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Before going to give our talk let us consider an easy global property in Calculus.
We consider a function f with one variable on the open interval (a,b). As is well
known, if it satisfies

f'(@) =0
on (a,b) and if it has a maximum on (a,b), namely, if there is a point z¢ on (e, b)
at which f(z¢)>f(z) for any point z on (a,b), then f is constant. This property is
usually called Mazimum Principle in Calculus.

Now let us denote by U an open connected set in an m-dimensional Euclidean

space R™ and {27} a Euclidean coordinate. We denote by L a differential operator

defined by
02 o,
= e Y —,
L Z & o + Z dxd’

where a¥ and b’ are smooth functions on U for any indices. When the matrix (a%)

is positive definite and symumnetric, it is called a second order elliptic differential
operator. We assume that L is an elliptic differential operator. The Maximum
Principle is explained as follows:
Maximum Principle.

For a smooth function [ on U if it satisfies

LfZ0
11
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and if there exists a point in U at which it attains the mazimum, namely, if there
exists a point xg in U at which f(xg) 2 f(x) for any point x in M, then the function

f is constant.

In Riemannian Geometry, this property is reformed as follows. Let (M, g) be
a Riemannian manifold with Riemannian metric g. Then we denote by A the
Laplacian associated with the Riemannian metric g. A function f is said to be

subharmonic or harmonic if it satisfies
NfZ20 or ANf=0.
The maximum principle on Riemannian manifolds is as follows:

Maximum Principle.
For a subharmonic function [ on a Riemannian manifold M if there exists a

point in M at which it attains the mazimum, then the function f is constant.
In other words, we have a litter different Maximum Principle:

Maximum Principle.
On a compact Riemannian manifold M a subharmonic function f on M is con-

stant.

This property is to give a certain condition for a subharmonic function to be
constant. When we give an attention to the facts which are relative to this kind of

Maximum Principles, we see the classical theorem of Liouville type.

Liouville’s theorem.

(1) Let f be a subharmonic function on R%. If it is bounded, then it is constant.
(2) Let f be a harmonic function on R™(m 2 3). If it is bounded, then it is

constant.

As is already stated, each of these Maximum Principles plays an important role
in each branch of Mathematics. Actually Generalized Maximum Principles which
are later introduced are also similarly important properties to Maximum Principle
in a compact Riemannian manifold or more important ones than them.

In particular, a similar property on a complete Riemannian manifold was treated
by Nishikawa [13], who determined space-like hypersurfaces in a Lorentz space. His

Liouville type theorem in a complete Riemannian manifold says
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Theorem A. Let M be a complete Riemannian manifold whose Ricci curvature

is bounded from below. If a C?-positive function f satisfies
Afz2f?,
where A denotes the Laplacian on M, then f vanishes identically.
The purpose of this talk is to prove the fact that
Afzkft=f=0

for any n€R, n>1. In order to solve this kind of Liouville type problem, we want
to investigate all of situations for any positive real number n not less than 1 (See
[7),[8],[12], [15] and [16]). For this problem we want to arrange all the results

concerned with this fact.

Firstly we will show that all the situation greater than 2 could be arrived at the
Theorem of Nishikawa [13] in above. Next we treat for the case n = 2. By using a
new method due to Omori and Yau’s maximum principle in [14] and [17], we give
another proof of this case (See [15]).

Now we will show another type of Liouville’s theorem for 1 < n < 2 by using
some generalized maximum principles due to Choi, Kwon and the present author
(See [7],[8] and [11]) as follows:

Theorem B.  Let M be a complete Riemannian manifold whose Ricci curvature
is bounded from below. Let F be any polynomial of the variable f with constant

coefficients such that
F(z) = coz™ + c1z™ + - - + cpx™ + cpy,

where ng > 1, ng > ny > --- > ng, co > 0 and cg > cry1- If a C*-function f
satisfies

AfZF(f),

then we have
F(f0)§07
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where fy denotes the supermum of the given function f.

Then we will show its applications of Theorem B to some geometric problems
given in [1].[3].[5].[6],[8],[10] and [11]. In order to do this let us introduce the

following.

Let M’ be an (n + 1)-dimensional Lorentz manifold and let M be a space-
like hypersurface of M’. For a point z in M let {eg,e1,...,e,} be a local field of
orthogonal frames of M’ around of x in such a way that, restricted to M, the vectors
e1, ..., en are tangent to M and the other is normal to M. Accordingly, e1, ..., e, are
space-like vectors and eg is a time-like one. For a linearly independent vectors u and
v in the tangent space T, M’ by which the non-degenerate plané section is spanned,
we denote by K'(u,v) the sectional curvature of the plane section in M’ and by R’
or Ric'(u,u) the Riemannian curvature tensor on M or the Ricci curvature in the
direction of w in M’, respectively.

Let us denote by V'’ the Riemannian connection on M’. We assume that the
ambient space M’ satisfies the following conditions; For some constants c1, co and
C3

K'(u,v) = _a
n
for any space-like vector u and any time-like vector v,

K'(u,v)>ca
for any space-like vectors v and v,
¢
IV'R/|<Z2.
n
When M’ satisfies the above three kind of curvature conditions, it is said simply for
M’ to satisfy the (*) condition.
Remark 1. It can be easily seen that if ¢cs = 0, then the ambient space M’ is

locally symmetric.

Remark 2. 1f M’ is a Lorentz space form M]"!(c) of index 1 and of constant

curvature ¢, then it satisfies the condition (*), where — % = ¢y = c.

Now as a first application of Theorem B of Liouville type inequality for 1 <n < 2

we introduce the following
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Theorem 1. ([8]) Let M’ be an (n + 1)-dimensional Lorentz manifold which
satisfies the condition (*) and let M be a complete space-like hypersurface with

constant mean curvature. If M is not maximal and if it satisfies
2ncg +¢1 > 0,

then there exist a positive constant a; depending on ¢1, ¢z, c¢3,h and n such that

ho> — aq.

Of course much more generalized conditions than the above curvature condtions
(*) will be discussed in this talk. Also as an another application of Theorem B for

1 < n < 2 we assert the following

Theorem 2. ([11]) Let M be an n-dimensional complete space-like complex sub-
manifold of an (n+p)-dimensional indefinite complex hyperbolic space C H"*?(c) of

constant holomorphic sectional curvature ¢ and of index 2p (> 0). Then it satisfies
1
ha 2 5npe,

where the equality holds if and only if p = 1 and M is globally congruent to a

complex quadric Q"™ in CHI(c).

Finally we want to discuss for the case n = 1, that is, Af>kf for a function f
bounded from above. Then in such a case we are able to show that the function f
vanishes identically. Moreover, we will show that there exist a counter example for
this type. Namely, there is a smooth unbounded function f which can not satisfy

the above inequality for n = 1 as follows:

Theorem 3.  Let M be a complete Riemannian manifold whose Ricci curvature
1s bounded from below. If the non-negative function f is bounded from above and

satisfies

(**) ANf>kf, for a positive constant k,
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then f wvanishes identically.

Proof.  For a constant a > 0 let us put ¥ = (f —l—a)_% a smooth positive function.
Then we are able to apply a generalized maximum principle due to Omori [14] and

Yau [17]. For any € > 0 there exists a point p in A{ such that
IVF|(p) < e, AF(p) > —¢, F(p) < infF +e.
Then it follows from these properties that we have
€(3¢ +2F (p)) > F(p)* O f(p)20.

Thus for a convergent sequence {en, } such that e, > 0 and €, —0 as m—o0, there
is a point sequence {p,,} so that the sequence { F(p,,)} satisfies the above formula
and converges to Fy, by taking a subsequence, if necessary, because the sequence
{F(pm)} is bounded. From the definition of the infimum and the above formula we

have Fy = infF and hence f(pm)—fo = supf. It follows that we have

em{3€m + 2F (pm)} > F(pm)4Af'(an)

and the left hand side converges to 0 because the function F' is bounded. Thus we
get
F(pm)4Af(pm)_‘)O (m—o0).

As is already seen, the Ricci-curvature is bounded from below i.e., so is any Ap.
Since r = 2X gAp is constant, Ap is bounded from above. Hence F' = (f + a)’%
is bounded from below by a positive constant. From the above formula it follows
that Af(pm)—0 as m—oo. Then by (**) we have that

Af(pm )2’1‘:f(pm)20-

Thus we have f(pm)—0 = inff. Since f(pm)—supf, supf = inff = 0. Hence
f =0 on M. This completes the proof of Theorem 3. [

Remark 3. As a Remark we want to show that there exists an example of a
smooth function f satisfying (**) but not bounded from above. Let us consider a

function f defined by f(z1, ..., zx) = cosh(azi) on RF for some positive constant a.
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Then it can be easily seen that the function f satisfies Af = a?f. So naturally it
satisfies the inequality (**). But this function f can not be bounded from above.
So the condition that the boundness from above for the function f in Theorem 3

is essential.

After the above preparation, we will make its applications to some geometric
problems of semi-Kaehler manifolds given in [12], [15] and [16]. Among them we

show the following

Theorem 4. ([16]) Let M be an n(>3)-dimensional complete Kaehler manifold
with constant scalar curvature r. Assume that the totally real bisectional curvature

is bounded from above by a constant b. If the scalar curvature satisfies

2712——3n—|—2b
n—1

then M is globally congruent to a complex projective space CP™.

Example 4. In the complex quadric @™ in a complex projective space CP™*1

of constant holomorphic curvature ¢, it is seen that the totally real bisectional

curvature B satisfies 0<B<$ and the scalar curvature r = n2c. Hence b = 5 and
7 = 2n%b. On the other hand, in a complex projective space CP™ we see B = b = 5
and 7 = n{n + 1)c = 2n(n + 1)b. Then it can be easily seen that

2n% < (2n® = 3n +2)/(n — 1) < 2n(n +1).
Remark 5. The above estimation for the scalar curvature r is best possible.

This means that if the equality holds in the estaimation of the scalar curvature
in Theorem 4. there is an example of complete Kaehler manifolds M which is not
Einstein. In other words, the equality holds if and only if the infimum a(M) of the
totally real bisectinal curvatures of M is equal to zero. This means that there is a
complete Kaehler manifold with constant scalar curvature and non-negative totally
real bisectional curvature B(u,v)>0 but not Einstein as follows (see [12]):

Now let us consider a product Kaehler manifold

M = CP"™ (c;)xCP™ (c3).
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Then its totally real bisectional curvature is given by
Rowy =% ifA=a B=0,
Riigg=+4¢ 0 ifA=a,B=s,
Rivss =% it A=r1,B=s,
where indices A, B(A#B),...;1,...,n1,n1+1,...,n2, and a,b, .; 1, ...n1, 7,8, ..;n1 +
1,...,m9. So it can be easily seen that its totally real bisectional curvatures are
lower bounded from a(M) = 0.
And its Ricci-tensor is given by the following
Sag =XcRpace = LaRBaca +2rRpare
Z%ﬂclébc if B=c, A=0,
=4 0 if B=s,A=10,
”22+1C25t3 if B=s A=t

Thus for the case where (n1 + 1)c17#(n2 + 1)cg it follows that
M = CP™ (c;)xCP™ (c3)

is a complete Kaehler manifold with constant scalar curvature » = ny(n; + 1)c; +

ng(ng + 1)cp but not Einstein.

In differential geometry, we have some Riemannian analogues of the classical Li-
ouville theorem, which are closely related to some kinds of Liouville type inequali-
ties. They played respectively important roles in their branches. For examples, see

Cheng and Nakagawa [3], Ki and the present author [12] and Nishikawa [13].

From this point of view it seems to be of interest for us to investigate that under
what kind of geometric conditions other than the upper boundness of the function

satisfying (**) the following holds or not:

Problem.  Let M be a complete Riemannian manifold whose Ricci curvature is

bounded from below. If a C?-nonnegative function f satisfies
AV

where A\ denotes the Laplacian on M and k is any positive constant, then f vanishes

identically.
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