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MAXIMUM PRINCIPLES AND ITS APPLICATIONS TO
SUBMANIFOLDS

KAZUHIRO NONAKA

ABSTRACT. In this paper, we study n-dimensional complete and connected submanifolds
in an (n + p)-dimensional Euclidean space E™"*P. The classification of n-dimensional
complete and connected submanifolds in an (n + p)-dimensional Euclidean space E™P
is given under some conditions on submanifolds.

1. INTRODUCTION

The purpose of this paper is to study n-dimensional connected submanifolds in
an (n + p)-dimensional Euclidean space E"™P. In 1900, Liebmann proved that compact
surfaces with constant Gaussian curvature in E® and a compact surfaces with constant
mean curvature and with nonnegative Gaussian curvature in £ are the standard spheres.
In 1951, Hopf [8] proved the following theorem.

Theorem 1.1 (H. Hopf). Let M be a compact surface with constant mean curvature |H|
and with genus zero in E3, then M is a standard sphere.

The theorem of Hopf was extended to complete surfaces in £* by Klotz-Osserman [9]
as following.

Theorem 1.2 (T. Klotz and R. Osserman). Let M be a complete and connected surface
with constant mean curvature |H| in E®. If the Gaussian curvature G of M is nonnegative,
then M is a plane E? in E3, a sphere S?(c) in E* or a cylinder S*(c) x E' in E3.

From the equation of Gauss, we know that the Gaussian curvature G of a surfaces in
E3 is nonnegative if and only if (h)> < n2|H|?/(n — 1), where n = 2 and (k) is the length
of the second fundamental form of a surfaces in E* and |H| is the mean curvature of a
sufaces in E®. The result due to Klotz-Osserman is extended to higher codimensions by
Shen in [14] as following.

Theorem 1.3 (B. Y. Shen). Let M be a complete and connected surface with parallel

mean curvature vector H in an (2 + p)-dimensional Euclidean space E*?. If the second

fundamental form h of M satisfies

n?|H|?

n—1
71

(h)? < (n=2),
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then M is a plane E* in E**P, a sphere S*(c) in E*™P, a cylinder S'(c) x E' in E**? or
a product surface with circles S*(c;) x S (cy) in E*TP.

~—

For connected hypersurfaces in an (n + 1)-dimensional Euclidean space E™*!, in [12],

Nomizu and Smyth proved the following :

Theorem 1.4 (K. Nomizu and B. Smyth).

(1) Let M be a compact hypersurface with constant mean curvature |H| in an (n + 1)-
dimensional Euclidean space E"™'. If the sectional curvatures of M are nonnegative, then
M is a hypersphere S™(c) in E"F1,

(2) Let M be a complete and connected hypersurface with constant mean curvature |H|
and with constant scalar curvature v in an (n + 1)-dimensional Euclidean space E"*'.
If the sectional curvatures of M are nonnegative, then M is a hyperplane E™ in E"!, a
hypersphere S™(c) in E™*! or the generalized cylinder S""*(c) x EF (1 < k <n-—1) in
E"+1. :

In the case of complete and connected hypersurfaces in E™"*!, Nomizu and Smyth
assumed three conditions, that is, constant scalar curvature and constant mean curvature
and nonnegative sectional curvature, but the conditions of the theorem of Nomizu and
Smyth are too strong. In [5] and [6], Cheng and Yau improved the theorem of Nomizu
and Smyth as following.

Theorem 1.5 (S. Y. Cheng and S. T. Yau).

(1) Let M be a complete and connected hypersuface with constant scalar curvature v
in an (n + 1)-dimensional Euclidean space E™*1. If the sectional curvatures of M are
nonnegative, then M is a hyperplane E™ in E™*', a hypersphere S™(c) in E™*! or the
generalized cylinder ST *(c) x E* (1 <k <n—1) in B

(2) Let M be a complete and connected hypersurface with constant mean curvature |H |
in an (n + 1)-dimensional Euclidean space E™'. If the sectional curvatures of M are
nonnegative, then M is a hyperplane E™ in E™"*1  a hypersphere S™(c) in E™*! or the
generalized cylinder S™*(c) x E¥(1 <k <n —1) in E™1

We can expect that complete and connected hypersufaces with constant mean curvature
|H| and with constant scalar curvature 7 in an (n + 1)-dimensional Euclidean space E™*!
are the hyperplane E™ in E™*!, the hypersphere S™(c) in E"! or the generalized cylinder
Sn=k(c) x B* (1 < k <n—1). But it is known that the above conjecture holds when the
dimension of hypersurfaces in E"*! is 3.

Remark 1.1. It s known that compact hypersurfaces with constant mean curvature and
with constant scalar curvature in an (n + 1)-dimensional Euclidean space E™*' are the
hypersphere S™(c) in E"FL.

On the other hand, Cheng and Nonaka [3] studied submanifolds with higher dimensions
and higher codimensions in a Euclidean space. They extended the theorem of Klotz and
Osserman to higher dimensions and higher codimensions.

Theorem 1.6 (Q. M. Cheng and K. Nonaka). Let M be an n-dimensional complete and
connected submanifold with parallel mean curvature vector H in an (n + p)-dimensional
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Euclidean space E™*P (n > 3). If the second fundamental form h of M satisfies

n?|H|?
n—1"

(11) (h)? <

then M is a totally geodesic Euclidean space E™ in E™P a totally umbilical sphere S™(c)
in E™P or the generalized cylinder S""!(c) x E* in E"*P.

Remark 1.2. In [14], Shen intended to prove the theorem 1.6 by making use of the result
of Motomiya [11]. But, since the result of Motomiya is wrong (see the section 2), the
proof of Shen about the theorem 1.6 is not valid. A proof of the theorem 1.6 was given by
Cheng and Nonaka [3] (see the section 3).

2. THE MAXIMUM PRINCIPLE

In this section, we shall mention the maximum principles which play on an important
role in the study of differential geometry on Riemannian manifolds. First of all, we state
the well known theorem which is called Hopf’s maximum principle as the following.

Hopf’s maximum principle :
Let M be an n-dimensional connected Riemannian manifold. If a Cz—functmn
f satisfies Af > 0 (resp. Af <0)on M and has a maximum (resp. a minimum)
on M, then f is a constant function, where A denotes the Laplacian on M.
When the Riemannian manifolds are compact, Hopf’s maximum principle is often used
in the following form.
Hopf’s maximum principle :
Let M be an n-dimensional compact Riemannian manifold. If a C%-function
f on M satisfies Af >0 or Af <0 on M, then M is a constant function.

When the Riemannian manifolds are complete and connected, Omori and Yau proved
a very important theorem which is called the genaralized maximum principle. In [13],
Omori proved the following.

Omori’s maximum principle :

Let M be an n-dimensional complete and connected Riemannian manifold
with the sectional curvatures bounded from below. If a C?-function f is bounded
from above, then for all € > 0, there exists a point x € M such that

sup f — e < f(z),
llgrad f(z)|| < e,
max{y_",_, X' XIV,V;f(z) | X € T.(M), |[X|=1} <€,

where V denotes the Riemannian connection on M and X = Y7 | X'0/dz* for
the natural frame 0/0z" (i =1,2,--- ,n).
In this paper, we shall make use of the following convention on the ranges of indices :

1<i, 4, k- <nn+l1<a B,7 - <n+p

In [15], Yau generalized Omori’s maximum principle.
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The generalized maximum principle :

Let M be an n-dimensional complete and connected Riemannian manifold
with Ricci curvature bounded from below. If a C?-function f is bounded from
above, then for all € > 0, there exists a point z € M such that

(2.1) sup f — e < f(z),
2.2 llgrad f(z)l] <&,
Af(z) <e.

In [11], Motomiya intended to improve the generalized maximum principle due to Omori
and Yau as the following.

Motomiya’s wrong result :

Let M be an n-dimensional complete and connected Riemannian manifold
with Ricci curvature bounded from below. If a C%function f is bounded from
above and has no maximum, then for all € > 0, there exists a point x € M such

that
(2.4) supf——e<f(:1;)<supf——§,
(2.5) lsrad f(@)]] < <,
2.6 Af(z) <e.

But this result is wrong. In fact, Cheng and Wu gave the following counter example in
[4].

Counter example of result of Motomiya : Let M = E?  f(z,y) = —exp(cz) (c > 2).
Obviously, M is a 2-dimensional complete and connected Riemannian manifold with Ricci
curvature (=0) bounded from below and a smooth function f(< 0) is bounded from above
and f has no maximum on M. So, if for € > 0, there exists a point ¢ = (z,y) € M such
that (2.4)-(2.6) hold, then from (2.5), we see that

llgrad f(q)]| = cexp(cz) < €.

Hence, we have
- € .
(2.7) - < —exp(cz) = f(q).

On the other hand, since sup f = 0, from (2.4), we have

(2.8) —e < flg) < —%.
Taking ¢ > 2, we find that (2.7) and (2.8) are contradictory.

The Motomiya’s wrong result was used by Shen in [14] in order to prove the theorem
1.6 in the section 1. Hence, Shen’s proof is not valid. A proof of the theorem 1.6 was
given by Cheng and Nonaka [3] by making use of the generalized maximum principle due
to Omori and Yau (see the section 3).
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3. Proors oF THE THEOREMS

In this section, we shall prove the theorem 1.4, 1.5 and 1.6. We denote by h the second

fundamental form of M and choose an orthonormal frame field e, s, -+, €,4p, o0 E"¥P,

restricted to M, so that e, es, -+ , e, are tangent to M and h,ji“‘“ = hj; = p;dj;. Let

Wi, Wa, -+, Wnip be dual coframe field on E™P, that is, wi(e;) = 55 and (wj;) denotes the
’ > y Yn-+p ) 7 J J

Riemannian connection form of M and (wag) is the connection form in the normal bundle
T+(M) of M. We can prove that the second fundamental form h of M can be given by

n+p n

h = Z Z hijawi ®wj€o< .

a=n+117=1
The mean curvature vector H of M is defined by

n+p

1 .
H:E Z hiiaea.

a=n+1

We denote by Ky the components of the curvature tensor of M and by K,pre the
components of the normal curvature tensor of M, then the equation of Gauss (3.1) and
the equation of Ricci (3.2) are given by

n-+p

(31) Ki]’lclf = C((glkdjg - (51'4(5]';;) + Z (hikah,]‘ga - h,ig”h,jku) s
a=n+1
(32) Kaﬂkg = Z(h@kahwﬁ - h,igahikﬁ) .
i=1
From the equation of Gduss (3.1), we have
n+p n
r=n(n—1c+n?|H* - Z Z (hy™)?,
a=n+11%j=1

where 7 denotes the scalar curvature of M.
Defining hyj;® by

n n n
(33) Z hijkawk = dhjja + Z h,jkawik + Z /’)mau)jk 5
k=1 k=1 k=1
then we have the equation of Codazzi as the following.
(34) hijka - hikja ={.

Morover, by taking exterior differentiation of (3.3) and defining hijee™ by

n n n n
- (s . & [e3 (s} o
(3.5) E hijree®we = dhijp®™ + g heji“wie + E higr®wje + g hije®wre s
=1 (=1 =1 =1
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then we have
n+p

(3.6) hijiee® = hajor® Zhn Kijre +Zh’f Kiine — z hii® Kogre -

B=n+1

The Laplacian Ah;;* of the second fundamental form h of M is defined by
(37) Ahija = Z h,ijkka
k=1

then, from the equation of Gauss (3.1) and the equation of Codazzi (3.4) and (3.6), we
have

n+p
(3.8)  Ahy" thkz] +Z (th KngimLZhn Kujre — Z hi” (l@]k) -

B=n+1

Proof of Theorem 1.4. (1). From (3.8), by a direct computation, we have

(3.9) -;-A (h)* = Z (Riji)* + Z(Pi — pj) P Ky,

i,5.k=1 i<j

where (h) denotes the length of the second fundamental form h of M and Kj; = pip; (1 #
J) is the sectional curvatures of M for the plane section spanned by e; and e;. Since
the sectional curvatures of M are nonnegative and M is compact, by Hopf’s maximum
principle, we have

(3.10) D () =0, > (pi—p) Ky =0.
ig k=1 ig=1

Hence, M is isoparametric and the number of distinct principal curvatures are at most
two. Therefore, by a theorem due to Cartan [1], M is a totally umbilical sphere.

(2). From the equation of Gauss, we see that (h)? is constant. Then we have A (h)* = 0.
Hence, (3.10) holds. We find that M is isoparametric and the number of distinct principal
curvatures are at most two. Therefore, (2) holds.

Proof of Theorem 1.5. (1). In [6], S. Y. Cheng and S. T. Yau introduced a differential
operater [ which is defined by

(3.11) Of = > (n|H|8i; — hij) ViV, f
ij=1
for any C'*-function f on M, where |H| denotes the mean curvature of M. We can prove
that it is self-adjoint.
When A is compact, we consider D(n]H|). Since the scalar curvature r of M is
constant, by a direct computation,
(3.12) OmlH) = > (hje)? = n?llgrad HI* + > (pi — p;) K5

i, k=1 i<j
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where Ki; = pip; (¢ # j) is the sectional curveture of M for the plane section spanned by
e; and e;. From the equation of Gauss, we can prove
n
(3.13) > (huj)® = n’|lerad H||> > 0.
i, k=1
Hence, from Stokes formula, we have

(3.14) /1\.,1 O(nlH|)=0.

Then we have J(n|H|) = 0. Now, Since M is compact, there exists a point z € M such
that the scalar curvature r > 0 at x. Then, the scalar curvature » > 0 on M since 7 is
constant. Hence, we see that (I is elliptic. We infer that |H| is constant. Therefore, from
the theorem 1.4, we see that M is a totally umbilical sphere S™(c).

In the following, we consider a complete and connected hypersurface M in E™"*. Since
the scalar curvature r = 3~ Ky; is nonnegative constant, r = 0 on M if and only if
K;; = 0 for all distinct ¢ and j. In this case that the scalar curvature r of M is zero, (1)
holds from the theorem due to Hartman and Nirenberg [7]. Hence, we may asuume that
the scalar curvature r of M is positive constant.

Let & be a unit normal vector field on M. Now, M is convex because the sectional
curvatures of M are nonnegative. Then, since the Gauss image of a complete convex
hypersurface M in E™*! lies in a closed hemisphere, there exists a unit vector X on Ent1
such that g(&, X ) > 0 on M(for see [17]), where § is a Euclidean metric of E™*'. By a
direct computation, we have

n n
(3.15) 056, X ) == > (n|H|bke — hue) Y (hrihar)G(£, X ).
k=1 i=1
Since we see that (n|H |0k — hre) > iy (Rihie) > 0 as above, we find that DE(&,X) <0
on M and g(&,X) > 0 on M. Since the differential operater [J is elliptic, we inter that
3(&, X ) is constant. Hence, ?;'(E)?) = 0on M or ﬁ(f,)?) > 0 on M. Therefore we
conclude that (1) holds from this assertion (see [6] for details).

(2). Let & be a unit normal vector field on M. Then we have the well known formula
(3.16) Ag=—(h)’¢,
where (h) denotes the length of the second fundamental form h of M. Since the sectional
curvatures of M are nonnegative, there exists a unit vector X on E™*! such that g(¢, X ) >
0 on M as the proof of (1). Then, from (3.16), we can prove that g(&, X ) has to be

3

identically zero unless (h)* tends to zero. If the mean curvature |H| of M is nonzero
constant, (h)” is bounded from below by a positive constant. Hence, either |H| = 0 on

M or §(¢,X) = 0 on M. Then (2) holds from this assertion (see [5] for details).

Proof of Theorem 1.6. Since the mean curvature vector H of M is parallel, that is,
Wag = 0, the mean curvature |H| of M is constant. we now consider the case |[H| = 0 and
case |H| # 0 separately.

Case(i) : |H| =0on M
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From the assumption of theorem 1.6, we have

(h? n’|H>

=0,
that is, M is an n-dimensional totally geodesic Euclidean space E" in E™"*!. so the
theorem holds.

Case(ii) : |H| #0on M

IN

n—1

Let e1, €2, - -+ , €4, be an orthonormal frame field on E™*? such that H = |[Hle,q1.
We set
n+p
(3.17) IT]* = Z trace A2 |
a=n-+2

where trace A, = Z?zl hi;®. Then we find that the nonnegative smooth function ]T[2 is
defined globally on M. From the following two algebraic lemmas and the fundamental
equations about submanifolds, we have

, 1 s M—3,.4
3.18 ~AIT|" > ——|T
(319 Salrp = "oy
where A denotes the Laplacian on M (for see [3]).

Lemma 3.1 (B. Y. Chen and M. Okumura [2]). Let aj, aa, -+, an, b be n+1 real num-
ber (n > 1) satisfies the following inequality,

(Z ai) >(n-1) Z a?+b (resp.>).

i=1 i=1

Then we have
b
2a;a; > —] (resp. >)
for all distinct i and j.

Lemma 3.2 (A. M. Li and J. M. Li [10]). Let Ay, Ao, --- , A, be symmetric (n X n) -
matrices. Then we have

P P 2
> {N(AaAg — AgAa) + 525} < (Z N(Aa))

a,B=1 a=1
and equality holds if and only if one of the following conditions holds :
(2>A1:A2::Ap:0
(21) only two of Ay, Ag, -+, Ay are different from zero. Moreover assuming Ay #
0, Ay # 0, then S; = Sy and there exists an (n x n)-matriz T such that
1 0 0 -+ 0 010 -0
S0~10-~-0 510()---0
AT =/2210 0 0 - 0] tpAg,r=4/22]10 00 0
2.0, . .. S - 2.1, . . .
0 0o 0 - 0 000 -~ 0

where S, = N(A,) = trace (*AyAy), Sap = trace (AaAg).



MAXIMUM PRINCIPLES AND ITS APPLICATIONS TO SUBMANIFOLDS 79

Condition (1.1) implies that |T'|* is bounded from above by n?|H|?/(n — 1) and by
the lemma 3.1, we can prove that the sectional curvatures of M are nonnegative (for see
[2]). Hence, we can apply the generalized maximum principle due to Omori and Yau to
function |T'|%. Then there exists a sequence {x)} C M such that

(3.19) Plim IT*(zy) = sup |T|?,
(3.20) lim sup A|T|*(zx) < 0.
k—o00
From (3.18), (3.19) and (3.20), we see that
(3.21) limsup A|T)*(zx) = (n — 3)(sup thQ)Z =0.
k=00

Hence, if n > 4, then we have |T']? = 0 on M. In case of n = 3, from (3.21), we can prove
that |T']*> = 0 on M by the lemma 3.1 and the lemma 3.2 (for see [3]). From which, we
denote /N7 the normal subbundle spanned by e,49, €nta, -, enqp of the normal bundle
T+(M) of M, then M is geodesic with respect to N;. Since the mean curvature vector
H of M in E™'? is parallel, we see that N; is parallel. Hence, from the theorem 1 in
[16], we conclude that M lies (n + 1)-dimensional totally geodesic Euclidean space E™tL.
Then we find that the mean curvature |H'|(= |H|) of M in E™! is constant and the
sectional curvatures of M in E™*! are nonnegative. The theorem 1.6 can be obtain from
the theorem 1.5 in section 1.
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