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ON THE GOLDBERG CONJECTURE

KOUEI SEKIGAWA

1. INTRODUCTION

An almost Hermitian manifold (M, J, g) is called an almost Kahler manifold if the
Kéhler form is closed (or equivalently, & ¢g((VxJ)Y,Z)=0,for X,Y, Z € X(M).
XY,z

where & denotes the cyclic sum with respect to X, Y, Z). By definition, a Kéh-
XY,z

ler manifold (VJ = 0) is an almost Kéhler manifold. A non-Kéhler, almost Kahler
manifold is called a strictly almost Kéhler manifold. The first example of compact
strictly almost Kahler manifold was found by W.T. Thurston ([19]). It is well-known
that an almost K&hler manifold with the integrable almost complex structure is a
Ké&hler manifold. Concerning with the integrability, the following conjecture by
S.I. Goldberg is known ([3]).

Conjecture. The almost complex structure of a compact almost Kdhler Einstein

manifold is integrable.

Blair and Ianus ([2]) studied variations in the set of metrics associated to a given
symplectic form on a compact symplectic manifold and showed that the commuta-
tivity of the Ricci operator with the almost complex structure is the critical point
condition for a certain class of Riemannian functionals. This fact authorizes the
Goldberg conjecture. The conjecture is true in the case where the scalar curvature
is non-negative ([18]). However, the conjecture is still wide open in the case where
the scalar curvature is negative. In this talk, we shall introduce some other partial
and related results (mainly, in for-dimensional case) to the Goldberg conjecture.

2. PRELIMINARIES

First of all, we prepare some fundamental terminologies and formulas which will
be used in our arguments.
Let M = (M, J,g) be a 2n-dimensional almost Hermitian manifold with almost

Hermitian structure (J,¢). We assume that the Kéhler form Q of M is defined
43
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by QX,Y) = g(X,JY) for X, Y € X(M), where X(M) denotes the Lie algebra

of all smooth vector fields on M. We assume the M is oriented by the volume
n

form dM = (~1)"h~‘. We denote by V, R, p and 7 the Riemannian connection,
the curvature tensor, the Ricci tensor and the scalar curvature of M, respectively.
The curvature tensor R is defined by R(X,Y)Z = [Vx, Vy|Z — V|xyZ, for X, Y,
Z € X(M). We denote by p* the Ricci #-tensor of M defined by

‘ 1 .
(2.1) pxy) = 5 trace of (z — R(x, Jy)Jz)

for z, y, z € T,M, p € M. Further, we denote by 7* the =-scalar curvature of A/
which is the trace of the linear endomorphism @Q* defined by ¢(Q*z,y) = p*(x,y)
for z, y € T,M, p € M. By the definition, we see immediately

(2.2) o (z,y) = p*(Jy, Jz),
and hence p* is symmetric if and only if p* is J-invariant. We may also note that if

M is Kahler, then p* = p holds on M.

Definition 1. Almost Hermitian manifold M = (M, J,g) is called a weakly *-
Einstein manifold if p* = A*g (A* = 7*/2n) holds. Furthermore, if X* is constant,
then M is called a #Einstein manifold.

The first Chern form - of M is given by
(2.3) 8y = —p + 21,
where ¢ and 9 are 2-forms on M defined by
o(z,y) = trace of (z — J(VJ)(V,J])z),
¥(z,y) = trace of (z — R(z,y)Jz),

for z, y, z € T,M, p € M. The first Chern class ¢;(M) of M is represented by v in
the de Rham cohomology group.

In the remaining of this section, we assume that the dimension of the considered
almost Hermitian manifold is equal to four. It is known that the following identity

folds for any four-dimensional almost Hermitian manifold:

(24)  Slpey) +olw T4}~ 5 (9) + 7' (3.2)) =

for z, y € T,M, p € M.
The curvature operator R is the symmetric endomorphism of the vector bundle
A?AI of real 2-forms over M defined by

(2.5) 9(R(u(z) A vly)), e(2) A vfw)) = —g(R(z, )z w)

EY

T—T
4

g(z,y)
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for z,y, z, we T,M, p € M, where ¢ : TM — T*}M denotes the duality defined by
means of the metric g. The following decomposition for the vector bundle A2M of

real 2-forms on A is useful in our arguments:
(2.6) ANM =RQSAS'M & LM

where Ay'M denotes the vector bundle of real primitive J-invariant 2-forms, LM
the vector bundle of real primitive J-skew-invariant 2-forms over M, respectively.
The bundle LM is endowed with the natural complex structure (also denote by J)
which is defined by (J®)(X,Y) = —®(JX,Y) (X, Y € X(M)) for any local section
® of LM. The bundle Ay M is identified itself with the bundle A2 M of anti-self-
dual 2-forms, while the sum R & LM is the bundle /\3/\/[ of self-dual 2-forms.
Further, it is well-known that M is Einstein if and only if both A% M and A2 M are
preserved by the curvature operator R (N. Hitchin, [5]).

In our talk, for any unitary basis (resp. any local unitary frame field) {e;} =
{e1,e2 = Jey, e3,e4 = Jesg} of any point p € M (resp. on a neighborhood of p), we
shall adapt the following notational convention:

Riju = g(R(es, ej)ex, 1), - - Rgrr = g(R(Jes, Jeg)Je, Jer),
Pij = /0(61‘, ej)v BN 27 /0(‘]61'7 Jej):
(1 <1i,5,k,1 <4). Then we have the following formulas.
Jij ==, Vidj=—ViJu,
ViJig = =ViJjk, ViJze = —=Vidj,

(2.7)

(2.8)

(2.9) IVJIPP =2(r" = 7)
Taking account of (2.5) and (2.8), we have
(2.10) Vi=a®®—-Ja® JP,

where « is a local 1-form, ®, J® € LM and the local 1-form Ja is defined by
(Ja)(X) = —a(JX), (X € X(M)). We set g(Ve,ej,ex) = Iijr. Then, Ty = —Lig;
hold.

Now, we assume that M = (M, J, g) is in addition an Einstein manifold. Then,
we have by (2.3)

- % * T
(2.11) Pyt Pji = 751'7"
Since R(A%Z) C A2 M, we may put

R(P) = ud +wJP + AQ,

(2.12)
R(JP) = wd +vJD + BQ,
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‘ 1 o
(e*ned—e?net), Jo=—=(e' Aet +e? Aed) (¢f = i(e;)), and

V2
u = —(Ri313 — Ri3o4),
v = —(Rya1a + Ria2s),

w = —(Ri314 + Ry323),

1 1
A _—— * . B = e *< .
\/QPM, \/ﬁpld

Now, we define smooth functions D, G and K on M respectively by
D= (Ryn — Rym)’,

(2.13) G=> (0 — )
K = (u—v)*+ 4w’

where @ =

Sl

Then, we have

G =4p"* = ()" = 16{(p1s)* + (1)},

® 2
(2.14) K= g—f@zz-—éldetR’LM,
1 , 1
”RLM”2 = T()“‘D’ HRLMH2 = i’é(D - G),

where R’ ,, = Pra o Row (Poa : A2M — LM is the projection) and

_ g B —7)(r* —7)
2

(2.15) Ar* +4K +

—4divy

where 77 = (7,) is the vector field on M defined by 7, = E(Valij)p:fj.

Now, we assume further that the manifold A under cons?iieration is strictly almost
Kéahler one and My = { peM } TF—7>0atp } Then, we may easily observe
that My is a non-empty open submanifold of M and there exists two J-invariant
distributions on D and D* on M such that D = span{ca*, Jo*} ((a*) = ). Let
{e:} = {e1,ea = Jey, e3,e4 = Jez} be a local unitary frame filed on a neighborhood
of any points of M such that D = span{ey, es} and D+ = span{es, es}. Then, we
have

1 : . 1 .
(2.16) VOi=a®—=('Ae—e?net) —Ja® —=(e' Ae! +e? Aned)

V2 V2
for some 1-form a (a* € D). A pair ({e;}i=1, 4, {a, Ja}) of local unitary frame filed
{e.} = {e1.e9 = Jey,e3,e4 = Jez} and 1-forms {a, Ja} is said to be an adapted
one to VQ if it satisfies (2.16) and D = span{e;, es}, D+ = span{es eqs}. Let
({ei}iz1. 4, {a, Ja}) be any adapted pair to VQ. Then, for arbitrary local smooth
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functions 6 and ¢, we may check that ({e;(6, ¢)}i=1 4, {a(6, ¥), ]a(() ©)}) (where
a(f,¢) = (cosf)a — (sinb)Ja, e1(d, ¢) = (cosp)e; — (sing)es, ea2(0, @) = Jei(6, @),
e3(0, ) = (cos(0 + p))es + (sin(0 + ¢))eq, es(0, @) = Jes(, )) is also an adapted
pair to V. With respect to an adapted pair ({e;}i=1,. 4, {@, Ja}) to V2, we have

the following equalities:
1
w = ﬁ{“rmﬂll — Dyz000 — Vg + aa(Ts12 + Uasq) },

1
—{Donian + Dogpan + Vaan + a1 (Daio + Lasa) b,

w =
(2.17) \{5
w = 75{“{‘131051 — Disoo + Vaas + a1 (Darz + Taza) },
1
w = 7§{F241041 + Dogocry — Vaag + an(Ts12 + T'asza) },
1 TF— 1T
U = "\/*5 {leal + Taan + Vaag — 2_\@— + a1 (T2 + F334)} ;
(2.18) | ’
TF— T
u = 75 {F:zsl&l + Dozparn + Vyag — —2‘\7—; — ag(Py12 + F434)} )
1
v = _{—Fléllcﬂ —Tpas — Vaon + ao(Taio + Tuza) §,
V2
(2.19) |
v = —={—T93107 — Dazoxe — Vg — 1’312 + 's34) },
\/5{ 23101 232019 309 1(T312 + I's34) }
1
Pr3 = “\/—5{‘71@2 — Vaag + o (Tia + Diga) + aa(To12 4+ Toza) },
1
P13 = %{(F431 — Taar)on + (Tazz — Taaz) oz},
(2.20) :
\ Pla = "“\/‘5{‘71@1 + Vaay + a1(Faio + Iags) — ca(Trio 4+ Tisa) },
1 &l
Pla = ”\'/'5{(1—‘342 — Tyzo)ay — (T'say — Dygr)an}.
[6%) (o5}
I — Tz = —=, Pogo —Taz1 = ——=
2 2
(2.21) V2 V2

€3]

%7

042

Do + T = Iozo +Tou =

o o
(2.22) g1 — Togo = —'\—/—%, Iigg + Tz = \/—%,
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(2-23) (F131Ot1 + F132Q’2)[JT4 - (_FIB‘ZQI + Flsl&z)ﬁfg =0,

, TF—T\ ,
(2'24) (F131a1 + Fl:ﬁa‘z)/f{:s - (Fl.‘i?al —Digian — “———> P14 = 0,

22

(2.25) 8y =71 N+ e Aet) 4+ (7F —T)ed A et
—dpi (et ned—eP Aet) +4pi (et Aet + e’ A ed).

By (2.20), we see that if G = 0 on M, namely, M is a weakly »-Einstein mani-
fold, then the distributions D and Dt are both integrable. Let M; = { peM |
G > 0atp} and (Mo (My)°)" be the interior of My N (M;)¢ = Mo (M — M;).
Then, by choosing local functions 6 and ¢ suitably, we may obtain an adopted pair
({ei}i=1, 4, {a, Ja}) to VQ on My N My or (Mg N (M;)°)* satisfying the following
conditions:

(2.26) a=lale’,  Ja=lale,

1 ‘ 1
VQ = e {el @ —=(e At - Net)—e? @ —=(el net €2 /\63)} ,

V2 V2
and

P8 = = p1s = 0.
We call such an adapted pair a special one to V(). We may easily observe that the
equalities (2.17)~(2.25) take more convenient form with respect to special adapted
ones. These reduced equalities play an important role in the proofs of Theo-

rems 3.4~3.9 which will be introduced in the next section.

3. PARTIAL AND RELATED RESULTS

In this section, we shall state some partial answers to the Goldberg conjecture. A
space of constant negative sectional curvature is an Einstein space of negative scalar
curvature.

Theorem 3.1 (Oguro-Sekigawa, [13]). A 2n (>4)-dimensional real hyperbolic space
H?" can not admit any compatible almost Kihler structure.

Remark. The local version of the above result was given by Oguro ([12]).

An irreducible locally symmetric space is an Einstein space. So, it is a natural
question whether a compact locally symmetric space admits compatible almost Kéh-

ler structure or not. Concerning this question, we have the following.
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Theorem 3.2 (Murakoshi, Oguro, Sekigawa, [8]). Let M = (M, J, g) be a four-
dimensional compact almost Kdahler locally symmetric space. Then, M is a locally
Hermatian symmetric space (and hence, a Kdhler manifold).

In the above result, the assumption of compactness cannot be removed. In fact,
Oguro-Sekigawa ([14]) have showed that the Riemannian product space H? x R! of
a 3-dimensional real hyperbolic space H® and a real line R! admits a compatible
strictly almost Kahler structure. T. Oguro ([11]) obtained a generalization of this
example. More precisely, he has constructed uncountably may examples of strictly
almost Kahler structures on the product Riemannian manifold H® x R?*~%. Both real
hyperbolic space H?® and the Riemannian product space H® x R! can be regarded
as solvable Lie group spaces. Recently, W. Obata obtained the following result in
her Master’s thesis ([10]).

Theorem 3.3. Let G = (G, J,g) be a 2n-dimensional negatively curved homoge-
neous almost Kdhler Einstein manifold with Twasawa type (g, g) (g is the Lie alge-
bra of G). Then (G, J,g) is holomorphically isometric to a complex hyperbolic space
CH"™ with the canonical Kdhler structure.

We note that W. Jelonek ([6]) gave some examples of compact strictly almost
Kéhler manifolds of negative constant scalar curvature (which are not Einstein).
In the sequel, we shall introduce several recent result for the conjecture in four-

dimensional case. Oguro and Sekigawa ([15]) proved the following.

Theorem 3.4. Let M = (M, J,g) be a four-dimensional almost Kahler Einstein
and x-Finstein manifold. Then M is Kahler.

Now, we shall introduce the example of four-dimensional strictly almost Kéhler
Einstein manifold (p = 0) constructed by P. Nurowski and M. Przanowski [9] and
discuss it. First, we write down their example. Let M be a four-dimensional real

half-space given by

M= {(xl,xg,a:g.,u) e R* } x1 >0, (39,73,14) € R }
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We define a Riemannian metric ¢ and almost complex structure J on M respectively

by
Ty 0 0 0
T TaX3 X3
0 z+-—> =2 =
! 41‘1 4.231 2T1
(3.1) g=(gi5) = Toks T3 To
0 - O R
4&1 41’1 2.211
0 3 _ T2 1
221 211 1
0 0 -1 0
T3 To 1
2271 2])1 Ty
3.2 J=(J;) =
(32) (J5) . 0 0 0
Ty :I:§ ToX3 T3
— —p = = -2
2 41)1 43?1 21171

g 0 7] ;0 .
where ¢;; = ¢ (E, %) and J (5;) = J} e Then, we see easily that

(J,g9) is an almost Hermitian structure on M and the Kahler form Q is given by
z
(33) O = —z1dx; ANdzs — *QEd.Eg Adzxz + dxo A dxy.

Now, we define vector fields ey, es, e3, e4 on M respectively by

24 lm\/ﬂﬁx{ Tz 0zs | 247 014
(3.4) %) 1 8 z3 0
€3 = €4

oz, T VT 0r,  2JE 0z
Then, we see easily that {e;}i=1234 is a unitary frame field on M with e; = Jey,
ey = Jes. By straightforward calculation, we may check that p = 0, p* = 1—13 g and
hence (M, J, g) is a strictly almost Kéhler Ricci-flat weakly *Einstein n’lanifolld with
the x-scalar curvature 7* = g Furthermore, we may observe that (M, J, g) is a
1

space of pointwise constant holomorphic sectional curvature TS—* = %3

Concerning the above example, we obtain the following result dwllﬁch improves
Theorem 3.4.

Theorem 3.5 (Oguro, Sekigawa, Yamada, [16]). Let M = (M, J, g) be a four-dimen-
sional strictly almost Kdahler Einstein and weakly *-Einstein manifold. Then, M 1s

a Ricci-flat space of pointwise constant holomorphic sectional curvature
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Remark. J. Armstrong has also obtained the above result by making use of the
other technique in his Ph. D. Thesis.

From Theorem 3.5, we have immediately the following.

Corollary 3.6. Let M = (M, J,g) be a four-dimensional compact almost Kahler
Einstein and weakly *-Einstein manifold. Then, M is a Kahler manifold.

Concerning the conjecture, we have further the following.

Theorem 3.7 ([17]). Let M = (M, J, g) be a four-dimensional almost Kahler Ein-
stein manifold of constant x-scalar curvature. Then, M is a Kahler manifold.

Theorem 3.8 ([17]). Let M = (M, J,g) be a four-dimensional compact almost
Kdhler FEinstein manifold. If the norm of skew-symmetric part of the Ricci *-tensor
18 a constant, then M is a Kdhler manifold.

Remark. J. Armstrong ([1]) proved that a four-dimensional compact almost Kéh-
ler Einstein manifold of constant x-scalar curvature is integrable. So, the above
Theorem 3.8 improves Theorem 3.4 and also his result. Further, he proved that if
M is a compact four-dimensional almost Kahler Einstein manifold, then equality
7* — 7 = 0 holds at some point of M. We see also that if M is a compact four-
dimensional almost Kahler manifold with negative constant scalar curvature then
there exists a constant §(< 1) such that the equality 7 < 7* < d7 holds. We have

the following.

Theorem 3.9 ([17]). Let M = (M, J,g) be a four-dimensional compact almost
Kdhler Einstein manifold with negative scalar curvature. Then, the x-scalar cur-

. ) T
vature T satisfles T < 7 < % on M.

Remark. Recently, we showed that the assumption of compactness ins the above

Theorem 3.8 can be removed.
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