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Dedicated to Professor Katsuhiro Shiohama on his siztieth birthday

ABSTRACT. By use of Schrodinger flow, we present a complete unified geometric in-
terpretations of the nonlinear Schrédinger equations. The gauge equivalent structure
of the matrix nonlinear Schrédinger equation is also mentioned. Furthermore, ac-
cording to the correspondence principle in quantum dynamics, we display the gauge
equivalent structures for the discrete nonlinear Schrodinger equation and the discrete

matrix nonlinear Schrodinger equation.

I. Introduction

This paper is organized as follows. In section II we give a brief description of
Schrodinger flow of maps into a symplectic manifold and some useful examples. In
section I1I we show that the nonlinear Schrédinger equation iy + ¢ue + 25|4?¢ = 0
for k = 1 and —1 are respectively gauge equivalent to the Schrodinger flow of maps
into S% and H? and the matrix nonlinear Schréodinger equation is gauge equivalent to
the Schrodinger flow of maps into Grassmannian Gy,,. In section IV, by using new
Lax pairs, we show that the continuous limits of the gauge equivalent structures of
the discrete nonlinear Schrodinger equation for x = 1 and —1 are exactly the classical
ones of the nonlinear Schrodinger equation for k = 1 and —1 respectively; we also
demonstrate the discrete counterpart of the gauge equivalent structure for the matrix
nonlinear Schrodinger equation and, finally, in section V we give a example to illustrate

our results.

II. SCHRODINGER FLOW OF MAPS INTO H?

Motivated by the Heisenberg ferromagnet model, the study of Schrédinger flow of

maps into a symplectic manifold has attrathed more attention recently (for examples,
2
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see [3.7]). First of all, let’s give a brief summary of Schrodinger flow of maps into a

symplectic manifold (N, w). Let J be an almost complex structure on N such that

9 ) = w(-, J)

is a Riemannian metric on N. Now we work on the symplectic Banach manifold of
mapping space X = C*(M, N) for some k > 1 with the following induced symplectic
form:

Qu)(v,w) = / ww)(v,w), Yué€ X;Vu,w e T,(X)
Rl
from w, where M is a Riemannian manifold. Then the following inner product on the

tangent bundle T'X:
(1) <V, W >y= / g(u)(v,w), Vue X;Vv,we T, X
Rl

admits J(u) as its compatible almost complex structure. Thus if we denote by V F(u)
the gradient of a function F'(u) on X with repsect to the inner product (1), then the

corresponding Hamiltonian vector field Vg, can be expressed explicitly as Vi) =
J(W)VF(u).

Definition 1. The Schridinger flow of maps from M into N is defined by the following

Hamiltontan system of the energy functional E(u) on X:
u = J(u)VE(u).

Recall that the energy E(u) of u: (M, h) — (N, g) is defined by
E(u) = / e(u)
R

1 ow? duF | 4
e(u) = 59;‘1;(“)555;;}1

where in a local coordinates

It is easy to verify that the gradient VE(u) is exactly the tension field 7(u) of map u.
In a local coordinates
o’ dut
l i ! af
T (u) = Ay’ + 1 (u) =——=—h
( ) M ]k( )axaamﬁ
where [ ék are the Christoffel symbols on the target manifold N. So the Schrodinger

flow of maps from M into N can also be re-written as:

(2) = J(u)T(u).
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Remark 1. Schréodinger flow of maps can be regarded as a twin equation of heat flow
w = 7(u). They are respectively geometric generalizations of the linear Schrodinger

equation and heat equation in mathematical physics.

Example 1. When M = R! and N = C, the complex plane, (2) is nothing else but

the linear Schrodinger equation us = iUz

Example 2 ([7]). If we let M = R* and N = 5? = {(z1, 20, 23) : 27 + 23 + 23 = 1},
the unit sphere in Euclidean 3-space, then it is easy to verify that the Schrodinger flow

of maps to N = S? is actually the equation of Heisenberg ferromagnet model:
(3) U = U X Ugg,

where x denotes the vector product in R.

Example 3 ([3]). Now we set R*! = {(z1,z2,z3) : ds? = da? + dz? — dz2} to be the
Minkowski 3-space and let H? = {(xy, 72, 73) : 2? + 23 — 2% = —1,23 > 0} be a unit
sphere in R*!, then H? is actually the hyperbolic 2-space. For arbitrary two vector
a,b € R*»', we introduce a pseudo cross product axb according to the Minkowski
metric by

axb = (agbs — asby, azby — arbz, —(a1bs — asby)).

Obviously, we have axa = 0 too.
One may verify directly by a computation that the Schrédinger flow (2) of maps

from R! into N = H? becomes:
(4) U = 1L§<uxx.

where u = (uy, ug, uz) with u? + u3 —u3 = —1 and uz > 0. We also call Eq.(4) as the

Minkowski Heisenberg ferromagnet model (M-HF model).

Example 4 ([17]). Let M = R' and N = Gjm, where Gi, is a Grassmannian
manifold in the unitary group U(m). If we regard Gy, as the adjoint U(m)-orbit at
i
if,
a=[ 2" 0 :
0 “%Im—k
U(m)}. Then, by a straightforward computation, the Schrodinger flow of maps from

in the Lie algebra u(m) of U(m), i.e., Gk = {UraU|U €

R to Gy is expressed as follows,

(5) Y =17 Yael, V€ Grm-
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II1. GAUGE EQUIVALENCE — CLASSICAL VERSION

Heat flow is an important object in differential geometry, especially in the study of
harmonic maps. However, it seems, as we shall see, that Schrodinger flow has its main
applications in mathematical physics.

The nonlinear Schrdodinger equation (NLS):
(6) ['(ibt + ¢:x:x + 2’"~|¢'2(/5 =0

is a representative example in the theory of integrable systems and it arises in physics
from varied backgrounds, such as in plasma physics and nonlinear optics. The & in
the equation is a real constant. In the linear limit, x = 0, Eq.(6) goes over into the
Schrodinger equation for the wave function of a particle. If & 5 0, the sign of & in
Eq.(6) distinguishes the equation between attractive (k > 0) and repulsive (k < 0)
type. Without loss of generality, we will denote by NLS*™ and NLS~ the Eq.(6) with
k=1 and kK = —1 respectively.

In 1979, Zakharov and Takhtajan proved in [19] that the NLS* is gauge equivalent

to the HF model, i.e. the Schrédinger flow of maps into S2. Now we have

Theorem 1. (Ding [3]) The nonlinear Schridinger equation (6) for s = 1 (i.e., NLS*)
and —1 (i.e., NLS™) are gauge equivalent to the Schridinger flow of maps from R! to
S? and H? respectively.

Proof. Based on the result in [19], what remains to prove is that the NLS™ is gauge

equivalent to the Schrédinger flow into H? (i.e. Eq.(4)). Put:

(1o (0 -1 R
P = 0 -1 , P2 = 1 0 , P3 = ]O

S = Uy -+ Ug’ipg -+ Ug’ipg, for wu € HQ.

and set

Obviously, 52 = —J trS =0, the diagonal of S is a real matrix and the offdiagonal of S
is a purely imaginary matrix. Using the commutive relations: [p1, p2] = —2ps, [p1,p3) =
—2py and [py, p3] = —2p1, we obtain, by a direct computation, that system (4) can be
rewritten as:

1 ~ ~

(7) 8. =55, S,
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and Eq.(7) permits a Lax pair as follows:

) {,ﬂmuM:L@nMﬂ@aM

F(z,t,A) = M(z, t, ) F(z,t, \),

where L = i)\g., M =2)28 + iASS, and ) is a spectral parameter.

Next, let’s recall that the NLS™ has no light soliton solutoins but dark soliton solu-

tions, so we put ¢ = zpe_%”?t, where p is a positive real constant, and get a equivalent
equation for ¢:
(9) i + Gux — 2(|9° — p*)0 = 0.

As pointing out in [8] or [3], we need to add the following finite density boundary

condition:

¢—p, as z -— 400,
¢ — pe?P as x — —o00,

in solving (9), where § is a constant. A direct computation shows that (9) permits a

Lax pair as follows:

(10) { Fi(z,t,)) = L'(z,t, ) F'(z,t,\)

Fi(z,t,\) = M (z,t, \)F (z,t,\)

where L' = \o3 + U(z,t), M = —i2X203 — i2AU(z, t)+i{U?(x,t) — p* + Up(z,t)} o3

and
_ 0 ¢z,t)
m%ﬂ—(&%ﬂ 0 )‘

Now one can verify that the NLS™ is gauge equivalent to the Schrodinger flow to H?

(4) by the following gauge transformation (see [3] for details):
(11) F'(z,t,)) = Gz, t)F(x,t,\),

where G(z,t) is a fundamental solution to (10) at A = 0, F" and F are solutions to
(10) and (8) respectively. This completes the proof of the gauge equivalence between
the NLS™ equation and the Schrodinger flow of maps from R! into H?. (J

The following matrix nonlinear Schrédinger equation (MNLS),
(12) iqe + Que +29¢"¢ =0, (korm > 2)

was first studied geometrically by Fordy and Kulish in [9], where ¢ is a map from R?

to the space M, _gyxr of (m — k) x k complex matrices, 1 < k < m —1 and (* denotes
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the complex transposed conjugate matrix of ¢. Note that when ¢ is a 1 x 1 matrix,

Eq.(12) goes to the NLS*. For this equation (12), Terng and Uhlenbeck proved

Theorem 2. (Terng and Uhlenbeck [17]) The matriz nonlinear Schrédinger equation

(12) is gauge equivalent to the Schrodinger flow of maps into Grassmannian Gy (5).

Iy, 0

Proof. If we set S = Q '03Q, where 03 = 0
“4im—k

> and @ € U(m), then the
Schrodinger flow into Grassmannian (5) is equivalent to

1
(13) S‘ - é—[xg7 Ag:l;]j]7

i
which has the following Lax pair:
(14) Yy = ASY, Py = (—i202S + A5, S).
On the other hand, the matrix nonlinear schrodinger equation (12) admits a Lax
pair as follows:

(15) be = No3 +U)p, ¢ = [—i2\05 — 20U +i(U? + Uy)o3) b,

0 gz, t
where U = ( (2. 1) q<$0’ ) ) One may verify straightforwardly that Egs.(12) and
a\z,

(13) are gauge equivalent to each other by the following transformation:
(16) Oz, t, A) = Gz, t)(x, t, A),

where G(z,t) is a fundamental solution to (15) at A = 0, ¢ and 1 are solutions to (15)

and (14) respectively. [

IV. GAUGE EQUIVALENCE — DISCRETE VERSION

Since nonlinear integrable differential-difference equations are of fundamental im-
portant for the study of classical integrable systems, the study of nonlinear inte-
grable differential-difference equations has received considerable attentions in recent
years (see, for examples, [2,10]). The following discrete nonlinear Schrédinger equation
(DNLS),

(17) Z(dQH/dt) + (Q1l+l + Gn-1 — 2%1) + f@l(Jrl'Q(Qn%—l + Qn—-l) =0

where & is a constant, was introduced by Ablowitz and Ladik [1] who constructed the
discrete version of the AKNS system. Without loss of generality, we denote by DNLS*
and DNLS™ the DNLS (17) with « = 1 and —1, respectively. The bright soliton
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solutions to the DNLS* and the dark soliton solutions to the DNLS™ are constructed
respectively in [1] and [12,13,18] by using the inverse scattering method, or in [15]
by Backlund-Darboux transformations. The DNLS (1), being interesting from the
mathematical viewpoint, has also a rather wide area of physical applications.

In 1982, Ishimori showed in [11] that the DNLS™ is gauge equivalent to the discrete
HF model (DHF), which reads,
_ 2S,41 X Sy 2S,, X Sp_3

148,415, 148, -Spa
where S, = (s}, s2,83) € R® with |S]* = (S})? + (s2)* + (s)? = 1, and - and x

ni ‘Sn n

(18) dS,/dt =

denote the inner and the cross product in B*. In this section, we are interested in 1)
whether the DNLS™ with a similar gauge equivalent structure exists, and, according to
the correspondence principle in quantum dynamics, 2) whether the gauge equivalent
structure of the DNLS™ (resp. DNLS™) is just the discretization of the classical one of
the NLS™ (resp. NLS*) employed in [3] (resp. [19]). We will give affirmative answers
to the above two questions, by using new Lax pairs for the DNLS™, the DNLS™ and
the DHF below, and show why the Ishimori’s gauge transformation in [11] is not the

discretization of a classical one between the NLST and the HF model.

IV.A Lax pairs and their continuous limits. For our purpose in this section, we
hope to choose Lax pairs for the DNLS™, the DNLS™, the DHF and the DM-HF such
that the continuous limits of them are just Lax pairs of their corresponding classical

integrable systems. The following new Lax pairs are exactly such ones.
Example 1 The DNLS*:

(19) i(dgn/dt) + (Gne1 + gn-1 — 2Gn) + [gn]*(@ns1 + Gn-1) = 0.
A new Lax pair of this equation is

(20) Gni1 = Lndn, dop/dt = M,y

in which

~ = .—1
Ln = ( - q”il >
~—({nZ Z
(21)

M. =i 1- 22 + 2z — Z_l = GnQn—1 —qn + (jnflzmz
" ’ “‘QR+qn-122 *1—{‘2_2%‘2_2?1 +Qn(jnfl

where z is a spectral parameter and the overbar denotes complex conjugate. Some Lax

pairs of (19), which are different from the present one can be refered to [8,11-13].
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For the above Lax pair, as usual (see, for example, [1]), the continuous limit (Az — 0;

Az being the discretization parameter) of (20) is
(22) ¢ = Lo, &= Mo

with L = Aoz + U, M = —i2)%03 — 2iA\U + i(U? + U, )03, 03 = ( (1) 01 ) and U =

0 g
( g ), after the substitution
—q

(23) 2= 1+M\z, ¢, — qAz, nAz —z, tAz>—1

(X is a parameter) and setting ¢, ~ ¢, expanding g,+1 ~ Az(q £ Azq, +(Az%/2)qs
+-.-). It is direct to verify that the integrability condition of (22) yields simply the
NLS* equation: ig; + gz + 2|g|?¢ = 0. We would like to point out that the term
z — z~1 in the second expression of (21) plays a very important role in calculating the
continuous limit. Because this term is absent in the Lax pair used in [11], hence it
is impossible for Ishimori’s gauge transformation to be the discretization of a classical
one between the NLS* and the HF model.

Example 2 The DNLS™. Because the DNLS™ has no bright solitons, we put ¢, =

;2 - oy . .
rae” 2Pt where p is a positive real constant, and get an equivalent equation for r,.

The following is that equation in which 7, is replaced by gy,

(24) i(dQn/dt) + (Qn+1 =+ Gn—-1 — QQn) - iQHl2(q'n+] + Qn-»l) + 2/)2%1 =0.

2

As pointed out in [8], in order to solve (24), we should propose the nonzero boundary
conditions or conventionally the finite density boundary conditions: lim, . o ¢y = p
and lim, 100 gn = pe®, here p designates the background pulse amplitude and 6 is a

complete phaseshift. This equation permits the following new Lax pair,
(25) Ony1 = Ln@n, d(/)n/dt = M, én

in which

> g =1
L. = ne )
Gz 27
M = ( 1—22+2— 27" + Gugnor ~ 7 ~Gn + qn-127 )

Qn—'Qn~122 ‘1‘*‘3“24‘3‘27} — GnGn-1 +/)2

Some other Lax pairs of (24) can be found in [12.13].
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) , after
0

It is direct to verify that the integrability condition of (26) yields simply the NLS™

In a similar way, the continuous limit of (25) reads

with L = Aoz + U, M = —i2)\?03 — 2i\U +i(U? ~ p* + U)oz and U = ( 0
q

<

the substitution

(27)  z—1+Mz, g, —qAz, nAx —z, tAz® =t p— Az’p.

equation: iqs + ¢z — 2(lg|*> — p*)g = 0.

Example 3 The DHF (18). For this model, we convert it into the matrix form as
follows,

(28) dS,/dt =i o Sl P Snca] g =( 5 S’%"i‘gz)

1+ STH—l . Sn. 1+ STL'STZ—l’ S?L -+ Zsi "S,}L

where S, 41 - Sy, is defined as the inner product of the vectors S, 41 and S, in R?. (28)

allows the following new Lax pair,
(29) 7/)7L+1 = znrﬁbn; dd)n/dt = Mn/(/)“

in which Ly = =1 + =215, and M, = (1 — Z52) 5oy — o1y
z '22—2 3%%—}?—12, where [ denotes the unit 2x 2 matrix. Similarly, after the substitution

z — 1+ XAz, Az — 0, nAz — z, S, — S and ¢, — 1, the continuous limit of (29) is

(30) e = Ly, = My

st s?
s? +14s® —st
5?2 = I. The integrability condition of (30) reads S; = 5[5, Sz], Which is just the

—3s°

with L = AS and M = —i2)\28 + tAS,S and S = satisfying

matrix form of the HF model [8]. Some other Lax pairs of (18) or (28) can be referred

to [15,16], where one can also find soliton solutions to (18) or (28).

Example 4 The discrete M-HF model (DM-HF),

2S,41 %Sy 28, %Sp_1
1- Sn+1 ) Sn 1- Sn'Sn—l

where S, = (sl,52,53) € R*™! with [S|? = (s})? + (s2)? — (s3)? = —1 and s3 > 0,

(31) dS, /dt = —

and - and x denote the pseudo inner and the pseudo cross product in R**!. This

new differential-difference equation is deduced (see below) from the discretization of
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the Schrodinger flow of maps into H? (i.e. the M-HF model) S; = SxS,, (see [12] for
details). The matrix form of this model is,

{Sn—l—h Sn] [S'm Sn—l] 51 i(“52 + 53)
3d n dt = — -+ , Sn — o n ] n n
(325n/ 1= S-S, 1—8,-Sns i(s2 4+ s3) —s)

in which S,41 -5, denotes the pseudo inner product of the two vectors S,;; and S, in

R*'. A complicated computation shows that Eq. (32) permits the following Lax pair,

(33) djn—{—l = zn¢n; dwn/dt - ]Tjnl/’n
with
~  z+2z7t z— 2z
L, = 9 I+1 5 Sn
__ 2, -2 _ 22— 272 [ — 5,15,
M, = (A ) SndSe B Sn-15

2 1—95,- 51

. Similarly, the continuous limit of (33) is

2 1 -5, Sho1

(34) Yo =L, W= My

st i(=s? + %) o
i(s? 4+ 5% g satisfying
5?2 = —I. The integrability condition of (34) is S, = 3[5, Sy.), which is just the matrix
form of the M-MF model (also see [3]).

where L = i\S and M = 2025 —i\S, S and S = (

IV.B Quantizations of gauge transformations. In this subsection, by using the
Lax pairs displayed in the preceding subsection, we show that there is a gauge trans-
formation between the DNLS™ (resp. DNLS*) and the DM-HF (resp. DHF) and
demonstrate that the continuous limits of the gauge transformations are just their

corresponding classical ones.

Theorem 3. (Ding [5]) The DNLS™ (resp. DNLS") is gauge equivalent to the DM-HF
(resp. DHF) by the following gouge transformation,

(35) d)n(tv Z) = Gn(t)wn(t‘. Z):

where Gn(t) is o fundamental solution to (25) (reps. (20)) at z = 1, ¢,(t,z) and
Unlt, 2) are solutions to (25) and (33) (resp. (19) and (29)) respectively. Furthermore,
the continuous limit of (85) becomes a classical gauge transformation between the NLS™
and the M-HF model (resp. the NLSt and the HF model).
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Remark 2. This theorem indicates that there is o unified reconciliation of the gauge

equivalent structures of the DNLS and NLS according to the correspondence principle.

After a thorough understanding of the gauge structures of the NLS, the DNLD
(which is the discrete gauge equivalent corresponding to the NLS) and the MNLS, one
would naturally like to find the discrete counterpart of the gauge equivalent structure
of the MNLS according to the correspondence principle in quantum dynamics. For the
matrix nonlinear Schrodinger equation, the parallel generalization of the DNLS™ as

that of the NLS™ is naturally introduced as follows,

(‘36) 7'(dqn/dt) + (QR+1 + Gn-1 — 2(]11) + (Q7l+lq:(Zn + Qn(]:LQn—l) = 07

which is called as the discrete (integrable) matrix nonlinear Schrodinger equation
(DMNLS). The discrete (ingtegrable) equation of the Schrodinger flow into Grass-

mannian is as follows,
(37) dS,/dt = 4i(I + SpSp_1)"* — 4i(I + Spy1S,) 7"

is the discrete equation of the Schrodinger flow of maps into Grassmannian Gy, (13),

where I = I, denotes the m x m unit matrix and S, is of the form U lo3U, with U,
I, 0

being an m x m unitary matrix and o3 = 0 . When k =1and m = 2,
“dm-k

ie. Gpm = CP'= 5% (36) reduces to the DHF (18). Now we have

Theorem 4. (Ding [6]) A class of solutions to the following (integrable) discrete cou-
pled matriz nonlinear Schridinger equation (DCMNLS):

(38) { i(d8n /1) + (Gn1 + Gn1 = 20) + (Gns170Gn + GaTndn-1) = O

—i(drn/dt) + (Tne1 4+ Tne1 — 270) + (Tns1@nTn + TnGnTn-1) = 0,
is gauge equivalent to the discrete equation of the Schridinger flow of maps into Grass-
mannian G, and the continuous limit of the realizing gauge transformation is evactly
a classical gauge transformation between the MNLS (12) and the Schridinger flow of

maps into Grassmannian G, (13).

V. Example

As applications, we would like to give some explicit solutions to the DM-HF (resp.
M-HF model) from dark soliton solutions to the DNLS™ (resp. NLS™) by gauge trans-
formations and illustrate that the continuous limit of the gauge transformation between
the DNLS™ and the DM-HF is just a classical one between the NLS™ and the M-HF
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model. For the purpose of simplicity in calculation, we consider the one-soliton poten-
tial to the NLS™ (see, for example, [12]),

gs(z) = —ptanh px.

This is the dark one-soliton to the NLS™ with 8 being taken equal to 7. Such a solution
is also called a black soliton in constrast to a grey one at § # w. The corresponding
black one-soliton of the DNLS™ is given by (also refer to [13])

1—-h"

14+ h"

in which h is defined by the relation A2 — h=42 = 2p/(1— p?)/2, h > 1, here only the

case of p? < 1 is now considered. A corresponding matrix solution to the Lax equation

Gret = LnGh, dGn/dt = MGy at z = 1 is G, = < An(=pnt =1) Byt ) where

qsn:p

Ap(—=ppt +1) Byt

o onml(14hn) o (2n)7~1 4h1(h—1)2
An = o5y Be = b TR (=) (D)

constants such that ab # 0). By using this gauge transformation G,, we have S, =

(a and b are free

and p, =

—Gnlioanz( 28 ;pln)iln /B, ZB;: ;4" . Therefore, the DM-HF has following
explicit solutions, which may also be regarded as its black one-soliton solutions,
R 4"t (h —1)2 ;
" (I+hA)( + A1+ 1)
o
1 16ah™ (h — 1)1 , a(l+h (1 + A" Rt (h+1)
T2 [(1 + hn) (1 + hn=1)(h +1)3 ih+1) all+ h)(1+ h”'*l):l
1 16ah™ t(h — 1)* o all+hA" 1 (1+R") R (h+1)
T2 {(1+h”)(1+h"*1)(h+1)3 hr=1(h 4+ 1) T a(1+hn)(1+h’”“1)}

in which o = a/b # 0 is a free parameter.
Now after the substitution of relation (11), we have
92 2 - 1.2
s, 5= ) 2p i/;:h pjc z/gacthr
12ach”pr(4p*t® [ch®px + 1) 2p°t/ch®px
Hence, the M-HF model has following explicit black one-soliton solutions, which are

the continuous limit of the above black one-soliton solutions to the DM-HF,

st = —2p°t/ch?pz,

»
Il

2 1/2 [8ap't®/ch*px + 2ach®px — 1/2ach?pz]
s° = 1/2[8ap't’/ch’pz + 2ach’px + 1/2ach’pz] .
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Furthermore, the gauge transformation Gy, between an auxiliary solution of the DNLS™

and an auxiliary solution of the DM-HF for the black one-soliton solutions, has the
achpz(—i — 2p°t/ch®pz) ib/2chpx

continuous limit: G = .
achpz(i — 2p°t/ch’px)  ib/2chpz

). It is easy to verify

0 g 2-0 s

that G solves G, = 7 G, G, =1 & =P 2(] *, | G and fulfils the
gds O st —qs + P

desired gauge relation S = ~G~lio3G.

It should be mentioned that the gauge equivalent structures of the analogous of the
nonlinear Schrodinger equation in 2 4+ 1 dimensions were discussed in [4,14]. However,
many questions remain open and deserve further investigation in this respect. Examples
are: whether one can find a Schrodinger-like equation which is gauge equivalent to
the generalized Landau-Lifshitz equation; whether the discrete equation (37) of the
Schrédinger flow of maps into Grassmannian is not in general gauge equivalent to the
DMNLS (36), though we believe that, not like the fact displayed in [5] for the NLS,
this is the case. Finally, we remark that the obtained result suggests that there might
exist an interesting and intriguing geometric relationship between the CMNLS (resp.
DCMNLS) equation and the MNLS (resp. DMNLS) equation. A better understanding
of this will be left for the future study.
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