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SOME GEOMETRIC PROPERTIES OF p-HARMONlC MAPS 

SHIGEO KA¥~'AI 

1. Introduction 

In this note we consider geometric properties of p-hanlLonic maps and p-harmonic 

functions. Let (M, g) and (N, h) be connected Riemannian manifolds and p Z 2. We 

suppose from a technical reason that (N, h) is isometrically imbedded in a Euclidean 

space Rm and denote by H1.P(M, N) the space 

{u~HIP(M ~m) u(x) C Na.e.}. 

A Hl.P_maJ.:) u from M into N is called a (weakly) p-harmonic map if it is a weak 

solut,ion of the following equation 

TaV(IduP 2du) = O, 

where "Tr" denotes the trace. It is the Euler-Lagrange equa,tion of the p-energy 
f unctional 

Ep(u) = fM IduiP' 

This definit,ion of p-harmonic maps does not depend on the embedding on N in a 
Euclidean space and c,oinside with that of harmonic maps when p = 2. 

Because we are now interested only in ))geometric'~ properties, p-harmonic maps 
arc assurned t,o be of class C1 or C2 in the sequel. The following are t,ypical exa,mples 

of p-harmonic maps. 

ExA~4PI'E I . (t,otally geodesic maps) Every totally geodesic map tl. : Arf -~ N is 

a p-ha,rmonic, m'ap for 'a,ny p. Indeed if Vd?1 = O, t,hen we have 

TrV(IdujP 2du) = jdujP-2Tr(Vdu) + (VldulP-2)du) 

= O + (p - 2)jdujP4((Vdu, du), du) 

= O. 

If v : N ~ L is an isometric totally geodesic immersion, then the ident,ity 

TIV(Id(voth) P 2d(vou)) = TrV(jdulP2d(vou)) 

= dv TrV(IdujP~2du) 
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holds for e¥rery ma,p 'u I M -~ N. Henc,e when 1¥r is embedded by i in L as a t,otally 

gfeodesic submanifold, a map u : M -> N is p-harmonic if and only if i o u ! I~.1 -> L 

is p-harmonic. 

EXAlvIPLE 2. (p-harmonic functions) Consider the case M = Rn ¥ {O} and 
1¥r = R. Then the following functions which depend only on r = x a,re p-ha,rmonic: 

r(P n)/(p-1) (72, ~ p) 

u(T) = 

log r (n = p). 
This is shown for exa,mple from the formula, 

TrV(IVujP-2Vu) 

a au n - I p_,2au = (jVujP-2 ) + IVul + TrsVs(IVttlP2Vsu), 

ar ar r ar where Trs, Vs denote the trace and differentia,tion in the direction of spheres of 

radius r respect,ively. 

EXAMPLE 3. (equator maps) For n m wrth n > m+1 consider the umt ball Bn 
in Rn = Rm+1 >< Rn-m-1 a,nd unit sphere Sm in Rm+1. Let M = Bn¥ ({O} x Rn-m l -) 
a,nd N = Sm. Then a map u : M -> N is defined by the equation 

y
 u(y,z) = jyl (y C Rm+1 z e ~n m-l - ). 

If n < m + I then u Bn ¥ {O} -> Sm c Rm+1 is defined by 

_ y ~ u(y) , Oj ~ Sn-1 x {O} C Rn x ~m-n+1 
~ Iyl 

These maps a,re p-harmonic for any p. hjlore stl^ongly some of them are in fact 
p-energy minimizing for their boundal~y data, ([l]). 

Remark. If u is a p-haunonic function, then Cu and u + C are p-harmonic 
function for any constant C. But u + v is not neccssarily p-harmonic even if u and 

v a,re p-harmonic functions. Also coordinat,e functions of a p-ha,rmonic map to a 

Euclidean space are not necessarily p-hannonic functions. 

2. Existence of p-harmonic maps from the splleres. 

In this sec',tion we treat t,he existence problem. 

THF.ORE~4 l. ([8]) Let N be a compa,ct sir7rply connected Riemanniar?, m,an'ijbld 

'isornetr'icaZly ernbedded in a Euclidean spa,ce. Th,en for any Cl_map u : ST~ -> N 

, uk : S'F~ _> N with n ~ 2, the7"e exist a finite number of n-harmonic maps ul' u2, ' ' ' 

Which satisfy the J'oilowing' 

(1) [u] = [ul] + [u2] + ' ' ' + [ttk]. 

(2) infve[u] En(v) = En(ul) + ' ' ' + En(uk). 

(3) uj is a mini'mizer of En in [uj] J'or j = l, 2, , . . . k. 
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In t,he above [ I denotes the free homotol-)y class of maps from the sphere. If N is 

not simply com~rect,ed, the salrLe results holds up t,o t,he act,ion of 7T1(N) on 7rn(N). 

This result, is shown by a, bubbling a,rguIILent and a, genera.lization of the ¥vork in [9], 

[ll] for harmonic maps from S2. The case 7rn(N) = {O} with arbitrary AJ ~vas first 

proved by a different met,hod in an unpublilshed pa,per [6], and can be deduced from 

[14] too. As an applica.tion of this theorem, we can give an alternative proof of a 

result concerningr manifolds with strongly p-t,h moment stable stocha,stic., dynamical 

svstems. 

TFIEORElvl 2. ([4], [8]) If a compact maT~,if'old N admit a strongly p-th moment 

stable stochastic dy'r~amical system, then 7rh(N) = O for k = l, 2, . . . ,p. I'rL particular 

for p Z dim N/2, a, p-th moment stable stoch,astic dynamical system can on,ly exist 

on, homotopy spheres. 

~From the previous theorem we can show that t,he elements of p-dimensional 
homotopy groups are represent,ed by p-ha,rmonic maps. The proof of the following 
t,heorem is almost the same as that for 7T2(N) in [9]. 

THEOREM 3. ([8]) Let N be a compact simply connected Riemannian manif'old 
isometriccaty embedded i'r~ a Euclidean space. Then for every n Z 2 there exist finite 

number of n-harmonic maps fl' f2, . ' ' such that 

(1) [fl]' [f2], ' ' ' ~ O. 

(2) [fl]' [f2], . . ' generate 7rn(N). 

(3) En(fl) = inf{En(f) j [f] ~ O}. 

En(fj) = inf{En(f) I [f] ~ ([fl]' [f2], ' . . , [fj-l])} 

where (a, b, c, . . . ) de'n,otes the subgroup generated by elements a, b, c, . . . 

3. Convex functions and p-harmonic maps. 

In this section, we consider geometric properties of p-harmonic maps to manifolds 

vvhich have convex functions. The next result on harmonic maps is well known. 

TIIEOREM 4. ([5]) If ~ : A.1 -~ N is a har'monic map and f : N -> ~ is a C2 

convex function, th,en f o ~ is a subharmonic J'unction on M. If in additio'rb A,f is 

compact and f is strictly convex, then (p is constar7,t. 

This is derived by t,he identit,y 

Tr'V(d(f o ~)) = Tr(Vdf)(d~, d~) 

whic,,h is ea,sily verifi(',d fr'cull t,he composition law. For p-ha,rmonic maps with p Z 2, 

t,he following lemma is l_Iseful. 

LE~4h4A. ([7]) Jf ~ : Af -~ N is a p-harrnonic map and f I N -> ~ is a, convex 
f"u'r~ction (bot/7. oJ' cla,ss C2), then we have th,e following identity 

TrV(Id,~) P-2d(f o ~)) = jd~ll'2Tr(Vdf)(d~, dfP)' 
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This is a,Iso a consequenc',e of simple cornputation including the composition la~v. 

If ~ is a,ssumed t,o be onl.¥r of class C1, then we get a,n identity "in a wea,k fonTl" ' 

In the rest, of t,his sec,t,ion, we consider the applicat,ions of t,he a,bove identity. The 

first is a genera,lization of the result of ¥V.B Gordon whic,h was obta,ined in [2] by 

ca,lcula,ting the first, ¥rariat,ion directly. 

TIIEoR.EM 5. ([2], [7]) Let ~ : Af -> N be a p-harm;onic map oJ' class Cl . Jf ITI 

is compact ar',d there exists a st,rictly cor2;vex fur7,cti072, ,f of class C2 on N; th,en ,' is 

constant. 

Proof. If c is of class C2, then we have only to int,egrrate bot,h sides of thc ident,ity 

in t.he above lemma.. ¥Vhen c is only of class Cl, we use t,he identity "in a ~veak 

form" . 

TI{EOR.Eh4 6.([7]) Let M, N be Riemannian manif'olds. Suppose tha,t M is 
complete and noncompact. If N has a strictly convex furl'ction f of class C2 such 

tha;t the unuform norm, jdfj is bounded. Then every p-harmonic map ~ I M ~ N oj' 
class Cl with 

ful Id~iPl < oo 

is a constant map. 

Proof. Fix a point x of M and take a function n on A,f which satisfies the property 

O <_ n <_ l, 

!dnl ~ CIR, 

n E I on BR, 
n ~~ O on M ¥ B2R' 

In the above, B1~ and C denote the ba,ll of radius R centered at x and a, c'.onstant, 

which does not depend on R respectively. ~/Iaking use of LewTla we get the in-
eql_'ila,it,y 

J'B !dpjP-2Tr(Vd~)(d~ d~)n < ( 
f
B
 

TrV jd~jP~2d(f o~) n 

C
 

~ 7~ f,f Id~lP-1 

Let,tin()o~ R -~ oc, ~ve obt,a.in t,he desired result. [l 

In fa,c',t, ~ve ha,ve only to assume tha,t the cg~ro~vt,h of p - I energy of ~ on the spl"ieres 

of radh.Is R is o(R.). Relating~ results including the c~i_ se of p-sl.rbharn~ronic, func,tions 

are found in [7] . 

In [12] J.H.Sampson proved a form of maxirnum pr'h~lc:iple for haunonic', maps. Let 

us say, following [12], t,he sec,ond fundamental form Vdi of a hypersurfac,e S in 1¥r 

embedded by a, m'ap 'i is dcfinit,e at a, point yo ~ N iff Vdi(X, X) is nonzero d,nd 

point,s in a given direction for any tangent vect,or X ~ T~)oS. The concave side of a, 

hypersurface is the side point,ed at by Vdi(X, X). 
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TnEOl{EM 7. ([12]) Let ~ : A.[ -> N be a nonconsta.nt harmonic map Assume 

tha,t S is a hypersu'rface of N with definite second fundame7'btal for'm at a, point 

yo = ~(xo). Then n,o neighborhood ofxo is mapped er?.tirely in the concave srde ofS 

in N. 

Proof. ([3]) There exists a st,rictly convex function f defined in a neighborhood 

V of yo in N which depends only on the dista,nce from S. In addition we can assume 

tha,t f < O on the concave side of S, a,nd f-1(O) n V = S ([3] p.23). LFrom the 

t,heorel~:1 of W.B. Gordon, the composit,ion f o ~ is a, sllbharmonic function. In 

'a,ddit,ion it, is nonpositive in a neighborhood of xo a,nd achieve t,he ma,ximmlL in the 

int,erior. Henc.e it is c,onst,ant from the st,rong maximurn principle, .a.nd we obt,ain 

Ta(Vdf)(d~ d~~) A(f o ~)) = O. 

Because f is a,ssumed to be st,rict,ly convex, the map ~2 must, be a constant. [] 

Though we cannot completely generalize his result for t,he ca,se of p-harmonic 

maps wit,h p Z 2, the next lveak propert,y can bc proved. 

TI･･･IEOREM 8. Let ~ : M -> N be a nonconstant p-harmonic map such that 
r?,o point in a neighborhood of xo ~ M is mapped to ~(xo)' Assume that S is a 
hyperst/.Tfa.ce of N with definite second fundamer?,tal form at a point yo = ~(xo). 

Then no neighborhood oJ' xo is mapped entirely in the concave side of S in N. 

P'roof. Take a strictly convex function f with the sa.me property as in the pre-

vious theorem. To prove by contra.diction, we a,ssume that ~ maps a neighborhood 

U of xo in M to the concave side of S. Then the inequality 

f(~)(x)) = O ~ f(~(xo)) 

holds for all x in U. From Lemma the following one also holds; 

TrV(Id~lP-2d(f o ~)) ~ O. 

¥Vc wa,nt to claim that 

sup(f o ~) = o ) = O. sup( f ~
'
 

a ( J U 
For this purpose suppose that 

a = sup(f o ~~) < sup(f o ~) = O. 

a u U Th(~n therc exist a const,'and c > o and a subdoma,in U/ in U such that, 

g fo~-a-c>0 
ili U/ and g = O on dU/. Let, us c,onsider a funct,ion ~; ~vhich is equal t,o g in U! and 

¥'anishes out,side U/. Ush'lgf an pre¥'ious inequ<alit,y ~ve obtain 

./;J Id~lP2(d(f o ~2) d~/)) < O 
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Frorn t,he definit,ion of v' , 
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fu"Id~iP Id(f'~)12 ~ O 

which iuplies Id~j = O or jd(f o ~~)j = O in U!. In bot,h cases we get d(f o (p) = O, 

and the function g is const,ant in U/. This contradicts the definition of g and the 

equality 

sup(f o ~)) = sup(f o ~) = O 

holds. 

Hence there exist,s some point xl ~ aU wit,h (p(xl) C S¥xo' The hypersurface S is 

loca,lly a gra,ph of some con¥rex function defined on a neighorhood of xo in t,he tang"ent 

plane at xo' We can t,ake a hypersurfa,ce S/ wit,h definite sec,ond fundaIILent,al form 

whose intersection with S is only the point xo and t,he mapping ~ maps U ent,irely 

in the concave side of S/. Repeating t,he same reasoningr for this hypersurface S/, ¥ve 
[
]
 

get a contradict,ion. 

4. Inequality between jVld~[[ and jVckpl 

For harmonic ma,ps the following inequa,lity is known. 

THEOREh/1 9. ([10], [13]) Let (p : Mn _~ N be a harmonic map. Then on the set 
{x j d~(x) ~ O} we have the inequality 

n n - I IVld~~112 ~ fVd~l2. 

For a tensor T the inequa,lity 

IVITli ~ iVTj 

holds generally. The a,bove theorem states that it ca,n be improved in the c.ase 

T = Vd~ for some hanllonic, map ~Q. Such kind of inequalities appear in many 
geometric prpblems. The case of ha,nrronic map ¥vas proved in [13] with a diflbrent, 

constant, and is used in t,he regularity problem of harmonic maps to spheres. Lat,er 

[lO] proved the above form and improved some of regula,rity results in [13]. It is not, 

known whet,her this t,ype of inequality is true for p-harmonic maps or not. But, at 

least, we ca,n prove an inequla=it,y for p-ha,nlnonic functions. 

TnEoREh."I lO. Let tl, be a p-har'rn;onic function on a Riemanni,an manifold. Then 

the following inequality holds on the set {x IVul(x) ~ O}: 
2
}
 

f (p - l) mm~2, 1+ n- I IViVull2 ~ IVVtl'l2 

P7'ooJ'. For x ~vit,h V'u.('~) ~ O, Iet us ta,ke a nonnal coordinate around x ~uch 
t, h at 

ul(x) = !Vtcl(x), u2(x) = ' ' ' = un(x) = O. 
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Thcn　we　have　at”

　　　　　　　　　　　　▽ゴ1▽l／1以・ゴ，1▽1▽・1トΣ／ん・

　　　　　　　　　　　　　　　　　　　　　　　　　　ゴ

On　the　othcr　hand，sin㏄いs片h脳monic

　　　　　　　　　　　　l▽・lP－2△叶〈▽1▽αr2，▽α／－O・

Conse（〃ent1y　we　get

　　　　　　　　　l▽・12（ρ一2）1▽▽αト1▽・12（ρ’2）1▽1▽川2

　　　　　　　　　一吋（／…2）Σ刎1rl▽・12（ρ川2）Σ叱

　　　　　　　　　　　　　　　　｛，ゴ　　　　　　　　　　ゴ

　　　　　　　　　≧吋（1川2）Σ嶋・1吋（ρ…2）Σ砿

　　　　　　　　　　　　　　　｛＞2　　　　　　　　　　　　｛＞2
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・1昨ξ嶋・肌11中（ξり2

The　second　te夏m　on　the　right　hand　side　is　equa1to

Hence　we　obtain

、÷、（lW－2吻1・／・叶2刈）2

一、÷、（吋一2伽・（ρ一・）1・・1・川3舳）2

（ザ1）2，・、1・（・一・）、…至

　　れ一1

1▽刎12（・■2）1▽▽・12－1▽刎12（P12）1▽1叫2

・吋（／一・）Σぺ■2吋（ρ一・）l11

　　　　　　｛≧2

・…／l（今三￥2／1・什2）1・吋

whi（二himpliesthedesiredinequ1aitγ口
　月εγγムαグん、　Fortheequ＆tOr互n＆王）ψ：Bn＼（｛0｝xRη一肌一）→3m　de丘ned－iIユEx＆mple
3
．

　　　　　　　　　　　　　　　曲1▽1ψ1ト1▽ψ1。

　伽mα柵．We　caH1sO　shOw　t11㈹ext　hequa肚y　fo夏リーharmoエ｝ic　funcもio王川wit1｝

a　Si王ni1＆r　Ca1Cu王a．tiOn：

（1・…／（、→、）。（、、1、）／）1・町’12・1・（1・・1怖）12



70 SHIGEO KAWAI 
l~1".FER.ENCES 

[1] Coron, J.-~,1. and Gulliver, R., ~linimizing p-hanuonic. maps into spheres, J. reine 'anagew. 

~,Iath. 401(1989), 89_-lOO. 

[2] Cheung, L.-F. and Leung', P.-F., A remark on convex functions and p-harmonic maps, Geom. 

Dedicata 56 (1995), 269-270. 

[3] Eells, J. and Lemaire, L., Selected topics in harmonic maps, R.egrional conference series in 

mathematice No. 50, 1983. 
[4] El¥vorthy, K. D. and Rosenberg, S., Homotopy and homology vanishing theorems ancl stability 

of stochastic flows, Geom. Funct. Anal. 6(1) (1996), 51-78. 

[~5] Gordon, Vf. B., Convex functions and hannonic maps, Proc. Amer. ~'Iath. Soc. 33 (1972), 

433~437. 
[6] Jost, J., A conformally invariant ¥rariational problems for ma<ppings between Riemannian 

i~lanifolds, preprint of Center f'or Math. Analysis, Australian Nat.ional Univ., 1984. 

[7] Kawai, S., p-harmonic maps and convex functions, Geom. Dedicata 74 (1999), 261265. 

[8] Kawai, S., Nakauchi,N. a,nd Takeuchi, H., On the existence of n-hanrronic spheres, Compositio 

h/Iath. 117(1999), 33-43. 

[9j Meeks, ¥~r. H. and Yau, S.-T., Topology of three dimensional manifolds and the embedding 

problems in minhrlal surface theory, Ann. of h,Iath. 112(1980), 441-448. 

[lO] Oka,yasu,T., Regularity of mininizing harmonic maps into S4 , S5 and symmetric spaces, ~,'1ath. 

Ann. 298(1994), 193205. 
[11] Sacks,J. and Uhlenbeck, K., The existence of minimal immersions of 2-spheres, Ann of h.'1ath. 

ll3(1981), 1-24. 

[12] Sampson, J. H., Some properties and applictions of hannonic ~nappings, Ann. Ec.ole Norm. 

Sup. Il (1978), 211- 228. 

[13] Schoen, R. and Uhlenbeck, K., Reg'ularity of minimizing hannonic maps into spheres, Invent. 

h,Iath. 78(1984), 89-100. 

[14] White, B., Hoillotopy classes in Sobole¥' spaces and the existence of energy minimizing maps, 

Acta Math. 160 (1988), 1l7. 

Depart,ment, of ~,fathematics 

Facult<y of Calture a.nd Educ',ation 

Saga Universit,y, Saga 840-8502 

Ja. pan 


