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CONSTRUCTION OF FLAT TORI IN THE 3-SPHERE AND ITS 
APPLICATIONS 

YOSHIHISA KITAGA~VA 

INTRODUCTION 

In 1975, Yau [16, p.87] posed the problem of the classification of fla,t tori in the 

unit 3-sphere S3. Concerning this problem, there is a 11Lethod for constructing flat 

surfaces in S3 which ~vas obseved by La,wson ([12]). Let p : S3 -~ S2 be the Hopf 

fibra,tion, and let *Y be a curve in S2. Then the inverse image p~1(7) is a fl.at surface 

in S3. If the curve n/ is closed, the inverse ima.ge p~1(7) is a flat torus in S3 and it is 

called t,he Hopf torus corresponding to ~/ ([10]). On t,he other hand, t,here is another 

method for const,ructing flat surfaces in S3 which was obtained by Bianchi[l] and 

Sasa,ki[1l]. Let a and p be curves in S3 whose torsions satisfy Ta = I and Tp = -1. 

Using the group structure on S3, define a surface F , R2 -~ S3 by 

F(sl, s2) = a(sl )p(s2). 

Then F is a fl'a,t surface such that the si-curves a,re the asyIILptotic curves of the sur-

f'ace ([13, p.139 - 163]). Infinitely many complete flat surfaces in S3 are constructed 

by t,his method. 

Recent,ly, using the Hopf flbration, the a,ut,hor obtairLed a method for constructing 

closcd c,urves in S3 with T = ~1. Combiningr this result with the method of Bianchi 

a,nd Sasal{i, thc aut,hor established a method for constructing a,ll the na,t tori iso-

metrically immersed in S3 (Theorem l). Applying this method, we obtain sorne 
interesting results on flat tori in S3. For example, by using the Arf inva,ria,rLt, for 

knots, we see th･a,t every embedded flat, torus in S3 is invaria,nt under t,he ant,ipodal 

ma,p of' S3 (Theorem 4). This implies a, rigidity theorem for t,he Clifford t,ori in S3 

(Theorem 5). Furt,hermore, we obtain t,he cla,ssinca.tion of undeforma,1:)le na,t tori in 

S3 (Theor'cm 8). 

The out,line of t,his a,rticle is as follo~vs. In Section I we expl.a,in the method for 

construct,ing 'all t,he flat, tori isometric.allv~ immersed in S3. In Sec'.tion 2 we dea,1 with 

embedded flat t,ori in S;3, and in Section 3 we explain the result of t,he classific.a=t,ion 

of undeformable fla,t tori in S3. 
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l. CONSTRUCTION OF FLAT TORI IN S3 

¥~/'e first, explain a, IrLet,hod for c'.onst,ruc.,tingf closed cur¥res in S3 ~vit,h T = ~1. Let 

~ denot,e t,he set of all quat,ernions, a,nd let, R4 be t,he 4-dinlLensiona,1 Euclidean spa.ce 

identified ~vit,h H a,s follo~vs: 

(xl, x2, x3, x4) <-> xl + x2i + x3j + x4k. 

Then the unit, spheres S2 and S3 are given by 

S2 = {x e ImlHl : :x = 1}, S3 = {x e Hl : x = l}. 

Note that, the unit sphere S3 has a, group s.'t,ructure induc,ed by the multiplicative 

sti-uc,ture of ~. Let US2 denote t,he unit, t,'anbo~ent bundle of S2 identifled ~vit,h a 

subset of S2 x S2 as follows: 

US2 = {(x, v) e S2 x S2 : (x, v) = O}, 

where the c,anonical projection pl : US2 -~' S2 is ~g~iven by pl(x,v) = x. Let, p2 : 

S3 -~ US2 be a double covering ma,p defined by p2(a) = (aia1 aja~1). Then the 
Hopf fibration p : S3 -> S2 is given by p = pl o p2' We now consider a regula,r curve 

~/ : R -> S2 with a period I > o, and define a cur¥re ~ : R -> US2 by 

~(s) = (~r(s), n( (s)li^/ (s)1)-

We denote by I(~/) the element of the homology group H1 (US2) represented by the 
ciosed curve ^^Y : [O, I] -> US2. Let c ! R -~ S3 be a lift of t,he curve i' with respect 

t,o thc co¥rering p2' Since Hi (US2) ~~~ Z2 a,nd the double covering p2 satisfles t,he 

r'elation p2(-a) = p2(a), we obtain 

(1) c(s) I(-/) O c(s + l) = 
-c(s) I(~/) 1 

On the other ha,nd IAre obta,in 

1
 c(s) Id(s) = ~17!(s)1(k ~ k(s)1) 

where k(s) denotes the ~)creodesic curva,ture of *f(s). This implies that, the torsions of 

the curves c and c~1 satisfy 

Tc = l. Tcl = -1. 

CombininbCr the observations above with the method of Bianchi and Sasaki, ~ve 
obta,in a met,hod for const,r'uct,inbCr a,ll t,he flat, t,ori isometric,ally hlLmersed in S3. 

Definition . A periodic admissible pai7- (p.a.p.) is a pa,ir of periodic, regula,r curves 

~'i i R -~ S2, i, = l, 9_, such t,hat 

(a) k;1(sl) > k2(s2) for a,ll sl, s2 e R, 

(b) h/;(s)1 IrTkT = 2, 
wherc ki(s) denotes t,he geodesic curva,ture of ,/i (s). 
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Let F = (71' 72) }-)e a p.a.p., a,nd let ci be a lift of ~i wit,h respect to the coverh~rg 

p2. Using the group struct;,ure of S3 we define the map FF I ~2 -> S3 by 

(3) FF(sl, s2) = cl(sl)c2(s2)~1' 
Then it follows t,ha=t t,he ma,p FF is an immersion and induces a, flat, Riem'~_~nnian 

metric gF on R2. We now consider the group 

G(r) = {p ~ Diff(~2) : FF o ~ = Fr}. 

Since each elernent of G(F) is a, pa,rallel t,ranslation of ~2, we identify t,he group 

G(r) wit,h a subgroup of ~2. Then we obta,in .a, flat torus MF = (R2, gF)/C(F), and 

a,n isometric hnmersion 
fF : M1' -> S3 

satisfying the rela,tion fJ. o 7rF = FF, ¥vhere /~~ F : R2 -> Mr denotcs t,he carLonical 

pro jection. 

Theorem I ([5, 7]). Let f : I~f -> S3 be an isometric immersion of a flat torus M 

into the unit sphere S3. Then the7~e exist a p.a.p. F and a covering map p : M -> ArfF 

such that A o f = fF o p for some isometry A : S3 -~ S3. 

Remark I . If t,he ima,ge of fF contains a grea,t circle of S3, either ~/1 or ~/2 is a circle 

in S2. So it follows that there exists a p.a.p. F such that the image of fF is not 

congruent to any Hopf torus in S3. 

Remal"k 2. Let, Ii be the period of 7i･ Then 

(11,0), (0,12) if I(71) = O, I(n/2) = , O
 

(4) genelatols of G(F) - (211'O), (0,12) if I(71) = 1, I(~/2) = , O
 

~ (11,0), (0,212) if I(71) = O, I(72) = , l
 

(ll,12), (li,-12) if I(71) = 1, I(n/2) = . 1
 

Remark 3. Consider t,vvo curves al and a2 in MF b'iven by 

(5) al(s) = 7Tr(s, O), a2(s) = 7TF(O, s). 
Then it follows from (4) that they are simple closed curves in MF. 

Remark 4. Weiner [14, 15] studied the Gauss map of a flat torus in S3, and obtained 

a method for const,ruct,h~lg all t,he flat tori in S3 which is different frorn ours. For 

the Ga,uss map of t,he immersion fr : Mr -> S3 see Section 7 of [7] 

In tllG rest of this sect,ion we deal wit,h the int,rinsic structure of A,fr. For eac,h 

p a p F = (-/1'*y2), ~ve set 

L(-/i) = h/;(s):ds, I¥'(^/i) = ki(s)I^f;(s)jds, 

where li denot,es the period of 7i. Then it follo~vs tha,t t,he intrinsic st,ruct,ure of t,he 

nat, torus A'fr = (R2, gr)/C(F) is deterrnined by the follo~ving dat,a: 

{1(^/i)' K(7i). L(^' )} 
' !s i=1,2' 

~,fore prec,isely, ~ve obt,ain 
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Theorem 2 ([8]). Let T4/(F) be a lattice ofR2 ge'n,eT'ated by the f'ollot('ing vectors. 

?1'.1, v~'2 if I(71) =0, I(^/2) =0, 

2 if I(71) = l, I(^/2) = O, 2,il' ~: 

2 rf I(71) = O, I(72) = 1, ~l' 2~ 

2 uf I(n/1) = l, I(~/2) = 1, ~jl~~ 

where v',. = ~(A'(7i), L(~/i))' Then the fiat torus Mr is isometric to R2/T~,,'(F). 

2. EMBEDDED FLAT TORI IN S3 

In t,his section, using t,he method expla,ined in Sec,t,ion 1, we study t,he embedded 

fla,t tori in S3. Let, F = (n/1~/2) be a p.a.p., and let I(F) = (1(71)' I(72))' 

Theorem 3 ([7]). Jf fF : MF -> S3 is an embedding, then I(F) = (1, l). 

Proof (Outline). Assume that I(F) ~ (1, l). Usinb" the embeddinb" fF, we identify 

A,fr wit,h a subset, of S3. Let, al and a2 be the shTLple closed curves in A'fF given by 

(5), and let at be a siuple closed curve in S3 - Mr obtained by pushing the c',urve ai 

a very small amount along a unit normal vector field ~ of MF. Then we obtain the 
links {al, at} and {a2' a~} in S3 and it follows t,hat, t,he linking numbers of these 

links satisfy 

lk(al, at) E Ik(a2' at) E l, mod 2. (6) 

¥Ve now consider a disk D C MF Which does not intersect the union al U a2, and 
let K be a knot, in S3 given by K = aD. Since I(F) ~ (1, 1), it follows frcurL (4) 

tha,t {al' a2} is a, c,anonical basis of the homology group H1(V), where V is a Seifert 

surface of the knot, K given by V = MF - D. So, by using [4, Chaptel~10], we see 

t,hat the Arf invaria,rLt of K is given by 

Arf(K) Ik(al, a+) Ik(a2 at), mod 2. 

Hence, (6) implies Arf(K) = 1. On the other hand, sinc,e K = aD, ~ve obtain 

Arf(K) = O. This is a contradiction. [] 
It, follo~vs from Theorem 3 a,nd (1) t,hat, if fF it;- an embedding', then the iula,b"e 

of fF is invariant, under the antipodal map of S3. Hence, Theorem I iuplies t,he 
f ollo¥ving 

Tlleorem 4 ([7]). Jf f : A,f -~ S3 is an isoTn,et'r'ic eTTbbedding of a flat to'rus AJ, th,en 

the image f(M) is inva,riar7,t under the antipodal map of S3. 

As a,n applicat,ion of this theorem, we obt,ain a, rigidit,y theorem for the Clifford t,ori 

in S3. For positive numbel~s Rl and R2 sat,isfying R~ + R~ = l, Iet S1(Rl) x Sl (R2) 

denot,e the Clifford t.orus in S3 given by 

S (R ) x S (R ) {x ~ R x +x~ = Rj, x~ +x~ = R~}, 

and let i : S1(Rl) x Sl(R2) ~ S3 denote the inclusion map. 
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Theorenl 5 ([3]). If' f : S1(R,1) x Sl(R2) -~ S3 is an isometric embedding, then 

there exists an isometry A of S3 such that f = A o i. 

Proof (Out,line). We ca,n sho~v t,hat if f : Sl(J?1) x Sl(R2) -> S3 is an isometric 

immersion whose cxtrinsic diamet,er is equa,1 to 7r, then therc cxists a,n isomct,ry A 

of S3 Such that f = A o i. So the assertion follows from Theorem 4. C
}
 

Remarh 5. Recent,lyCDadok-Sha [2 obtained t,he sarne result, as we have proved in J
 Theolcm 4. Their proof is different, from ours. 

Remarh 6. In Theorem 4 the word '~embedding" cannot, be replaccd by '<immersion~' . 
In fac'.t, there exist,s a,n isometric', hTmlersion of a flat, torus into S3 whose irna.ge is not, 

inv'a,riant under thc antipodal map of S3 ([7, Theorcm 4.4]). However the author does 

not know whether thc extrinsic', diameter of any fla=t t,orus isometrically hrLmersed 

irL S3 is equal to 7T' If this is true, the col[LClusion of Theorem 5 is valid for every 

isornetric immersion f : Sl(R1) x S1(R2) -~ S3 

3. TIIE CLASSII ICATION OF UNDEFORMABLE FLAT TORI IN S 

An isometric imnersion f : AI -> S3 is said to be deformable if there exists a 

nontrivial isometric deformation of f. As a corollary of Theorem 5, it follows tha,t, 

the inclusion map i : Sl(R1) x S1(R2) > S3 is not deformable ([6]). In this sec,tion 

we give the classifica,tion of undeformable flat t,ori isometrically immersed in S3. 

Theorem 6 ([8]). Let f : M -> S3 be an isorn,etric immersion of a flat t07~us M into 

S3. If the mean curvature oJ' the immersion f is not constant, then f is deformable. 

Proof (Outline). It follows from Theorem I that there exist a p.a..p. F = (n/1' 72) 

and a covering map p : M > ArfF Such that 

f = A o fF o p, 

where A denot,es an isomet,ry of S3. So it is suflicient, t,o show that fF is defon'nable. 

On the other hand, we see that, the mean curva,t,ure of fr is constant if and only if 

bot,h 71 and 72 are circles in the unit sphere S2. So, by the assumption, either 71 or 

7_', is not a c,ircle. This ensures t,he exist,ence of a nontrivial deformation of F ~vhich 

preserves the data {1(^/i), K(^fi), L(n/i)}i=1,2. Henc'.e, Theorem 2 hllplies a nont,rivia,l 

isomet,ric deforma,tion of ,fF. C] 
Wc now consider an isometric immersion f : M -~> S3 of a fla,t, torus M int,o S3 

wit,h c;onstant, mean cur¥'at,1_lre. In t,his case, it, is easy to see that f is con()o~ruent, to 

t,he irmlLersion 

(7) F/G : R2/C -> S3, 
¥¥'here F is a c.o¥rering In'ap of R2 ont.o a Clifford torus Sl (Rl) x S1(R2) dGfined by 

F(xl,x2) = R1 (os xl R c.os x2 R sm x2 R sm xl 

Rl ' '2 R2 ' R I R.2 
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and G is a subgroup of t,he covering t,ra,nsfonTla,tion g~roup of F sl..lc.h t,hat R21G 

is compact. The covering transfonnation group of F, which consist,s of parallel 
translations of R2, is generated by the ¥rect,ors e'+1 = (27rRl' O) and c'~2 = (O, 2/~{R,2)' 

So t,he group G is gencrat,ed by 

~ = ale~'1 + a2e'+2, b = ble'1 + b2e~2, 

~vhere ai, bi e Z a,nd alb2 - a2bl ~ O. 

Theorem 7 ([9]). The f'ollowing statements (a) and (b) are equivalent. 

(a,) F/G : R2/G -> S3 is not deformable, 

(b) g.c.d.(al + a2, bl h b2) = 9'c.d.(al - a2, bl ~ b2) = 1. 

Proof (Outline). (a,) ~ (b). Assume that g.c.d.(a,1 + a2,bi + b2) = n ~: 2. Let, 

Go denotc the covering transformation group of F, which is generated by e'+i a,nd e~'2, 

and let VV(n) be a subgrroup of Go given by 

T4/(n) = {nle'~1 + r?,2e~'2 : nl + n2 ~ 77.Z}. 

Then G C T4/(n) and the immersion F/W(n) is congruent to the Hopf torus p~1(7), 
~vhere n/ denotes a, n-fold circle in S2. Since the Hopf torus p~1(~/) is deforma.ble 

for n Z 2, v!~e see that, t,he immersion F/W(n) is deforma,ble. So it follo~vs from 

G C T'T/(n) that the immcrsion F/G is deformable. Similarly, t,he immersion F/G is 

defol~mable if g.c.d.(al - a2, bl ~ b2) ~ 1. 

(b) ~> (a). Let ft : R2/G -~･ S3 be an isometric defonlLation of F/G, and let Ft be 
the isometric defonnatiorL of F : R2 .-> S3 induced by ft' Then ea,ch Ft is in¥rariant 

under the group G. Furthenrrore we can show that eac,h Ft is ~(G)-invariant, ~vhere 

(7 denotes an a,utomorphism of Go satisfying 

(T(e~'1) = e~'2 (T(e2) el 

On t,he other hand, the assumption (b) implies G + (7(G) = Go, and so Ft is Go-

invariant. Hence we obta,in an isomet,ric deformation Ft/Go of the isomet,ric ernbed-

ding F/Go : R21Go -~ S3. Since the embedding is congruent, t,o t,he inclusion map 

i : Sl(Rl) x Sl(R2) -> S3, it, follow~s from Theorem 5 that, for each t there exists a,n 

isometry At of S3 such t,hat Ft/Go = At o (F/Go). Henc,e ft = Ft/G = At a (F/G), 

and so the lilwersion F/G is not, defounable. [] 

By Thcorems 6 and 7, wc obt,ain t,he following classinc.at,ion of undefonllable nat 
tori in S3. 

Tlleorem 8. Let f : M -> S3 be an isometric immersion, of a, fiat torus M into S3. 

Then the immersion f is not deJ'ormable uf and only ij' it is congruent to the iTn,'m,er-

s'ion F/G defined b,y (7) such that the group G is geneT'ated by ~ and C satisfyin,g (8) 

ar?,d g.c.d.(al + a2, bl + b2) = 9.c.d.(al - a2, bl ~ b2) = l. 
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