{-1}(\gamma)$ is deformable for $n \geq 2$, we see that the immersion $F / W(n)$ is deformable. So it follows from $G \subset W(n)$ that the immersion F / G is deformable. Similarly, the immersion F / G is deformable if g.c.d. $\left(a_{1}-a_{2}, b_{1}-b_{2}\right) \neq 1$.
(b) \Rightarrow (a). Let $f_{t}: \mathbb{R}^{2} / G \rightarrow S^{3}$ be an isometric deformation of F / G, and let F_{t} be the isometric deformation of $F: \mathbb{R}^{2} \rightarrow S^{3}$ induced by f_{t}. Then each F_{t} is invariant under the group G. Furthermore we can show that each F_{t} is $\sigma(G)$-invariant, where σ denotes an automorphism of G_{0} satisfying

$$
\sigma\left(\vec{e}_{1}\right)=\vec{e}_{2}, \quad \sigma\left(\vec{e}_{2}\right)=\vec{e}_{1}
$$

On the other hand, the assumption (b) implies $G+\sigma(G)=G_{0}$, and so F_{t} is $G_{0^{-}}$ invariant. Hence we obtain an isometric deformation F_{t} / G_{0} of the isometric embed$\operatorname{ding} F / G_{0}: \mathbb{R}^{2} / G_{0} \rightarrow S^{3}$. Since the embedding is congruent to the inclusion map $i: S^{1}\left(R_{1}\right) \times S^{1}\left(R_{2}\right) \rightarrow S^{3}$, it follows from Theorem 5 that for each t there exists an isometry A_{t} of S^{3} such that $F_{t} / G_{0}=A_{t} \circ\left(F / G_{0}\right)$. Hence $f_{t}=F_{t} / G=A_{t} \circ(F / G)$, and so the immersion F / G is not deformable.

By Theorems 6 and 7, we obtain the following classification of undeformable flat tori in S^{3}.

Theorem 8. Let $f: M \rightarrow S^{3}$ be an isometric immersion of a flat torus M into S^{3}. Then the immersion f is not deformable if and only if it is congruent to the immersion F / G defined by (7) such that the group G is generated by \vec{a} and \vec{b} satisfying (8) and g.c.d. $\left(a_{1}+a_{2}, b_{1}+b_{2}\right)=$ g.c.d. $\left(a_{1}-a_{2}, b_{1}-b_{2}\right)=1$.

References

[1] L. Bianchi, Sulle superficie a curvatura nulla in geometrica ellittica, Ann. Mat. Pura Appl. 24 (1896), 93-129.
[2] J. Dadok, J. Sha, On embedded flat surfaces in S^{3}; J. Geometric Analysis 7 (1997), 47-55.
[3] K. Enomoto, Y. Kitagawa and J. L. Weiner, A rigidity theorem for the Clifford tori in S^{3}, Proc. A.M.S. 124 (1996), 265-268.
[4] L. H. Kauffman, On Knots, Ann. of Math. Stud., 115, Princeton Univ. Press, Princeton NJ, 1987.
[5] Y. Kitagawa, Periodicity of the asymptotic curves on flat tori in S^{3}, J. Math. Soc. Japan, 40 (1988), 457-476.
[6] Y. Kitagawa, Rigidity of the Clifford tori in S^{3}, Math. Z., 198 (1988), 591-599.
[7] Y. Kitagawa, Embedded flat tori in the unit 3-sphere, J. Math. Soc. Japan, 47 (1995), 275-296.
[8] Y. Kitagawa, Isometric deformations of a flat torus in the 3-sphere with nonconstant mean curvature, Tôhoku Math. J. 52 (2000), 283-298.
[9] Y. Kitagawa, Deformable flat tori in S^{3} with constant mean curvature, preprint.
[10] U. Pinkall, Hopf tori in S^{3}, Invent. math., 81 (1985), 379-386.
[11] S. Sasaki, On complete surfaces with Gaussian curvature zero in 3-sphere, Colloq. Math., 26 (1972), 165-174.
[12] M. Spivak, Some left-over problems from classical differential geometry, Proc. Sympos. Pure Math., 27 (1975), 245-252.
[13] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol.4, Publish or Perish, Berkeley, 1977.
[14] J. L. Weiner, The Gauss map of flat tori in S^{3}, Proc. Meet, Marseille 1987, (1989), 209-221.
[15] J. L. Weiner, Flat tori in S^{3} and their Gauss maps, Proc. London Math. Soc.(3), 62 (1991), 54-76.
[16] S. T. Yau, Submanifolds with constant mean curvature II, Amer. J. Math., 97 (1975), 76-100.
Department of Mathematics, Utsunomiya University, Mine-machi, Utsunomiya 321-8505, Japan

E-mail address: kitagawa@@cc.utsunomiya-u.ac.jp

