Josai Mathematical Monographs vol 3 (2001), *pp.* 3-9

CONSTRUCTION OF FLAT TORI IN THE 3-SPHERE AND ITS APPLICATIONS

YOSHIHISA KITAGAWA

INTRODUCTION

In 1975, Yau [16, p.87] posed the problem of the classification of flat tori in the unit 3-sphere S^3 . Concerning this problem, there is a method for constructing flat surfaces in S^3 which was observed by Lawson ([12]). Let $p: S^3 \to S^2$ be the Hopf fibration, and let γ be a curve in S^2 . Then the inverse image $p^{-1}(\gamma)$ is a flat surface in S^3 . If the curve γ is closed, the inverse image $p^{-1}(\gamma)$ is a flat torus in S^3 and it is called the *Hopf torus* corresponding to γ ([10]). On the other hand, there is another method for constructing flat surfaces in S^3 which was obtained by Bianchi[1] and Sasaki[11]. Let α and β be curves in S^3 whose torsions satisfy $\tau_{\alpha} = 1$ and $\tau_{\beta} = -1$. Using the group structure on S^3 , define a surface $F: \mathbb{R}^2 \to S^3$ by

$$F(s_1, s_2) = \alpha(s_1)\beta(s_2).$$

Then F is a flat surface such that the s_i -curves are the asymptotic curves of the surface ([13, p.139 - 163]). Infinitely many complete flat surfaces in S^3 are constructed by this method.

Recently, using the Hopf fibration, the author obtained a method for constructing closed curves in S^3 with $\tau = \pm 1$. Combining this result with the method of Bianchi and Sasaki, the author established a method for constructing all the flat tori isometrically immersed in S^3 (Theorem 1). Applying this method, we obtain some interesting results on flat tori in S^3 . For example, by using the Arf invariant for knots, we see that every embedded flat torus in S^3 is invariant under the antipodal map of S^3 (Theorem 4). This implies a rigidity theorem for the Clifford tori in S^3 (Theorem 5). Furthermore, we obtain the classification of undeformable flat tori in S^3 (Theorem 8).

The outline of this article is as follows. In Section 1 we explain the method for constructing all the flat tori isometrically immersed in S^3 . In Section 2 we deal with embedded flat tori in S^3 , and in Section 3 we explain the result of the classification of undeformable flat tori in S^3 .

YOSHIHISA KITAGAWA

1. Construction of flat tori in S^3

We first explain a method for constructing closed curves in S^3 with $\tau = \pm 1$. Let \mathbb{H} denote the set of all quaternions, and let \mathbb{R}^4 be the 4-dimensional Euclidean space identified with \mathbb{H} as follows:

$$(x_1, x_2, x_3, x_4) \longleftrightarrow x_1 + x_2 \mathbf{i} + x_3 \mathbf{j} + x_4 \mathbf{k}.$$

Then the unit spheres S^2 and S^3 are given by

$$S^{2} = \{x \in \text{Im } \mathbb{H} : |x| = 1\}, \quad S^{3} = \{x \in \mathbb{H} : |x| = 1\}.$$

Note that the unit sphere S^3 has a group structure induced by the multiplicative structure of \mathbb{H} . Let US^2 denote the unit tangent bundle of S^2 identified with a subset of $S^2 \times S^2$ as follows:

$$US^{2} = \{(x, v) \in S^{2} \times S^{2} : \langle x, v \rangle = 0\},\$$

where the canonical projection $p_1 : US^2 \to S^2$ is given by $p_1(x, v) = x$. Let $p_2 : S^3 \to US^2$ be a double covering map defined by $p_2(a) = (a\mathbf{i}a^{-1}, a\mathbf{j}a^{-1})$. Then the Hopf fibration $p : S^3 \to S^2$ is given by $p = p_1 \circ p_2$. We now consider a regular curve $\gamma : \mathbb{R} \to S^2$ with a period l > 0, and define a curve $\hat{\gamma} : \mathbb{R} \to US^2$ by

$$\hat{\gamma}(s) = (\gamma(s), \gamma'(s)/|\gamma'(s)|).$$

We denote by $I(\gamma)$ the element of the homology group $H_1(US^2)$ represented by the closed curve $\hat{\gamma} : [0, l] \to US^2$. Let $c : \mathbb{R} \to S^3$ be a lift of the curve $\hat{\gamma}$ with respect to the covering p_2 . Since $H_1(US^2) \cong \mathbb{Z}_2$ and the double covering p_2 satisfies the relation $p_2(-a) = p_2(a)$, we obtain

(1)
$$c(s+l) = \begin{cases} c(s) & I(\gamma) = 0, \\ -c(s) & I(\gamma) = 1. \end{cases}$$

On the other hand we obtain

$$c(s)^{-1}c'(s) = \frac{1}{2}|\gamma'(s)|(\mathbf{k} + k(s)\mathbf{i}),$$

where k(s) denotes the geodesic curvature of $\gamma(s)$. This implies that the torsions of the curves c and c^{-1} satisfy

Combining the observations above with the method of Bianchi and Sasaki, we obtain a method for constructing all the flat tori isometrically immersed in S^3 .

Definition. A *periodic admissible pair* (p.a.p.) is a pair of periodic regular curves $\gamma_i : \mathbb{R} \to S^2, i = 1, 2$, such that

- (a) $k_1(s_1) > k_2(s_2)$ for all $s_1, s_2 \in \mathbb{R}$,
- (b) $|\gamma'_i(s)| \sqrt{1 + k_i(s)^2} = 2$,

where $k_i(s)$ denotes the geodesic curvature of $\gamma_i(s)$.

Let $\Gamma = (\gamma_1, \gamma_2)$ be a p.a.p., and let c_i be a lift of $\hat{\gamma}_i$ with respect to the covering p_2 . Using the group structure of S^3 , we define the map $F_{\Gamma} : \mathbb{R}^2 \to S^3$ by

(3)
$$F_{\Gamma}(s_1, s_2) = c_1(s_1)c_2(s_2)^{-1}$$

Then it follows that the map F_{Γ} is an immersion and induces a flat Riemannian metric g_{Γ} on \mathbb{R}^2 . We now consider the group

$$G(\Gamma) = \{ \varphi \in \text{Diff}(\mathbb{R}^2) : F_{\Gamma} \circ \varphi = F_{\Gamma} \}.$$

Since each element of $G(\Gamma)$ is a parallel translation of \mathbb{R}^2 , we identify the group $G(\Gamma)$ with a subgroup of \mathbb{R}^2 . Then we obtain a flat torus $M_{\Gamma} = (\mathbb{R}^2, g_{\Gamma})/G(\Gamma)$, and an isometric immersion

$$f_{\Gamma}: M_{\Gamma} \to S^3$$

satisfying the relation $f_{\Gamma} \circ \pi_{\Gamma} = F_{\Gamma}$, where $\pi_{\Gamma} : \mathbb{R}^2 \to M_{\Gamma}$ denotes the canonical projection.

Theorem 1 ([5, 7]). Let $f: M \to S^3$ be an isometric immersion of a flat torus M into the unit sphere S^3 . Then there exist a p.a.p. Γ and a covering map $\rho: M \to M_{\Gamma}$ such that $A \circ f = f_{\Gamma} \circ \rho$ for some isometry $A: S^3 \to S^3$.

Remark 1. If the image of f_{Γ} contains a great circle of S^3 , either γ_1 or γ_2 is a circle in S^2 . So it follows that there exists a p.a.p. Γ such that the image of f_{Γ} is not congruent to any Hopf torus in S^3 .

Remark 2. Let l_i be the period of γ_i . Then

(4) generators of
$$G(\Gamma) = \begin{cases} (l_1, 0), (0, l_2) & \text{if } I(\gamma_1) = 0, I(\gamma_2) = 0, \\ (2l_1, 0), (0, l_2) & \text{if } I(\gamma_1) = 1, I(\gamma_2) = 0, \\ (l_1, 0), (0, 2l_2) & \text{if } I(\gamma_1) = 0, I(\gamma_2) = 1, \\ (l_1, l_2), (l_1, -l_2) & \text{if } I(\gamma_1) = 1, I(\gamma_2) = 1. \end{cases}$$

Remark 3. Consider two curves a_1 and a_2 in M_{Γ} given by

(5)
$$a_1(s) = \pi_{\Gamma}(s, 0), \quad a_2(s) = \pi_{\Gamma}(0, s)$$

Then it follows from (4) that they are simple closed curves in M_{Γ} .

Remark 4. Weiner [14, 15] studied the Gauss map of a flat torus in S^3 , and obtained a method for constructing all the flat tori in S^3 which is different from ours. For the Gauss map of the immersion $f_{\Gamma}: M_{\Gamma} \to S^3$, see Section 7 of [7]

In the rest of this section we deal with the intrinsic structure of M_{Γ} . For each p.a.p. $\Gamma = (\gamma_1, \gamma_2)$, we set

$$L(\gamma_{i}) = \int_{0}^{l_{i}} |\gamma_{i}^{'}(s)| ds, \quad K(\gamma_{i}) = \int_{0}^{l_{i}} k_{i}(s) |\gamma_{i}^{'}(s)| ds$$

where l_i denotes the period of γ_i . Then it follows that the intrinsic structure of the flat torus $M_{\Gamma} = (\mathbb{R}^2, g_{\Gamma})/G(\Gamma)$ is determined by the following data:

$${I(\gamma_i), K(\gamma_i), L(\gamma_i)}_{i=1,2}.$$

More precisely, we obtain

Theorem 2 ([8]). Let $W(\Gamma)$ be a lattice of \mathbb{R}^2 generated by the following vectors.

$$\begin{cases} \vec{v}_1, \ \vec{v}_2 & \text{if} \quad I(\gamma_1) = 0, \ I(\gamma_2) = 0, \\ 2\vec{v}_1, \ \vec{v}_2 & \text{if} \quad I(\gamma_1) = 1, \ I(\gamma_2) = 0, \\ \vec{v}_1, \ 2\vec{v}_2 & \text{if} \quad I(\gamma_1) = 0, \ I(\gamma_2) = 1, \\ \vec{v}_1 \pm \vec{v}_2 & \text{if} \quad I(\gamma_1) = 1, \ I(\gamma_2) = 1, \end{cases}$$

where $\vec{v}_i = \frac{1}{2}(K(\gamma_i), L(\gamma_i))$. Then the flat torus M_{Γ} is isometric to $\mathbb{R}^2/W(\Gamma)$.

2. Embedded flat tori in S^3

In this section, using the method explained in Section 1, we study the embedded flat tori in S^3 . Let $\Gamma = (\gamma_1, \gamma_2)$ be a p.a.p., and let $I(\Gamma) = (I(\gamma_1), I(\gamma_2))$.

Theorem 3 ([7]). If $f_{\Gamma} : M_{\Gamma} \to S^3$ is an embedding, then $I(\Gamma) = (1, 1)$.

Proof (Outline). Assume that $I(\Gamma) \neq (1, 1)$. Using the embedding f_{Γ} , we identify M_{Γ} with a subset of S^3 . Let a_1 and a_2 be the simple closed curves in M_{Γ} given by (5), and let a_i^+ be a simple closed curve in $S^3 - M_{\Gamma}$ obtained by pushing the curve a_i a very small amount along a unit normal vector field ξ of M_{Γ} . Then we obtain the links $\{a_1, a_1^+\}$ and $\{a_2, a_2^+\}$ in S^3 , and it follows that the linking numbers of these links satisfy

(6)
$$\operatorname{lk}(a_1, a_1^+) \equiv \operatorname{lk}(a_2, a_2^+) \equiv 1, \mod 2.$$

We now consider a disk $D \subset M_{\Gamma}$ which does not intersect the union $a_1 \cup a_2$, and let K be a knot in S^3 given by $K = \partial D$. Since $I(\Gamma) \neq (1,1)$, it follows from (4) that $\{a_1, a_2\}$ is a canonical basis of the homology group $H_1(V)$, where V is a Seifert surface of the knot K given by $V = M_{\Gamma} - D$. So, by using [4, Chapter10], we see that the Arf invariant of K is given by

$$\operatorname{Arf}(K) \equiv \operatorname{lk}(a_1, a_1^+) \operatorname{lk}(a_2, a_2^+), \mod 2.$$

Hence, (6) implies $\operatorname{Arf}(K) = 1$. On the other hand, since $K = \partial D$, we obtain $\operatorname{Arf}(K) = 0$. This is a contradiction.

It follows from Theorem 3 and (1) that if f_{Γ} is an embedding, then the image of f_{Γ} is invariant under the antipodal map of S^3 . Hence, Theorem 1 implies the following

Theorem 4 ([7]). If $f: M \to S^3$ is an isometric embedding of a flat torus M, then the image f(M) is invariant under the antipodal map of S^3 .

As an application of this theorem, we obtain a rigidity theorem for the Clifford tori in S^3 . For positive numbers R_1 and R_2 satisfying $R_1^2 + R_2^2 = 1$, let $S^1(R_1) \times S^1(R_2)$ denote the Clifford torus in S^3 given by

$$S^{1}(R_{1}) \times S^{1}(R_{2}) = \{ x \in \mathbb{R}^{4} : x_{1}^{2} + x_{2}^{2} = R_{1}^{2}, \ x_{3}^{2} + x_{4}^{2} = R_{2}^{2} \},\$$

and let $i: S^1(R_1) \times S^1(R_2) \to S^3$ denote the inclusion map.

Theorem 5 ([3]). If $f : S^1(R_1) \times S^1(R_2) \to S^3$ is an isometric embedding, then there exists an isometry A of S^3 such that $f = A \circ i$.

Proof (Outline). We can show that if $f: S^1(R_1) \times S^1(R_2) \to S^3$ is an isometric immersion whose extrinsic diameter is equal to π , then there exists an isometry A of S^3 such that $f = A \circ i$. So the assertion follows from Theorem 4.

Remark 5. RecentlyCDadok-Sha [2] obtained the same result as we have proved in Theorem 4. Their proof is different from ours.

Remark 6. In Theorem 4 the word "embedding" cannot be replaced by "immersion". In fact, there exists an isometric immersion of a flat torus into S^3 whose image is not invariant under the antipodal map of S^3 ([7, Theorem 4.4]). However the author does not know whether the extrinsic diameter of any flat torus isometrically immersed in S^3 is equal to π . If this is true, the conclusion of Theorem 5 is valid for every isometric immersion $f: S^1(R_1) \times S^1(R_2) \to S^3$.

3. The classification of undeformable flat tori in S^3

An isometric immersion $f: M \to S^3$ is said to be *deformable* if there exists a nontrivial isometric deformation of f. As a corollary of Theorem 5, it follows that the inclusion map $i: S^1(R_1) \times S^1(R_2) \to S^3$ is not deformable ([6]). In this section we give the classification of undeformable flat tori isometrically immersed in S^3 .

Theorem 6 ([8]). Let $f: M \to S^3$ be an isometric immersion of a flat torus M into S^3 . If the mean curvature of the immersion f is not constant, then f is deformable.

Proof (Outline). It follows from Theorem 1 that there exist a p.a.p. $\Gamma = (\gamma_1, \gamma_2)$ and a covering map $\rho : M \to M_{\Gamma}$ such that

$$f = A \circ f_{\Gamma} \circ \rho,$$

where A denotes an isometry of S^3 . So it is sufficient to show that f_{Γ} is deformable. On the other hand, we see that the mean curvature of f_{Γ} is constant if and only if both γ_1 and γ_2 are circles in the unit sphere S^2 . So, by the assumption, either γ_1 or γ_2 is not a circle. This ensures the existence of a nontrivial deformation of Γ which preserves the data $\{I(\gamma_i), K(\gamma_i), L(\gamma_i)\}_{i=1,2}$. Hence, Theorem 2 implies a nontrivial isometric deformation of f_{Γ} .

We now consider an isometric immersion $f: M \to S^3$ of a flat torus M into S^3 with constant mean curvature. In this case, it is easy to see that f is congruent to the immersion

(7)
$$F/G: \mathbb{R}^2/G \to S^3$$

where F is a covering map of \mathbb{R}^2 onto a Clifford torus $S^1(R_1) \times S^1(R_2)$ defined by

$$F(x_1, x_2) = \left(R_1 \cos \frac{x_1}{R_1}, \ R_1 \sin \frac{x_1}{R_1}, \ R_2 \cos \frac{x_2}{R_2}, \ R_2 \sin \frac{x_2}{R_2} \right),$$

and G is a subgroup of the covering transformation group of F such that \mathbb{R}^2/G is compact. The covering transformation group of F, which consists of parallel translations of \mathbb{R}^2 , is generated by the vectors $\vec{e}_1 = (2\pi R_1, 0)$ and $\vec{e}_2 = (0, 2\pi R_2)$. So the group G is generated by

(8)
$$\vec{a} = a_1 \vec{e_1} + a_2 \vec{e_2}, \quad \vec{b} = b_1 \vec{e_1} + b_2 \vec{e_2},$$

where $a_i, b_i \in \mathbb{Z}$ and $a_1b_2 - a_2b_1 \neq 0$.

Theorem 7 ([9]). The following statements (a) and (b) are equivalent. (a) $F/G: \mathbb{R}^2/G \to S^3$ is not deformable,

(b) $g.c.d.(a_1 + a_2, b_1 + b_2) = g.c.d.(a_1 - a_2, b_1 - b_2) = 1.$

Proof (Outline). (a) \Rightarrow (b). Assume that $g.c.d.(a_1 + a_2, b_1 + b_2) = n \geq 2$. Let G_0 denote the covering transformation group of F, which is generated by $\vec{e_1}$ and $\vec{e_2}$, and let W(n) be a subgroup of G_0 given by

$$W(n) = \{ n_1 \vec{e_1} + n_2 \vec{e_2} : n_1 + n_2 \in n\mathbb{Z} \}.$$

Then $G \subset W(n)$ and the immersion F/W(n) is congruent to the Hopf torus $p^{-1}(\gamma)$, where γ denotes a *n*-fold circle in S^2 . Since the Hopf torus $p^{-1}(\gamma)$ is deformable for $n \geq 2$, we see that the immersion F/W(n) is deformable. So it follows from $G \subset W(n)$ that the immersion F/G is deformable. Similarly, the immersion F/G is deformable if $g.c.d.(a_1 - a_2, b_1 - b_2) \neq 1$.

deformable if $g.c.d.(a_1 - a_2, b_1 - b_2) \neq 1$. (b) \Rightarrow (a). Let $f_t : \mathbb{R}^2/G \to S^3$ be an isometric deformation of F/G, and let F_t be the isometric deformation of $F : \mathbb{R}^2 \to S^3$ induced by f_t . Then each F_t is invariant under the group G. Furthermore we can show that each F_t is $\sigma(G)$ -invariant, where σ denotes an automorphism of G_0 satisfying

$$\sigma(\vec{e}_1) = \vec{e}_2, \quad \sigma(\vec{e}_2) = \vec{e}_1.$$

On the other hand, the assumption (b) implies $G + \sigma(G) = G_0$, and so F_t is G_0 invariant. Hence we obtain an isometric deformation F_t/G_0 of the isometric embedding $F/G_0 : \mathbb{R}^2/G_0 \to S^3$. Since the embedding is congruent to the inclusion map $i : S^1(R_1) \times S^1(R_2) \to S^3$, it follows from Theorem 5 that for each t there exists an isometry A_t of S^3 such that $F_t/G_0 = A_t \circ (F/G_0)$. Hence $f_t = F_t/G = A_t \circ (F/G)$, and so the immersion F/G is not deformable.

By Theorems 6 and 7, we obtain the following classification of undeformable flat tori in S^3 .

Theorem 8. Let $f: M \to S^3$ be an isometric immersion of a flat torus M into S^3 . Then the immersion f is not deformable if and only if it is congruent to the immersion F/G defined by (7) such that the group G is generated by \vec{a} and \vec{b} satisfying (8) and $g.c.d.(a_1 + a_2, b_1 + b_2) = g.c.d.(a_1 - a_2, b_1 - b_2) = 1$.

References

- L. Bianchi, Sulle superficie a curvatura nulla in geometrica ellittica, Ann. Mat. Pura Appl. 24 (1896), 93-129.
- [2] J. Dadok, J. Sha, On embedded flat surfaces in S³, J. Geometric Analysis 7 (1997), 47-55.
- [3] K. Enomoto, Y. Kitagawa and J. L. Weiner, A rigidity theorem for the Clifford tori in S³, Proc. A.M.S. 124 (1996), 265-268.
- [4] L. H. Kauffman, On Knots, Ann. of Math. Stud., 115, Princeton Univ. Press, Princeton NJ, 1987.
- [5] Y. Kitagawa, Periodicity of the asymptotic curves on flat tori in S³, J. Math. Soc. Japan, 40 (1988), 457-476.
- [6] Y. Kitagawa, Rigidity of the Clifford tori in S^3 , Math. Z., 198 (1988), 591-599.
- [7] Y. Kitagawa, Embedded flat tori in the unit 3-sphere, J. Math. Soc. Japan, 47 (1995), 275-296.
- [8] Y. Kitagawa, Isometric deformations of a flat torus in the 3-sphere with nonconstant mean curvature, Tôhoku Math. J. 52 (2000), 283-298.
- [9] Y. Kitagawa, Deformable flat tori in S^3 with constant mean curvature, preprint.
- [10] U. Pinkall, *Hopf tori in* S^3 , Invent. math., **81** (1985), 379-386.
- [11] S. Sasaki, On complete surfaces with Gaussian curvature zero in 3-sphere, Colloq. Math., 26 (1972), 165-174.
- [12] M. Spivak, Some left-over problems from classical differential geometry, Proc. Sympos. Pure Math., 27 (1975), 245-252.
- [13] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol.4, Publish or Perish, Berkeley, 1977.
- [14] J. L. Weiner, The Gauss map of flat tori in S^3 , Proc. Meet, Marseille 1987, (1989), 209-221.
- [15] J. L. Weiner, Flat tori in S^3 and their Gauss maps, Proc. London Math. Soc.(3), **62** (1991), 54-76.
- [16] S. T. Yau, Submanifolds with constant mean curvature II, Amer. J. Math., 97 (1975), 76-100.

Department of Mathematics, Utsunomiya University, Mine-Machi, Utsunomiya 321-8505, Japan

E-mail address: kitagawa@@cc.utsunomiya-u.ac.jp