Josai Mathematical Monographs vol 3 (2001), *pp.* 37-41

ON SURFACES WITH HOLOMORPHIC GAUSS MAP IN A CERTAIN SYMMETRIC SPACE

MASATOSHI KOKUBU

I would like to talk about some results on analogue of minimal surface theory in a certain symmetric space, which is a joint work [KTUY] with Masaro Takahashi, Masaaki Umehara and Kotaro Yamada.

1. Background

We shall quickly review the fundamental facts about the minimal surface theory in Euclidean 3-space, the CMC-1 surface theory in hyperbolic 3-space and their correspondence.

	$f: M \to \mathbf{R}^3$	$f: M \to H^3$
	minimal immersion	CMC-1 immersion
Def	mean curvature 0	mean curvature 1
\Leftrightarrow	∃ null curve	∃ null curve
	$F: \widetilde{M} \to \mathbb{C}^3 \text{ s.t. } f = 2 \operatorname{Re} F.$	$F: \widetilde{M} \to \operatorname{SL}_2 C \text{ s.t. } f = FF^*$
\Leftrightarrow	f is given by	$f = FF^*$ where
	$\operatorname{Re}\int \begin{pmatrix} 1-g^2\\i(1+g^2)\\2g \end{pmatrix}\omega$	$F^{-1}dF = \begin{pmatrix} g & -g^2 \\ 1 & -g \end{pmatrix} \omega$
\Leftrightarrow	Gauss map	hyperbolic Gauss map
	$[\partial f]: M \to Q_1 \subset P(\mathbf{C}^3)$	$\left \left[\partial f f^{-1} \right] \colon M \to Q_1 \subset P(\mathfrak{sl}_2 C) \right $
	is holomorphic.	is holomorphic.
1st f.f.	$(1+ g ^2)^2\omega\overline{\omega}$	$(1+ g ^2)^2\omega\overline{\omega}$
period	$\forall [\gamma] \in \pi_1(M),$	The monodromy group of
	$\int_{\gamma} \begin{pmatrix} 1 - g^2 \\ i(1+g^2) \\ 2g \end{pmatrix} \omega \in \sqrt{-1} R^3$	$dFF^{-1} = \begin{pmatrix} G & -G^2 \\ 1 & -G \end{pmatrix} \Omega$ is included in SU ₂ .

MASATOSHI KOKUBU

M is an oriented surface (with the induced metric), hence a Riemann surface. \widetilde{M} denotes the universal cover of M.

 $H^3 = \operatorname{SL}_2 C / \operatorname{SU}_2$ is embedded in $\operatorname{SL}_2 C$ (known as Cartan embedding).

2. A generalization of the ambient space

Let \mathfrak{g} be a complex semisimple Lie algebra. Then a symmetric space N of noncompact type is associated with \mathfrak{g} as follows:

Let \mathfrak{h} be a compact real form of \mathfrak{g} . Let $\sigma_0: \mathfrak{g} \to \mathfrak{g}$ denote the complex conjugate with respect to the decomposition $\mathfrak{g} = \mathfrak{h} \oplus \sqrt{-1}\mathfrak{h}$. We denote by \widetilde{G} the simplyconnected Lie group with Lie algebra \mathfrak{g} and by $\widetilde{\sigma}: \widetilde{G} \to \widetilde{G}$ the involution of \widetilde{G} such that $(\widetilde{\sigma})_e = \sigma_0$. Let \widetilde{H} be the set of fixed points of $\widetilde{\sigma}$. Then \widetilde{H} is a connected Lie subgroup of \widetilde{G} with Lie algebra \mathfrak{h} .

In these circumstances, we have a Riemannian symmetric pair

$$(G, H, \tilde{\sigma}, B|_{\sqrt{-1}\mathfrak{h}}),$$

where B is the Killing form of g. Hence we have a Riemannian symmetric space $N = \tilde{G}/\tilde{H}$.

The hyperbolic 3-space is a model of $N = \tilde{G}/\tilde{H}$. If we start with $\mathfrak{g} = \mathfrak{sl}_2 C$, the associated space N is $H^3 = \operatorname{SL}_2 C/\operatorname{SU}_2$.

Without loss of generality, we may assume that the symmetric space ${\cal N}$ can be represented as

$$N(=G/H) = G/H \quad (G \subset \operatorname{SL}_n C).$$

(If \widetilde{G} is not a subgroup of $\operatorname{SL}_n \mathbb{C}$, we have only to replace \widetilde{G} and \widetilde{H} by $G = \operatorname{Ad}(\widetilde{G})$ and $H = \operatorname{Ad}(\widetilde{H})$, respectively.)

Moreover we usually consider the Cartan model

$$N = G/H \subset G(\subset \mathrm{SL}_n C).$$

3. Surfaces with holomorphic right Gauss map

Let $N = G/H(\subset G)$ be a symmetric space defined in the previous section. Let $f: M \to N$ be an immersion of an oriented surface. Here we think of f to be a G-valued map. As usual, we regard M as a Riemann surface by the orientation and the induced metric.

Definition 3.1. We call the map ν defined by

(3.1)
$$\nu \colon p \in M \mapsto \left[(f^* \mu_R)^{1,0} |_p \right] \in P(\mathfrak{g})$$

the **right Gauss map**. Here, μ_R denotes the right-invariant Maurer-Cartan on G and $P(\mathfrak{g})$ is the complex projective space of \mathfrak{g} .

A surface with holomorphic Gauss map in N is a generalization of a CMC-1 surface in H^3 from the viewpoint of Gauss map. There are also some similar property at the other point:

- 1. Bryant type formula. Any immersion $f: M \to N = G/H$ of a surface with holomorphic right Gauss map is given by $f = FF^*$ where $F: \widetilde{M} \to G$ is a null curve.
- 2. Local correspondence to minimal surfaces. For any surface with holomorphic right Gauss map $f: M \to N = G/H$, there exists a minimal surface in $\mathbb{R}^{\dim G}$ which is locally isometric to M.
- 3. Duality, Dual metric. Given a surface with holomorphic right Gauss map f = FF*, there is another surface with holomorphic right Gauss map defined by f# = (F#)(F#)*: M → N = G/H where F#: z → F(z)⁻¹. We call f# the dual of f. Though the dual surface f# is defined on the universal cover M in general, the induced metric ds^{2#} = B(dFF⁻¹, dFF⁻¹) is well-defined on M.

The following consideration implies that the study of surfaces with holomorphic Gauss map in N = G/H is not only the analogue but also the generalization of Euclidean minimal surface theory:

N = G/H contains a Euclidean space \mathbf{R}^r as a totally geodesic submanifold, where r is the rank of the Lie group G. Indeed, the submanifold consisting of diagonal matrices in $N = \mathrm{SL}_n C/\mathrm{SU}_n (\subset \mathrm{SL}_n C)$ is isometric to \mathbf{R}^{n-1} via the exponential map. It is easy to see that $f: M \to \mathbf{R}^r \subset N = G/H$ has holomorphic right Gauss map (as a surface in G/H) if and only if f is a conformal minimal immersion as a surface in \mathbf{R}^r .

4. Examples

Example 4.1. Let M be a Riemann surface and a, b, c be meromorphic functions on M. We set

$$F := \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}.$$

Then F is a null meromorphic map on M^2 . So we can construct many surfaces having holomorphic right Gauss maps as the projection of such F. For example, if we set $M = \mathbb{C} \setminus \{0\}$ and a(z) = 1/b(z) = z, c(z) = 1, then it gives a complete surfaces with finite total curvature in $SL(3, \mathbb{C})/SU(3)$. For a suitable choice of orthonormal basis, one can easily check that the canonical correspondence $F_0 : \tilde{M}^2 \to \mathbb{C}^8$ is given by

$$F_0 := \int_{z_0}^{z} (db - adc, i(db - adc), da, -ida, dc, idc, 0, 0).$$

F is called a null curve if $B(F^{-1}dF, F^{-1}dF) \equiv 0$.

Example 4.2. Let $M = \mathbb{C} \setminus \{0\}$, and let \widetilde{M} be the universal cover of M. Define a holomorphic map $F_{\mu,a,b} \colon \widetilde{M} \to \mathrm{SL}(3,\mathbb{C})$ by

(4.1)
$$F_{\mu,a,b}(z) = \begin{bmatrix} \sqrt{\frac{b^2 + 3\mu^2}{b^2 - a^2}} z^{\mu+a} & 0 & \sqrt{\frac{a^2 + 3\mu^2}{b^2 - a^2}} z^{\mu-b} \\ 0 & z^{-2\mu} & 0 \\ \sqrt{\frac{a^2 + 3\mu^2}{b^2 - a^2}} z^{\mu+b} & 0 & \sqrt{\frac{b^2 + 3\mu^2}{b^2 - a^2}} z^{\mu-a} \end{bmatrix}$$

where μ , a and b are real constants such that $b^2 > a^2$. Then $F_{\mu,a,b}$ takes values in the 4-dimensional subgroup $(\mathbf{C}^* \times \operatorname{GL}(2, \mathbf{C})) \cap \operatorname{SL}(3, \mathbf{C})$, in particular, it is $\operatorname{SL}(2, \mathbf{C})$ -valued if $\mu = 0$.

,

For $F = F_{\mu,a,b}$, the 1-form α_F is computed as follows:

$$\alpha_F = \begin{bmatrix} (\mu + \frac{ab - 3\mu^2}{a + b})z^{-1} & 0 & -\frac{\sqrt{(b^2 + 3\mu^2)(a^2 + 3\mu^2)}}{a + b}z^{-a - b - 1}\\ 0 & -2\mu z^{-1} & 0\\ \frac{\sqrt{(b^2 + 3\mu^2)(a^2 + 3\mu^2)}}{a + b}z^{a + b - 1} & 0 & (\mu - \frac{ab - 3\mu^2}{a + b})z^{-1} \end{bmatrix} dz.$$

It is verified treat the case when f itself is single-valued on $C \setminus \{0\}$, i.e.,

$$f = F_{\mu,a,b}(F_{\mu,a,b})^*, \qquad b - a \in \mathbb{Z} \setminus \{0\},$$

where $F_{\mu,a,b}$ is given by (4.1). Then $\alpha_F^{\#} = dFF^{-1}$ is computed as

$$\alpha_F^{\#} = \begin{bmatrix} \left(\mu + \frac{ab+3\mu^2}{b-a}\right) z^{-1} & 0 & -(a+b)z^{a-b-1} \\ 0 & -2\mu z^{-1} & 0 \\ (a+b)z^{b-a-1} & 0 & \left(\mu - \frac{ab+3\mu^2}{b-a}\right) z^{-1} \end{bmatrix} dz.$$

Indeed, $\alpha_F^{\#}$ is single-valued on $C \setminus \{0\}$. Furthermore, $ds^{2^{\#}} = \operatorname{tr} \alpha^{\#}(\alpha^{\#})^*$ is

$$ds^{2^{\#}} = \left\{ \frac{2(a^2 + 3\mu^2)(b^2 + 3\mu^2)}{(b-a)^2} + (a+b)^2(|z|^{2a-2b} + |z|^{2b-2a}) \right\} |z|^{-2} dz \, d\overline{z}.$$

If |a - b| = 1, the dual total curvature of f is equal to -4π which satisfies equality in the Chern-Osserman type inequality (see the next section).

5. Total (dual) curvature

We denote by ds^2 (resp. K) the induced metric (resp. the Gauss curvature) of a surface with holomorphic right Gauss map. Since the metric ds^2 is locally isometric to the metric of an Euclidean minimal surface, the Gauss curvature K is non-positive. Similarly for the dual metric $ds^{2\#}$, the dual Gauss curvature $K^{\#}$ is non-positive.

Theorem 5.1. Let $f: M \to N = G/H$ be a complete surface with holomorphic right Gauss map. Then the dual metric is also complete, and the following hold:

$$\frac{1}{2\pi} \int_M K^\# dA^\# \in \mathbb{Z}$$

$$\leq \chi(M) - \# \{ ends \}$$

where $\chi(M)$ is the Euler number of M.

It is known that $(1/4\pi) \int_M K^{\#} dA^{\#} \in \mathbb{Z}$ holds in the case of $N = \mathbb{H}^3$. However, it fails to hold in general N. (Example 4.2 gives a counterexample.)

On the other hand, the total curvature satisfies neither the integrity nor the Chern-Osserman type inequality.

From the intrinsic condition, we can see that the Cohn-Vossen inequality

$$\frac{1}{2\pi} \int_M K dA \le \chi(M)$$

holds. Umehara and Yamada proved the inequality

$$\frac{1}{2\pi} \int_M K dA < \chi(M)$$

in the case of $N = H^3$. It is still unknown whether there is a surface with holomorphic Gauss map in the other symmetric space N = G/H which satisfies equality in the Cohn-Vossen inequality.

References

[KTUY] M. Kokubu, M. Takahashi, M. Umehara and K. Yamada, An analogue of minimal surface theory in SL(n, C)/SU(n), preprint

Tokyo Denki University