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ABSTRACT. By use of Schrddinger flow, we present a complete unified geometric in-

terpretations of the nonlinear Schr6dinger equations. The gauge equivalent structure 

of the matrix nonlinear Sc.hrddinger equation is also mentioned. Furthernlore, ac-

cording to the correspondenc.e principle in quantum dynamics, we display the gauge 

equivalent structures for the discrete nonlinear Schr6dinger equation and the discrete 

matrix nonlinear Schr6dinger equation. 

I. Introduction 

This paper is organized as follows. In section 11 we give a brief description of 

Schr6dinger flow of maps into a symplectic manifold and some usGful examples. In 

section 111 we show that the nonline.ar Schr6dinger equation iipt + cxx + 2l~~lipl2c = O 

for /~; = I and - I are respectively gauge equivalent to t,he Schr6dinger flow of maps 

into S2 and H2 and the lrLat,rix nonlinear Schr6dinger equat,ion is gauge equivalent to 

the Schr6dinger flow of maps into Grassmannian Gk,m' In section IV, by using nc~v 

Lax pairs, we show that the continuous limits of the gauge equivalent structures of 

the discret,e nonlinear Schr6dinger equa,tion for /~ = I and -1 are exactly the classical 

ones of the nonlinear Schr6dinger equat,ion for /~ = I and -1 respectively; we also 

dGmonst,rate the discretc count>erpart, of the gauge equivalent, struc,ture for the mat,rix 

nonlinear Sc',hr6dinger equa,t,ion and, fina,lly, in section V we bCrivc a example to illustrat,e 

our results. 

II. ScriR,61)INGER. FLOW OF MAPS INTo H2 

~.'10ti¥'ated by the Heisenberg fe.rromagnet rnodel, t,he st,udy of Schrddinger flow of 

ma,ps into a, sylTrplectic manifold has attracted more attention recently (for examples, 
23 
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see [3,7]). First of all, Iet's give a brief smrlmary of Schr6dinger flo~v of maps into a 

symplec,tic, manifold (N, ~)). Let J be an a,inost complcx struc',t,ure on N Such t<hat 

g(', ') = u)(', J.) 

is a Riema,nnian metric on N. NOw We work on the sylrLplectic Bana,ch ma,nifold of 

ma,pping space X = Ck(M, N) for some k Z I with t,he following induced symplect,ic 

form: 

~(u)(v, t(j) = fRl (~(u)(v ~)) Vu C X Vv VJ ~ T (X) 

from ~), w~here IVf is a. Riemannian manifold. Then the follow'ing inner product, on the 

tangent bundle TX: 

= fRl 
(1) g(u)(v, w), Vu ~ X; Vv, w ~ TuX < v, w >u 

admits J('u) as its compatible almost c,omplex structure. Thus if ~ve denote by VF(u) 

the gra=dient of a funct,ion F(u) on X with repsect t,o the inner product (1), then t,he 

corresponding Hamiltonian vector field VF(u) can be expressed explicitly as VF(u) = 

J(u)VF(u). 

Definitiorl 1. The Schrddinger fiow of maps from M into N is defined by the following 

Hamiltonian system of the energy functional E(u) on X, 

ut = J(?1)VE(u). 

Recall that, the erLergy E(u) of u : (M, h) -> (N, g) is defined by 

E(u) = fR1 e(u) 

where in a, Ioca.1 coordina.tes 

l auj auk e(u) = ~g k(tL) h"p j ax* axp 

It, is easy to verify t,hat, the gradient VE(u) is exa,ctly the t,ension field T(u) of map ~J.. 

In a loc,al coordinates 

Ouj auk 
T (u) AAlu + r;･k(u) axa dx3hap 

~vhere rjk are t,he Christ,offel symbols on t,he ta,rget manifold JV. So the Sc,hr6dinger 

flo~v of maps from M int,o N can also be l~e-written a,s: 

(2) ut = J(u)T(u). 
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Remark 1. Schrddinger fiow of rrta,ps can be regarded as a twin equation of heat fiow 

ut = T('u). They are respectively geometric generalizations of the linear Schrddinger 

equation and heat equation in mathematical physics. 

Example 1. When M = R1 and N = C, t,he complex plane, (2) is nothing else but 

the linear Schr6dinger equation ut = iu**. 

Example 2 ([7]). If we let I~f = R1 and N = S2 = {(xl,x2, x3) : x~ + x~ + x~ = 1}, 

the l_mit sphere in Euclidean 3-space, then it is easy to verify that, t,he Schr6dinger flow 

of mal.)s to N = S2 is actually the equation of Heisenberg ferromagnet model: 

(3) ut = u x uxx' 
where x denotes the vector product in R3. 

Example 3 ([3]). Now we set R2,1 = {(xl, x2, x3) : ds2 = dx~ + dx~ - dx~} to be the 

Minkowski 3-space and let H2 = {(xl, x2, x3) : x~ + x~ - x23 = -1, x3 > o} be a unit 

sphcre in R2,1, then H2 is actually the hyperbolic 2-space. For arbitrary two vector 

a, b ~ R2,1 we introduce a pseudo cross product axb according to the Minkowski 

metric by 

a~b = (a2b3 - a3b2 a3bl alb3, -(alb2 - a2bl))' 

Obviol_Isly, we have a~a = O too. 

One may verify directly by a comput,ation that the Schr6dinger flow (2) of maps 

from R,i into N = H2 becomes: 

(4) ut = uxuxx 
where u = (ul' u2, u3) with u~ + u~ - u~ = -1 and u3 > o. ~¥re also ca,ll Eq.(4) as the 

Minkowski Heisenberg ferromagnet model (~4-HF model). 

Example 4 ([17j). Let M = Rl a.nd !¥r = Gk,m' where Gk,?7~ is a. Grassmannian 

rnanifold in the unitary group U(m,). If ~ve regard Gk,m a,s the adjoint, U(m)-orbit a,t 

( ilk O ) 
in the Lie algebra, IJ,(m) of U(m), i.e., Gk,m = {U-1aUIU e 

a= - ~Imk O
 

U('r7?.)}. Then, by a st,raight,for~vard computation, t,he Schr6ding~er flow of maps from 

Rl to Gk,??1 is expressed as follows, 

(5) */t = [~". ^/xx]' ~ C Gk m 



III. GAUGE EQ{.JlvALENCE - CLASSICAL VERSION 

Heat flov;~ is a.n important objec,t, in different,ial geometry, espe.cially in the study of 

harmonic ma,ps. However, it seems, a,s we sha,ll see, tha,t Schr6din~)'fer flow has it,s ma,in 

applications in mathematical physics. 

The nonlinea,r Schr6dinger equation (NLS): 

iipt + cxx + 2l~)Iip 2ip = O (6) 

is a representat,ive example in the theory of integra.ble systems and it arisGS in physics 

from varied backgrounds, such as in plasma, physics and nonlinear optic,s. The /~ in 

the equation is a rea,1 constant. In the linear limit, /~) = O, Eq.(6) goes o¥rer into the 

Schr6dinger equation for the wave funct,ion of a particle. If /~~ ~ O, the sign of /~) in 

Eq.(6) distingcruishes t,he equation bet,ween attractive (/~) > o) and repulsive (/~) < O) 

type. Wit,hout loss of generality, we will denote by NLS+ and NLS- the Eq.(6) with 

/~ = I and /~) = -1 respectively. 

In 1979, Zakha,rov and Takhtajan proved in [19] that the NLS+ is ga,uge equivalent 

to the HF model, i.e. the Schr6dinger flow of maps into S2. Now we have 

Theorem 1. (Ding 13j) The nonlinear Schrddinger equation (6) for /~) = I (i.e., NLS~h) 

and -1 (i.e., NLS-) are gauge equivalent to the Schrddinger flow of maps from Ri to 

S2 and H2 respectively. 

Proof. Based on the result in [19], wha't rema'ins to prove is that the NLS- iS gauge 

equivalent, to t,he Schr6dinger flow int,o H2 (i.e. Eq.(4)). Put,: 

::~ ) )
 

p2 pl O -1 1 O I O p3 

and set, 

S :::: ulpl + tL22P2 + u3zp3 for u e H 

Ob¥riously~ S2 :~: -1~ trS ::~ O~ the diagonal of S is a real matrix and t,he offdiagonal of S 

is a purely imaginary matrix. Using t,he c.ommuti¥re relations: [pl~p2] = -2p3' [pl~ p3] :~ 

-2p2 and [p'2?P3] ::::: -2pl' we obt,a'in~ by a' direct computation, t,hat, syst,em (4) can be 

rewritt,en a's: 

(7) S~t :::: l ~ [S~ Sxx] ' 
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and Ecl'(7) permits a Lax pair as follows: 

(8) F~x(x, t, A) = L(x, t, A)r(x, t, A) 
F~t(x, t, A) = A~[(x, t, A) f(x= t, A), 

where L = iAS, M = 2A2S + iASSX and A is a, spectra,1 parameter. 

Next~ Iet's rec,all t,hat the NLS has no lig~ht solit,on solutoins but, dar'k soliton solu-

t,ions, so we put, ip = ipe~2iP2t, where p is a, posit,ive rea,1 constant, and get, a equivalent 

equa,tion for c: 

(9) ict + cxx ~ 2( ip 2 - p2)c = O. 

As pointing out in [8] or [3], we need to add the following flnite density bounda,ry 

condition: 

{ , as x->+00 ip-~p 
ip -> pe~2p as x -~ oo 

in solving (9), where p is a constant. A direct computation shows tha,t, (9) penTlits a 

Lax pair as follows: 

(10) { F~(x)t, A) = L'(x, t, A)F'(x, t, A) 
Ff(x, t, A) = M'(x, t, A)F'(x, t, A) 

where L' = A(T3 + U(x, t), M' = -i2A2(T3 - i2AU(x, t)+i{U2(x, t) - p2 + Ux(x, t)}(T3 

an d 

(
 
O ip(x, t) 

U(x, t) ~(x, t) O 

Now onc can verify that the NLS- is gauge equivalent to the Schr6dinger flow to H2 

(4) by the following g.a,uge transformation (see [3] for details): 

(1 1) F (x, t, A) = G(x, t)F(x, t, A), 

where G(x, t) is~' a, fundamental solution to (1O) a,t A = O, F' and F are solut,ions to 

(lO) and (8) respec'.tively. This complet,es t,he proof of t,he gauge equiva,lence between 

t,he NLS- equd,tion 'a.nd the Schr6dinbo'er flow of ma,ps frorn Rl int,o H2. [} 

Thc following ma,t,rix nonlinear Schr6dingGr cqua,tion (MNLS), 

iqt h qx(~' + 2qq*q = O, (k or m 2~ 2) (12) 

was first st,udied gJcometrically by Fordy a,nd Kulish in [9], where q is a map frcull R2 

to the space l~f(mk)Xk Of (m - k) x k c;.omplex ma,t,rices, I ~ k ~ n'2. - I and Q' denot,es 
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the complex transposed conjuga,te matrix of q. Note that. ~vhen q is a I x I matrix, 

Eq.(12) goes t,o the NLS+. For this equation (12). Terng and Uhlenbeck pro¥red 

Theorem 2. (Terng and Uhlenbeck 117j) The matrix nonlinear Schrddinge'i~ equatio'r7; 

(12) is gauge equivalent to the Schrddinger flow of maps into Grassmannian Gk,m' (5j. 

Proof. If we set, S = Q (7 Q whele (7 Ik O and Q C U(m), t,hen the 

O -Im-k 
Schr6dinger flow into Gra,ssmannia.n (5) is equiva,lent to 

l
 - [S, Sxx] ' (13) St= 
2i 

which has the following Lax pair: 

ipx = AS~, ipt = (-i2A2S + iASxS)ip. (14) 

On the other hand, the matrix nonlinear schr6dinger equation (12) admits a Lax 

pair as follows: 

ipx = (A(J3 + U)ip, ipt = [-i2A2(73 - 2iAU + i(U2 + Ux)cr3]ip, (15) 

(
 

where U O q(x, t) . One may verify straightforwardly tha,t Eqs.(12) and 

q(x, t) O 
(13) are gauge equivalent to each other by the following transformation: 

(16) ip(x, t, A) = G(x, t)ip(x, t, A), 

where G(x, t) is a fundamental solution to (15) at A = O, ip and ~;/ are solutions to (15) 

and (14) respectively. [l 

IV. GAUGE EQUIVALENCE -- DISCRETE VERSION 

Since nonlinear integrable differential-differenc',e equations are of funda,menta,1 im-

portant, for the study of classical integrable systems, the study of nonlinear inte-

grable different,ial-difference equa,tions ha,s rec.eived c',onsiderable a,t,t,entions in recent, 

y. ears (see, for examples, [2,10]). The follo~vin~)cr disc,ret,e nonlirLear Schr6ding~er equation 

(DNLS), 

(17) i(dq,r~/dt) h (qn+1 + qn-1 ~ 2qn) + I~lqnl2(qn+1 + qnl) = O 

where /~) is a, constant,, ~vas introduced by Ablowitz and Ladik [lj who const,ruct,ed the 

disc,rete version of t.he AKNS system. ¥~fit,hout loss of generality, we denote by DiNLS+ 

a,nd DNLS- t,he DNLS (17) with F~ = I a.nd -1, respectively. The bright soliton 
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solut,ions to the DNLS+ and t,he da,rk soliton solutions to t,he DNLS a=re constructed 

respectively in [l] and [12,13,18] by using t,he inverse sca,ttering method, or in [15] 

by B~c',klund-Da.rboux transformations. Tl-le DNLS (1), beinbCr interesting from the 

mathematical viewpoint, ha,s also a rather wide area of physical applica,tions. 

In 1982, Ishin~rori showed in [1l] that the DNLS+ is gauge equivalent to the discrete 

HF model (DHF), which reads, 

2Sn+1 x Sn + 2Sn X Sn-l 
(18) dSn/dt = -

1 + Sn+1 ' Sn I + Sn ' Sn-1 

(s~ , s~ , s~ ) e R3 ¥vith IS12 = (S.1r~)2 + (s~)2 + (s~)2 = l, and . and x where S = n 
denote thc inner and the cross product in R3. In this section, wc a,re interested in l) 

whether the DNLS- with a shlLilar gauge equivalent structure exists, a,nd, according to 

the correspondence princ.iple in qua,ntum dynamics, 2) whether the gauge equiva,lent 

structure of the DNLS- (resp. DNLS+) is just the discretization of the classical one of 

the NLS- (resp. NLS+) employed in [3] (resp. [19]). We will give afhrmative answers 

to the above two questions, by using new Lax pairs for the DNLS+, the DNLS- and 

the DHF below, .and show why the Ishimori's gauge tra.nsformation in [ll] is not the 

discretization of a. classical one between the NLS+ and the HF model. 

IV.A Lax pairs and their continuous lirnits. For our purpose in this section, we 

hopc to choose La,x pairs for the DNLS+, thc DNLS-, the DHF and the DM-HF such 

that the continuous limits of them are just Lax pairs of t,heir corresponding classical 

integrable systems. The following new Lax pa,irs are exactly such oncs. 

Example I Thc Dr~I~LS+. 

i(dqn/dt) + (q??.+1 + q'n-1 ~ 2qn) + iqnl2(q + qnl) ::~ O (19) 
T2'+1 

A new La'x pair of t,his equation is 

cr~+i ::~ L??;cn' dip?7/dt =:: Mncr~ (20) 

in which 

::= -~ ) Ln 7 qnz~l 
qn z 

A/f ? I z +z - z~1 -qr~ +q~n-lz2 ) n:;: ( _ 2 - q~nqn-l 
q?1: + qn-l~~ -1 + z~2 + z - z~1 + q,tqr~-l 

where -7 iS a spectra,1 parameter and t,he ovel~bar denotes complex con.iuga,te. Some Lax 

pairs of (19)~ ¥vhich are different frcnn the present one ca,n be refcred to [8,11-13]. 



For the above Lax pair, as usual (see, for example, [l]), the cont,inuous lin~lit, (AX -~ O; 

Ax being~ t,he discret,iza.tion pa,rameter) of (20) is 

(22) cx = Lc, ct = Mc 
)
 
l O z2A2(T3 - 2iAU + i(U'2 + Ux)(T3, (73 = wlth L A(T + U, .j~J = - O -1 a,nd U 

( O ~ . after t,he substitution )
 
-q O 

('-3) z -> I + AAx, qn ~> qAx, nAx ~ x, tAx2 .-> t 

(A Is a palalnetel) and settmg cn ~ ip, expanding qn~1 ~ Ax(q ~ Axqx +(Ax212)qxx 

~ ' ' ' ). It is direct to verify that the integrability c'.ondition of (22) yields simply the 

NLS+ equation: iqt + qxx + 2jqj2q = O. We would like to point out that t,he term 

z - z~1 in the second expression of (21) plays a, very important role in ca,lc,ulating the 

continuous limit. Because this term is absent in the Lax pair used in [1l], hence it 

is impossible for IshhrLori~s gauge transforma>tion to be t,he discretization of a cla,ssical 

one between the NLS+ and the HF model. 

Example 2 The DNLS. Because the DNLS- has no bright solitons, we put qn = 
7'ne2iP2t~ where p is a positive real const,ant, and get an equivalent equation for rn' 

The followingr is that equation in which 7'n is repla,ced by qn' 

(24) i(dqn/dt) + (qn+1 + qn-1 ~ 2qn) ~ qnl2(qr~+1 h qnl) + 2p2qn = O. 

As pointed out in [8]} in order to solve (24), ~vc should propose the nonzero boundary 

condit,ions or convent,ionally the flnite dcnsity boundary conditions: IhT11?'__Qo qn = p 

and limn-+00 qT2 = peio, here p designates the ba,cl{gTround pulse aIILplitude and e is a 

c,omplete pha<seshift,. This equation permit,s t,he follo~vingr new Lax pair, 

(25) cn+1 = Lncn~ dcnlclt = AfT~cn 

in which 

n ( zi, l L z ~rt 
qn z 

. ( -qn + qn-1 ~2 -1 i - _ 2 ) l 2 -l ~ 2  - z + z - ~ + q2rtqn-1 ~ P 2 Aln = 
-1 + z + z - z q,lqn I + p qn ~ qn-lz 

Some other Lax p'~-~irs of (24) can be found in [12.13]. 
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In a similar w'ay, t,he cont,inuous limit of (25) rea,ds 

(26) cx = Lc, ct = Mc 
( ) ¥vrth L Acr + U Aif z2A2cr3 - 2iAU+i(U2 - p2 + Ux)(73 and U = O ~ aft,er 

qO 
the substitution 

(27) _y -> I + AAx, qn ~~> qAx, nAX -> x, tAx2 -~ t, p -~ Ax2p. 

It, is direct to verify t,hat t,he integrability condition of (26) yields simply t,he NLS 

equation: iqt + qxx ~ 2(Iql2 - p2)q = O. 

Example 3 The DHF (18). For this model, ~ve convert it into the ma,trix form as 

f 'ollows , 

sl ) 3 (28) dSn/dt = i [Sn+1'Sn] i [Sn'Sn-l] s~ - isn n Sn= 1 + S,n'+1 ' Sn ~ I + Sn Sn I s~ + is~ s~ 

where Sn+1 ' Sn is deflned a,s the inner product of the vec,tors Sn+1 and ST? m R (28) 

a,llows the following new Lax pair, 

(29) ~n+1 = Lnipn' d~)n/dt = Mnipn 
in which Ln = '~+~ll + z-~lSn and A~/fn = (1 - z2+2z~2)i{~s"+_~-s~~:~~1)+ i(z - z~1)1-

z2z2 i(1+s*_Is,*) 2 l+s*.s~1 ' whel'e I denot,es the unit 2 x 2 mat,rix. Similarly, after the substitution 

z -> I + AAx, Ax -> O, nAX -~ x, Sn ~~ S and ~n ~~ ip, the conth~ruous liuit, of (29) is 

(30) ipx = Lip, ~)t = Al~) 
( sl s2 Lzs3 ) 

with L = AS and A~7 = _i,2A2S + iASXS and S = sat,isfying 

s +is - 1 
S2 = I. The integrabilit,y condition of (30) reads St = ~[S, Sxx]' which is just the 

matrix form of the HF model [8]. Some other Lax pa,irs of (18) or (28) can be referred 

t,o [15,16], where one can als.o flnd soliton solutions t,o (18) or (28). 

Example 4 The discret,e h!I-HF model (Dlvl-HF), 

(31) dS,,~/dt = - 2Sn+1~Sn 2Sn~Sn-1 
l Sn+1 ' S h 
1 aQ n I ~ on'~)n-1 

where Sn = (s~,s2n 9~) C R'2+1 with ISj2 = (sj~)2 + (s~)2 - (s~)2 - -1 'a,nd s;i > o~ 

'and . and ~ denote the pseudo inner and the pseudo cross product in R'2+1. This 

new differential-difference equa,tion is deducGd (see below) from the discretizat,ion of 



the Sc',hr6dinger flow of maps into H2 (i.e. the h"'1-HF model) St = S~Sxx (see [12] for 

details). The mat,rix form of this rnodel is, 

(3~~n/dt = s~ i(-s~ + s~) ) [Sn+1' ST~] [Sn' Sn-l] 

Sn= ~ I - Sn+1 ' Sn + I - Sn'Sn-1 s~ i(s~ + s~) 

in which Sn+1 ' S?2 denotes the pseudo inner product, of t,he two vect,ors Sn+1 and Sn in 

R.2+1. A complicat,ed computation shows tha,t Eq. (32) permits the following Lax pair, 

(33) ~)/n+1 = Lnipn' dipn/dt = Mn~;n 

wit,h 

Ln z+z~ll+~z 2 Sn 
- 2 

z2 +z2 z~2 1 - Sn-lSn A~7fn = ( Sn + Sn-1 + i(z - z~1)1 - i~ 
- l) 

2 1 - Sn ' Sn1 2 1 Sn ' Sn-1 
Similarly, the continuous limit of (33) is 

(34) cx = Lc, ipt Mc 
where L = iAS a,nd ~7 = 2A2S-iASxS and S = sl i(-s2 + s3) satrsfymg 

i(s2 + s3) s 
S2 = -1. The integrability condition of (34) is St = ~[S, Sxx]' which is just the matrix 

form of the M-MF model (also see [3]). 

IV.B Quantizations of gauge transformations. In this subsection, by using the 

Lax pairs displayed in the preceding subsection, we show tha,t there is a gauge t,rans-

fol~llLation between the DNLS- (resp. DNLS+) and t,he D~/1-HF (resp. DHF) and 

demonstrate t,ha,t, the continuous linits of the ga,uge transformations are just t,heir 

corresponding c,lassical ones. 

Theorem 3. (Ding f5J) The DNLS- (resp. DNLS+) is gauge equivalent to the Dl~f-HF 

(r'esp. DHF) by the following gatLge transformation, 

(35) crt(t, z) = Gn(t)ipn(t, z), 

where Gn(t) ~s a fundamental solutzon to (25) (reps (20)) at z = l, cn(t,z) a,rrd 

~pn(t, z) a'r'e solution,s to (25) a7'rd (33) (resp. (19) a?1'd (29)) respectively. Fu'rther'Tr~07'e; 

tl7.e c07"ttinnous limit oj' (35) becomes a classical gauge tr'a?2,sfo'rmation between the NLS-

a'rrd the M-HF model ('resp. th,e NLS+ and the HF 'model). 
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Remark 2. This theorem indicates that there is a unufied reconciliation of the gauge 

eq?1,ivalent structures of the DNLS and NLS a,ccording to th,e correspondence principle. 

Aft,er a thorough under'st,a,nding of the g.a,uge structures of the NLS, the DNLD 

(which is the disc,rete gauge equivalent corresponding to the NLS) and the MNLS, one 

would naturally like to find the disc'.rete counterpart of the ga,uge equivalent structure 

oi' t,he h,,INLS according to t,he cor'respondence principle in quantum dynamics. For the 

matrix nonlinear Schr6dinger equation, the parallel generalization of the DNLS+ as 

t,hat of the NLS+ is natura,1ly introduced as follows, 

i(dqn/dt) + (qn+1 + qn-1 ~ 2qn) + (qn+1q~qn + qnq~qn-1) = O, (36) 

which is called as the discrete (integrable) matrix nonlinear Schr6dinger equation 

(DMNLS). The discrete (ingtegrable) equation of the Schr6dinger flow into Grass-

nlLa,nnian is as follows, 

dSn/dt = 4i(1 + SnSn-1)~1 ~ 4i(1 + Sn+1Sn)l (37) 

is the discrete equation of the Schrbdinger flow of maps into Grassmannian Gk,m (13), 

where I = Im denotes the m x m, unit matrix and Sn is of the fonlL Un'~~1(73Un with Un 

being an m x m unitary matrix a,nd (T3 = Ik O When k = I and m = 2, 

O -Imk 
i.c. Gk,m = CPI = S2, (36) reduces to the DHF (18). Now we have 

Theorem 4. (Ding f6J) A class of solutions to the following (integrable) discrete cou-

pled matrix nonlinear Schrddinger' equation (DCMNLS), 

(38) i(dqn/dt) + (qn+1 + qn-1 ~ 2qn) + (qn+1rnqn h qnrnqnl) = O 

-i(drn/dt) + (rn+1 + rn-1 ~ 2rn) + (rn+1qnrn + rnqnrn-1) = O, 

is gauge equivalent to the discrete equation of the Sch,rddinger fiow of maps into G'rass-

mannian Gk,m and the continuous limit of the realizing gauge transJ'ormation is exactly 

a class'ical gauge transfor'mation between th,e MNLS (12) and the Schrddinger flow of 

7naps ir'.to Grassmannian Gk,m (13). 

V. Example 

As applications, ~?ve ¥vould like to gi¥re some explicit> solut,ions t,o the Dh,1-HF (resp. 

~,1HF model) from da,rk soliton solutions to the DNLS- (resp. NLS-) by gauge tr.a,ns-

forma,t,ions and illustrat,e t,hai, the continuous limit of t,he cg'a.ub0~e t,ransformation bet,ween 

the DNLS- and the Dh/1-HF is .just a classica,1 one bet.wcen t,he NLS- and the h.,1-HF 



model. For the purpose of simplicit,y in calculation, we consider the one-solit,on poten-

tia,1 t,o the NLS (see, for exa,mple, [12]), 

qs(x) = -ptanhpx 

This is t,he dark one-solit,on to the NLS with e being taken equal t,o 7T' Such a solution 

is also called a bla,ck soliton in constrast t,o a, grey one at ~ ~ 7r. The corresponding 

black one-soliton of t,he DNLS- is given by (also refer t,o [13]) 

l - hn 
qsn ~ Pl + hn 

in which h, is defined by the relation hl/2 _ h-1/2 = 2p/(1 - p2)1/2, h > 1, here only the 

case of p2 < I is now considered. A c,orrespondingr matrix solution to the Lax equation 

lr2 ) Gn+1 LnGn' dGn/dt = MnGn at z = I is Gn = An( P t z) Bnz . where 
An( Pnt + ~} B7zi 

An = a2"l(1+/~") Bn b 4lL~~1(1;-1)2 (a and b are free ~ (2h)"l and pn = (1+'t)'* ' ~ (1+h)"-1(1+h~-i) (1+i~"+)(1+/1"~1)(I~+1) 
constants such that ab ~ O). By using this gauge transformation Gn' we have Sn 

Gn-1i(T3Gn= Pnt iBn/An . Therefore, the Dh/1-HF has following 
i(p~t2 + l)An/Bn Pnt 

explicit, solutions, which ma,y also be regarded as its black one-soliton solutions, 

s~ = 4hn1(h - l)2 t 
~ (1 + hn)(1 + hn-1)(h + 1) 

s
~
 
1 16(yhn-1(h - l) 2 (~(1 + hn1)(1 + hn) hn-1(h + l) 
= ~ (1+hn)(1+hn l)(h+1)3t + hn l(h+1) (y(1+hn)(1+hnl) 
s
3
 

1 n I oi(1 +hn-1)(1 +hn) n 1 160ih, - (h - l)4 h.  (h+ l) 

~ ~ (1+hn)(1+hn i)(h+1) hn-1(h+1) (y(1+h,n)(1+hn1) 
in which C~ = a/b ~ O is a free parameter. 

Now after the subst,it,ution of relation (11), we have 

Sn ~> S = 2P2tlch2px i/2(~ch2px 
i2ach2px(4p4t2lch4px + l) 2p2tlch2px 

Hence, the ~{-HF model h'a,s following explicit black one-soliton solutions, which are 

the c'.ont,inuous lilrLit of the above black one-soliton solutions to the D~{-HF, 

= -2p2tlch2px, 

' = l/2 8ap4t2lch2px + 2ach2px - 112c~ch2px , 

s3 = l/2 8(lp4t2lch2px + 2c~ch2px + ll2ach2px . 
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Fllrtherurore, the gfauc)cre transformation Gn ' between an auxiliary solut,ion of the DNLS-

and an auxiliary solution of t,he DM-HF for the black one-soliton solutions, has the 
continuous lhlliti G = ( achpx(-i - 2p2t/ch2px) ?bl2chpx ) . It, is easy t,o ¥rerify 

achpx(z - 2p2t/ch2px) ibl2chpx 

q~ - p2 that G solves G O qs ~qsx G, G G and fulfils t,he qs x 

-Gli,cr3G. desired gauge relation S = 

It should be ment,ioned t,ha.t the gauge equivalent, structurcs of t,he analogous of t.,he 

nonlinear Schrbdinger equat,ion in 2 + I dimensions were discussed in [4,14]. However, 

many questions remain open and deserve further invest,igat,ion in this respect. Exa,mples 

are: whether one can find a Schr6dinger-like equation which is gauge equivalent t,o 

the gfeneralized Landa,u-Lifshitz equation; whether t,he disc,rete equation (37) of t,he 

Schr6dinger flow of maps into Grassma,nnian is not in general gauge equivalent to t,he 

DMNLS (36), though we believe that, not like t,he fact displayed in [5] for the NLS, 

t,his is the case. Finally, we rema,rk that the obtained result suggests that there might 

exist an interesting and intriguing geometric, relationship between the CMNLS (resp. 

DCh4NLS) equation and the MNLS (resp. DMNLS) equat,ion. A better understanding 

of this will be left for the future study. 
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