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NOTES ON THE RELATIVE YAMABE INVARIANT 

KAZUO AKUTAGAWA 

Dedicated to Professor Katsuhiro Shiohama on his sixtieth birthday 

ABSTRACT. The Yamabe invariant [K], [S2] of a closed smooth manifold X is a natu-

ral differential-topological invariant which arises from a variational problem for the total 

scalar curvature of Riemannian metrics on X. The relative Yamabe invariant [ABl] of 

a compact connected smooth manifold W with nonempty boundary is a natural relative 

version of the Yamabe invariant of X. Hence the relative Yamabe invariant has several 

fundamental properties analog"ous to the corresponding ones for the cla,ssic Yamabe invari-

ant. In particular, in respect of surgery on X and the interior of W, these two invariants 

have quite similar properties. In this article, we give those properties. 

1. PRELIMINARIES 

Let W be a compact connected smooth n-manifold with nonempty boundary aW = M 
(possibly disconnected), and n = dimW ~ 3. We denote by C(M) and C(W) the spaces 

of confonrlal classes on M and W respectively. Let C ~ C(M) be a conformal class on M 

and C ~ C(W) a conformal class on W. We say that C is the boundary of C if Cjhl = C. 

We use the notation aC = C in this case. Let 7~iem(W) be the space of all Riemannian 

metrics on W. For each conformal class C e C(M), we define the following subspaces of 

7~iem(W ) : 

7~iemc(W) = {~ ~ 7~iem(W) I a[g~] = C}, 

7~iemc(W) = {~ ~ 7~iemc(W) I Hg~ = O along M}, 

where [g~] denotes the conformal class of ~ and Hg~ the mean curvature along M with respect 

to ~. We consider the normalized Einstein-Hilbert functional I : 7~iem(W) --~ R given 
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by 

fw R~dvg~ 
I(~) = Vol~(W)(n-2)/~ ' 

where R~ and dvg- are respectively the scalar curvature and the volume element of ~. As in 

t,he case of closed manifolds, we notice the following (cf. [B]): 

Proposition 1.1. ([ABl, Theorem 1.1]) The set of critical points of I on the space 7~iem~ 

(W) coincides with the set of Einstein metrics ~ on W with a[9-] = C and Hg- = O. 

Remark 1.2. From Claim 3.1 in [ABl], we notice that the set of critical points of I on 

R;iemc(W) is empty for any C C C(M). Moreover, the set of critical points of I on the 

space {~ e 7~iemc(W) j Hg--' is constant along M} is also empty. 

Simila,rly to t,he case of closed manifolds (see [Au2]), the functional I is not bounded on 

7~iemc(W). More precisely, for any W and any C e C(M), 

inf I(~) = -oo , sup I(~) = oO 
~e7~iem~ (w) ~~E~iem~ (w) 

For each conformal class C ~ C(M), Iet denote Cc(W) the subspace {C e C(T)V) I aC = 

C} of C(W). For each conformal class ~T e Cc(W), we consider the subclass ~~0 c ~7 

defined by _ ~o ~ = along M} . C ={~~CI H O 
We call ~70 the normalized conformal class of C. ~ For a fixed ~ C ~, put ~ = u" 2g for 

u ~ C~(W), where C~(W) denotes the space of all positive smooth functions on W. Then 

(1.1) Hg~ = u~2/(n-2) (Hg~ + 2(n - 1)u~lau) 

n-2 av ' 
where ~ denotes the normal derivative with respect to the inward unit normal vector field 

l/ along the boundary M. Hence (1.1) implies the following: 

Proposition 1.3. ([E2, Section l]) 

(1) ~)C is nonempty for any~T ~ C(W). 

(2) If~ C ~To, then 

{
 

}
 

au ~D C = [9-]0= u4/(n-2)~ ~ ~F j u c C~(W), = O along M 
av 

The relative Yamabe constant Yc~(W, M; C) of the conformal class C ~ Cc(T/V) (or the 

pa,ir (C, C)) is defined by 

mf fw Rg~~ dv~ 
Yc~(T/V, M; C) = gien=0lc~'f I(~) = ' =0 vol~(VV)(~-2)/~ 

~e c 
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(see [Au2], [LP] for t,he Yamabe constant of a conformal class on a, closed manifold). A 

metric ~ ~ ~)C is called a, relative Yamabe metric if I(~) = Yc~(T.'V, A.f;C), that is, ~ is a 

minimizer of I on ~)C . A similar argument to the Yamabe constant, given by Aubin [Aul] 

(cf. [E2]) shows that 

(1.2) Yc'~'(T4/, M; C) ~ Y[h'--i(S~,S"-1; [h]) = n(n - 1) ･ Vol~(S~)2/~ for any (W,Alf;~F, C), 

where S~ denotes the round n=hemisphere with standard metric h of constant curvature 

1 and S"-1 C S~ the equator with h = hls"-1. It should be pointed out that from 
[E3, Proposition 1.4] 

inf I(~) ~ O for any C c C(W). 
~e~ 

This observa.tion combined with Remark 1.2, Proposition 1.3-(1) and (1.2) may implies 

that the minimal boundary condition is suitable for a natural relative version of the classic 

Yamabe constant. 
The relative Yamabe invariants of the conformal class C ~ C(M) (or the triple (W, M; C)) 

and the pair (W, M) are respectively defined by 

Y(W, J~f; C) = = sup inf fw R~ dv~ sup Yc~(W, M; C) 
~~cc(w) ~~ecc(w) ~e~'c Vol~(T/V)(~-2)/~' 

Y(T~/ M) = sup Y(W,M;C) fw R~dv~ = sup sup inf cec(1~f) cec(Arf) ~ecc(w) ~ec Vol~(W)(~-2)/~' 

(see [K], [S2], [Le2] for the Yamabe invariant of a closed manifold). The inequality (1.2) 

guarantees their least upper bound 

Y(W, M; C), Y(W, M) ~ n(n - 1) ･ Vol~(S~)2/~, 

and hence 

Y(S~, S"-1) = n(n - l) ･ Vol~(S~)2/~. 

The conformal invariant Y(T)V, M; C) of C has a clear geometrical meaning in terms of pos-

itive scalar curvature (abbreviated as "psc" ). Namely, Y(W, M; C) > O if and only if any 

metric g ~E C can be extended conformally to a psc-metric ~ on W with the minimal bound-

ary condition Hg~ = O. The invariant Y(T.V, M) is by definition a differential-topological 

invariant of the pair (W, M), and also Y(W, M) > O if and only if there exists a psc-metric 

~ on W with the minimal boundary condition. 

The rest of the paper is organized as follows. In Section 2, we prove that the relative 

Yarnabe constant of C c C(W) coincides with the conformal invariant of C defined by 

Escobar [E2] , and we summarize fundamental properties on relative Yamabe constants and 

relative Yamabe met,rics. In Section 3, we also give fundamental properties on relative 

Yamabe invariants. 
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2. RELATIVE YAMABE CONSTANTS 

Let, C e C(W) be a, conformal class on T'V with aC = C, and ~ a metric in the normalized 

conformal class ~)C . We define the functiona,1 Eg.-.. : L1,2(W) -> ~ by 

4(n 1) Eg-(f) = f , ( - idfl~+ R-f )dv for f C Li 2(TV) 

/ n-2 9 
where L1,2(W) denot,es the Sobolev space of square-integrable functions on T;V up to 

their first weak derivatives. In terms of the functional E~g' the relative Yamabe constant 

Yc~(T~/, M; C) ma.y be written as the following: 

Lemma 2.1. 

Yc~(V~IM;C) = g_m~~lc~f I(~) 

(2.1) E-(u)/Ilujl2 = inf 9 L2~/(~-2)(~) ~ec~(w), a..._,_"a~I~!=0 

J~( f )lll f ll2 = inf g L2~/(~-2) (~) ' feLl'2(w), f~0 

Here 11 ･ IIL2~/('-2)(~) stands for the L2n/(n-2)_norm on W with respect to ~. 

Remark 2.2. From (2.1), the relative Yamabe constant Yc~(W, M; C) coincides with the 
conformal invariant Q(T/V) = Q(W, ~?) of ~f (up to the positive factor 4(n"]~21)) deflned by 

Proof of Lemma ??. Let ~ = u4/(n-2)~ be any metric in ~)C , where u is a positive smooth 

function on W with ~ = O along M. Then we have the formula 

(2.2) _ 4(n - l)A u + R u R~ = u (~+2)/(~ 2) - on W, 
n-2 

where A~ = =g 3~i~j denotes the LaplaceBeltrami operator of ~ and V the Levi-Civita 

connection of ~. The Neumann boundary condition ~ = O along M implies 

I(~) = E~g(u)/Iluli2L2~/('-2}(g) 

and hence 

Yc~(TV, M; C) = inf Eg.'-(u)/Ilujl~2~/{' }(g) 
*ec~(w), a_"a~I~!=0 

In order to prove the last, equality in (2.1), it is enough to prove the following 

(2.3) Eg-(u)/ Ilull ~2~/('2)( ) < Eg~( f )/ i{ f !! i2~1(~-2) {9) 
u~c~(~v), ~~IAJ=0 ~ ~ f~Ll'2(w), f~0 
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We notice t,hat 

inf Eg-(u)/:Iulli2"/(~-2)(g) 
uec~(1'v), o_"a~!AI=0 

= inf {Eg'--'(f)/Il f jli2~/(~-2)(~) aL/ Ihl = O} O f 
l f ~ Ll'2(W) f rs smooth near A[ and 

Let r be the distance fLmction to M in T/V with respect to ~. Let (x, r) = (xl ' ' ' , x"~1 r) 

denotes a Fermi coordina,te system on a tubular neigrhborhood Uc(M) = {z e VV j r(z) < c} 

of IV[, where e is a small positive constant. For each smooth function f (E COO(W) wrth 

f ~ O, we define a Lipschit,z function f._. by 

{
 

_ f(z) ifze W¥U=(1~f) 
f.-(z) - f(x,c) ifz = (x,r) C U=(M). 

Note t,hat f..- is smooth near M and aaf"_' = O along Arf. Then we have 

4(n - l) f af Eg-(f=) = E~g(f) ( )2 dv~ + O(e2) n-2 JU=(M) ar 

_ ~ + O(c2), iif.1!~2~/(~-2)(g) IifllL2'/(~ 2)( ) 

and hence 
Eg-(fc)lllf li2 

e L2~/(~-2)(~) 

4(n - l) af / f
 

_ + O(c2) ~ ~ (n - 2) ( )2 dv~/ Ilfll~2~1('-2)(g) = Eg~(f)/llfji~2~/(~2)(g) 
ar JU=(A~l ) 

This implies the inequality (2.3). 
[
I
 

The Yamabe problem on W related to the relative Yamabe constant Yc~(W, M; C) was 

solved by Cherrier [C] and Escobar [E2] under some restrictions (cf. [Au2], [LP], [Sl]). 

Theorem 2.3. 
(1) ([C, Section 6]) There exists a relative Yamabe metric ~ ~E ~io provrded 

Y-c(W M C) < Y(S~, Sn-1) = n(n - 1) ' Vol~(S~)2/~. 

(2) ([E2, Theorem 6.l]) Assume that W = (Wn, C) satisfies any of the following three 

condition : 

(i) n = 3,4, or 5, 

(ii) W has a nonumbilic point on M = aW, 

(iii) M = (Arf, C = aC) is umbilic, and either T/V is conformally fiat or n ~ 6 and 

the Weyl curvature tensor of C does not vanish identically on l~f. 
Then there exists a relative Yamabe metric ~ e ~)C . 

Standard calculat,ion combined with (2.1), (2.2) also gives the followinb' (cf. [Au2], [LP]): 



lro KAZUO AKUTAGAwA 
Proposition 2.4. 

(1) ([E2, Lemma l.lj) For each conformal class ~T ~ C(W), there exists a metric ~ C ~TO 

whose scalar ctcrvature does not change sign. The sign is uniquely determined by the 

conformal structure C, and so there are mtctually exclusive possibilities : C admits a 

metric of (i) positive, (ii) negative, or (iii) identically zero scalar curvature with the 

minimal boundary condition. 
(2) Each relative Yamabe metric ~ ~ ~)C is a metric of constant scalar cuTvatu?'e 

R~ = Yc~(W, M; C) ･ Vol~(W)-2/n 

(3) ([E3, Theorem 4.1]) Let ~ be a metric of nonpositive constant scalar curvature on 

W with the minimal boundary condition. If ~/ is another metric of constant scalar 

curvature in [9~]o, then ~/ = c~ for some positive constant c. Thus this implies that ~ 

is a relative Yamabe metric. 

(4) (cf. [K, Lemma, 1.6]) Let C e Cc(T)V) be a conformal class of nompositive Yamabe 

constant Yc~(W, M; C). Then; for any ~ C ~)C 

(mm Rg~) ' Vol~(W)2/n ~ Yc~~~(W, M; C) ~ (max Rg~) ' Vol~(W)2/n. 

Similar to the classic Yamabe problem, a metric of posit,ive constant scalar curvature with 

the minimal boundary condition is not always a relative Yamabe metric. The following 

uniqueness result on Einstein metrics is a generalization of the corresponding" one of Obata 

[O] to manifolds with boundary (cf. [S2, Proposition l.4]). 

Proposition 2.5. ([El, Theorem 4.l]) Let ~ be an Einstein metric of positive scalar cur-

vature on W with totally geodesic boundary. If ~ is aT~other metric of constant scalar 

curvature in [~]o, then ~ is Einstein. Moreover, uf (Wn, ~) is not conformally equivalent to 

(S~, h), then ~ = c~ for some positive constant c. Hence this implies that ~ is a relative 

Yamabe metric. 

The second variation of I on ~? at a relative Yamabe metric ~ e 7~)C of positive scalar 

curvature implies the following estimate, which is a cha,racterization of relative Yamabe 

metrics in the positive case. 

Proposition 2.6. (cf. [Au2, Proposition 5.24]) For each relative Yamabe metric g of posi-

tive scalar curvature on W, the first nonzero eigenvalue ~/1(~A~) of -A~ for the Neumann 

boundary condition can be estimated from below : 
R
~
 vl(~A~) ~ . 

n-l 
The characterization (2.1) of relative Yamabe constants also leads to the following" 

Sobolev inequality on W with a relative Yamabe metric ~ of positive scalar curvature: 

_ (n-2)/n l (2.4) ( fv Ifj2n/(n 2) dv ) < ~ c[~] fw idfl; dv~ + Vol (}V)2/n J/1, f dv 
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for f C L1,2(T4/), ¥vhere c[~] = 4("-"~_21) 'Y[~](T4/, A[; O[~]) > o. Using the hlloser iteration method 

on the Sobolev inequalit,y (2.4), we obtain 

Proposition 2.7. (cf. [Akl, Section 2]) There exists a positive constant 6~ > o depeuding 

only on n = dim VV such that the following holds : 

(1) V01~(~.(p)) ~ b~~c["9"i2rn for p ~ T~/ and r ~ c~f/2V01~(T4/)1/~. 

where L~r(P) denotes the geodesic ball of radius r centered at p with respect to ~. 

(2) diam- (T,V) < 26-1c~1/2Vol-(W)1/n 
9 - ~ [~] 9 ' 

3. RELATIVE YAMABE INVARIANTS 

Let T/1/ be a compact smooth n-manifold (n ~ 3) with boundary A/f (possibly A/f = ~). We 

remark that the relative Yamabe invariant Y(W, M) is nothing but the Yamabe invariant 

Y(W) of the closed manifold W when M is empty. From the characterization (2.1) of 

relative Yamabe consta,nts, every technique of analyzing" Yamabe invariants is available for 

Y(W, M) on the interior Int(W) of W, under suitable modification. Thus the technique 

developed by Kobayashi [K] implies the following result, which is a fundamental tool for 

computations of the relative Yamabe invariant. 

Theorem 3.1. (cf. [K, Theorem 2]) Let Wl and W2 be compact connected smooth n-
manifolds (n Z 3) with boundary Ml and M2 respectively. Then 

-(IY(Wl' Ml)In/2 + IY(W2, M2) In/2)2/n 

Y(Wl#W2, M1 H M2) ~: uf Y(W1' Ml)' Y(W2, All2) ~ O, 
min{Y(WI ' Ml) ' Y(W2 , M2) } otherwise. 

Here Wl~W2 denotes the connected sum of Wl and W2' 

Similar to the cla,ssic Ya.mabe invariant, the minimax deflnition of relative Yamabe in-

variants is also rather unwieldy for many purposes. However, when the relative Yamabe 

invariant of a manifold is nonpositive, the following gives a very useful reinterpretation of 

the invariant. 

Proposition 3.2. (cf. [An], [BCG], [Lel]) Let W be a corTlrpact connected smooth n-manzfold 

with boundary M. Then 

. ~ { inf f JR jnl2dv O ufY(W, M) Z O, 
~e7~i.~o(T.T") Jt4 ~ = jY(W, M)1"/2 ifY(W, M) ~ o. 

Here 7~;iemo(W) = {~ e 7~iem(T/V) I Hg- = O along M} 
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Using Proposition 3.2. we obtain the following" surgery theorems corresponding" to ones 

of Petean-Yun [PY] and Petean P]. [
 

Theorem 3.3. (cf. [PY, Theorem l]) Let Wl and T/V2 be compact connected smooth n-

manifolds with boundary Mi and M2 respectively. Suppose that a closed smooth k-manufold 

S embeds into both Int(T(,1) and Int(W2) with trivial normal bundle. Assume that k ~ 3. 

Let Wls2 be the mamfold obtained by gluing Wl and VI/2 along S. Then 

(i) jfY(W1'Ml) ~ O and Y(W2,M2) ~ O, then 

Y(WIS2, Ml 11 M2) ~ -(IY(Wl' Ml)In/2 + IY(W2, M2)Inl2)2/n 
(ii) If Y(~;1' M1) ~ o and Y(W2, M2) > O, then Y(Wls2, Ml H M2) Z Y(Wl' A~ll)' 

Theorem 3.4. (cf. [PY, Corollary I [P Theorem 1]) Let W be a compact connected J, , 

smooth mamfold of dimension n ~ 4 with boundary A,1. Let W be a manifold obtained 

from W by performing surgery on Int(W) of codimension q (1 ~ q ~ n). Suppose that 

Y(T4/, M) ~ O. Then 

(i) Ifq ~ 3, then Y(W,M) ~ Y(W,M). 
(ii) If q is different from l, 2 and n - l, then Y(W, M) = Y(W, M). 

Remarh 3.5. In [ABl], we developed approximation technique which leads to gluing the-

orems of the bounda,ry connected sum two manifolds along their boundaries for the rela-

tive Yamabe invariant. Using the technique, we showed that there are lrLany examples of 

manifolds with positive and nonpositive relative Yamabe invariants (see also [Ak2] ) . In 

partic.ular, we constructed a family of 4-manifolds with strictly negative relative Yamabe 

inva,riant. In [AB2] , we are studying the conformal cobordism theory of manifolds with 

positive conformal classes in terms of the relative Yamabe invariant. 
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