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NOTES ON THE RELATIVE YAMABE INVARIANT
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Dedicated to Professor Katsuhiro Shiohama on his siztieth birthday

ABSTRACT. The Yamabe invariant [K], [S2] of a closed smooth manifold X is a natu-
ral differential-topological invariant which arises from a variational problem for the total
scalar curvature of Riemannian metrics on X. The relative Yamabe invariant [AB1] of
a compact connected smooth manifold W with nonempty boundary is a natural relative
version of the Yamabe invariant of X. Hence the relative Yamabe invariant has several
fundamental properties analogous to the corresponding ones for the classic Yamabe invari-
ant. In particular, in respect of surgery on X and the interior of W, these two invariants
have quite similar properties. In this article, we give those properties.

1. PRELIMINARIES

Let W be a compact connected smooth n-manifold with nonempty boundary 0W = M
(possibly disconnected), and n = dimW > 3. We denote by C(M) and C(W) the spaces
of conformal classes on M and W respectively. Let C € C(M) be a conformal class on M
and C € C(W) a conformal class on W. We say that C is the boundary of C if Cly = C.
We use the notation dC = C in this case. Let Riem(W) be the space of all Riemannian
metrics on W. For each conformal class C' € C(M), we define the following subspaces of
Riem(W):

Riemg (W)
Riemd (W)

{7 € Riem(W) | 9[g] = C},
{7 € Riem¢(W) | H5=0 along M},

where [g] denotes the conformal class of g and Hy the mean curvature along M with respect
to g. We consider the normalized Einstein-Hilbert functional I : Riem(W) — R given
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by
[y Rgdvg
I(3) = w g g
@) = o

where Ry and duvg are respectively the scalar curvature and the volume element of §. As in
the case of closed manifolds, we notice the following (cf. [B]):

Proposition 1.1. ([AB1, Theorem 1.1]) The set of critical points of I on the space Riemg
(W) coincides with the set of Einstein metrics g on W with 0[g] = C' and Hz = 0.

Remark 1.2. From Claim 3.1 in [AB1], we notice that the set of critical points of I on
Rieme(W) is empty for any C € C(M). Moreover, the set of critical points of I on the
space {7 € Riemc(W) | Hy is constant along M} is also empty.

Similarly to the case of closed manifolds (see [Au2]), the functional I is not bounded on
Riem&(W). More precisely, for any W and any C € C(M),
inf  I(g) = —o0, sup I(g) = oo
GeRiemg (W) ) FeRiemd (W)
For each conformal class C € C(M), let denote Co(W) the subspace {C € C(W) | C =

C} of C(W). For each conformal class C € Co(W), we consider the subclass ¢’ cT
defined by

“C’.Oz{ﬁeangz() along M}.

We call C° the normalized conformal class of C. For a fixed g € C, put § = unl-?ﬁ for
u € CP(W), where C°(W) denotes the space of all positive smooth functions on W. Then

/(e 2(n—1) _,0u
S VLGN i 4 SRR S o St
(1.1) Hy=u (H+ =52 ),

where ‘a% denotes the normal derivative with respect to the inward unit normal vector field
v along the boundary M. Hence (1.1) implies the following:

Proposition 1.3. ([E2, Section 1])
(1) s nonempty for any C € C(W).
(2) Ifge C°, then

C =[g"= {u4/(”_2)§ €C |ueCo(W), g% =0 along M} )

The relative Yamabe constant Y(W, M;C) of the conformal class C € Co(W) (or the
pair (C,C)) is defined by

. . ) f Rs dus
Y W. M:C) = inf I(3) = _JIW "9 "9
C’( ; 3 ) ;Ena'-o (g) §1€n@fo VOlg(M/)(n-Z)/n
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(see [Au2], [LP] for the Yamabe constant of a conformal class on a closed manifold). A
metric § € C" is called a relative Yamabe metric if I (9) = Ya(W,M;C), that is, § is a

minimizer of [ on C . A similar argument to the Yamabe constant given by Aubin [Aul]
(cf. [E2]) shows that

(1.2) Ya(W,M;C) < Y[E](Si’ S§=L(h]) = n(n - 1) -VOIF(SZ)Q/” for any (W, M;C, C),

where ST denotes the round n-hemisphere with standard metric h of constant curvature
1 and S*! C S? the equator with A = h|gn-1. It should be pointed out that from
[E3, Proposition 1.4]

inf 1(3) <0 for any C € C(W).

§eC
This observation combined with Remark 1.2, Proposition 1.3-(1) and (1.2) may implies
that the minimal boundary condition is suitable for a natural relative version of the classic
Yamabe constant.

The relative Yamabe invariants of the conformal class C € C(M) (or the triple (W, M;C))

and the pair (W, M) are respectively defined by

- Jw By dvg
Y(W,M;C)= sup Yz(W,M;C)= sup inf 22 2
TeCe(W) ¢ Teco(w) 3eC° VOl'g“(W )n=2/n
fW Ry dug

YW, M)= sup Y(W,M;C)= sup sup inf —t———t
( ) cec(M) ) cec(M) Teco(w) ge® Volg(W)(-2/n
(see [K], [S2], [Le2] for the Yamabe invariant of a closed manifold). The inequality (1.2)
guarantees their least upper bound

Y(VV, ]V[; C), Y(W M) < n(n — 1) . Vol,g(Si)?/n’

and hence
Y(S%, 8" ) = n(n — 1) - Volg(S™)/™.

The conformal invariant Y (W, M; C) of C has a clear geometrical meaning in terms of pos-
itive scalar curvature (abbreviated as “psc”). Namely, Y(W, M;C) > 0 if and only if any
metric g € C can be extended conformally to a psc-metric § on W with the minimal bound-
ary condition Hyz = 0. The invariant Y (W, M) is by definition a differential-topological
invariant of the pair (W, M), and also Y(W, M) > 0 if and only if there exists a psc-metric
g on W with the minimal boundary condition.

The rest of the paper is organized as follows. In Section 2, we prove that the relative
Yamabe constant of C € C(W) coincides with the conformal invariant of C defined by
Escobar [E2], and we summarize fundamental properties on relative Yamabe constants and
relative Yamabe metrics. In Section 3, we also give fundamental properties on relative
Yamabe invariants.
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2. RELATIVE YAMABE CONSTANTS

Let C € C(W) be a conformal class on W with C = C, and g a metric in the normalized
conformal class C°. We define the functional E; : LY (W) — R by
d(n—1) 2 1,2
Eg(f) = [‘,<Wldf1§+ R§f2> d’l):q‘ fOf f c L (I/V),

where L'?(W) denotes the Sobolev space of square-integrable functions on W up to
their first weak derivatives. In terms of the functional Eg, the relative Yamabe constant
Y=(W, M; C) may be written as the following:

Lemma 2.1.

Il

Y=(W, M; C) inf I(g)
§ed®
(2.1) = inf E?(”)/““H%:tn/(n-%(g)

weCP (W), §%|p=0

XY 1] -

in
fELVAW), F#£0
Here || - || f2n/tn-2(g) stands for the L* =2 -norm on W with respect to 3.

Remark 2.2. From (2.1), the relative Yamabe constant Yz(W, M;C) coincides with the
conformal invariant Q(W) = Q(W, C) of C (up to the positive factor fl-%f-%l) defined by
Escobar [E2].

_ _ . . "
Proof of Lemma ?77. Let § = u* ™27 be any metric in C", where u is a positive smooth

function on W with %f = 0 along M. Then we have the formula
4(n—1)

2.9 Rs = y~(m+2)/(n-2) <_
22 g=t n—2

Dgu + Rgu) on W,

where Az = gV, V; denotes the Laplace-Beltrami operator of g and V the Levi-Civita
connection of g. The Neumann boundary condition gllj- = 0 along M implies

1(5) = Bg(u)/[ul}ons-2 5,
and hence
Y=(W, M;C) = inf Eg(u)/|[ullZonscn-25)-

ueCP (W), §%(p=0

In order to prove the last equality in (2.1), it is enough to prove the following

(2.3) inf E’g‘(u)/”u”i%/(n—w@ < inf Eﬁ(f)/w”izn/(n—z)(gy

1
weCP (W), §&{=0 FeLMW(W), f£0
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We notice that

inf E-(w)/||ul|? oy
e g F ey

= inf{ SN 2o 25 | f € L"*(W), f is smooth near M and ——I }

Let r be the distance function to M in W with respect to g. Let (z,7) = (2, 2"}, r)
denotes a Fermi coordinate system on a tubular neighborhood U.(M) = {z € W | r(z) < e}
of M, where ¢ is a small positive constant. For each smooth function f € C®(W) with
f # 0, we define a Lipschitz function f. by

f(2) = { flz) ifzeW\U:(M)
¢ flz,e) if 2= (z,7) € U(M).

Note that f. is smooth near M and afE

%m:%m—%SQ/M@ﬁd + 0

5 = Hf”QLZn/(n—n(g) + 0%,

= 0 along M. Then we have

and hence

Eg(fe) /I fell panrin-ng

4(n—1) of
= Eﬁ(f)/”f”%znﬂn—z)(g) - _(7—"7:_2)— /US(M)(E)Q d“ﬁ/ Hf“%h/(nﬂ)(g) + 0(?).

This implies the inequality (2.3). a

The Yamabe problem on W related to the relative Yamabe constant Yz(W, M;C) was
solved by Cherrier [C] and Escobar [E2] under some restrictions (cf. [Au2], [LP], [S1]).
Theorem 2.3.

(1) ([C, Section 6]) There exists a relative Yamabe metric § € C° provided

Ye(W, M;C) < Y(S™, S*Y) = n(n — 1) - Volg(S™)%™.
(2) ([E2, Theorem 6.1]) Assume that W = (W™, C) satisfies any of the following three
condition :
(i) n= 3,4, or 5,
(ii) W has a nonumbilic point on M = 0W,
(ili) M = (M, C = 9C) is umbilic, and either W 1is conformally flat or n > 6 and
the Weyl curvature tensor of C' does not vanish identically on M.
Then there ezists a relative Yamabe metric § € o

Standard calculation combined with (2.1), (2.2) also gives the following (cf. [Au2], [LP]):
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Proposition 2.4.

(1) ([E2, Lemma 1.1]) For each conformal class C € C(W), there ezists a metric g € c°
whose scalar curvature does not change sign. The sign is uniquely determined by the
conformal structure C, and so there are mutually exclusive possibilities : C admits a
metric of (i) positive, (ii) negative, or (iii) identically zero scalar curvature with the
manimal boundary condition.

(2) Fach relative Yamabe metric § € C° is a metric of constant scalar curvature
Ry = Y=(W, M;C) - Voly (W)=,

(3) ([E3, Theorem 4.1]) Let § be a metric of nonpositive constant scalar curvature on
W with the minimal boundary condition. If g is another metric of constant scalar
curvature in [g]°, then § = cg for some positive constant c. Thus this implies that g
18 a relative Yamabe metric.

(4) (cf. [K, Lemma 1.6]) Let C € Co(W) be a conformal class of nonpositive Yamabe

constant Ye(W, M;C). Then, for any g € °
(min Ry) - Volg(W)H" < Yo(W, M;C) < (max Ry) - Voly(W)¥".

Similar to the classic Yamabe problem, a metric of positive constant scalar curvature with
the minimal boundary condition is not always a relative Yamabe metric. The following
uniqueness result on Einstein metrics is a generalization of the corresponding one of Obata
[O] to manifolds with boundary (cf. [S2, Proposition 1.4]).

Proposition 2.5. ([E1, Theorem 4.1]) Let § be an Einstein metric of positive scalar cur-
vature on W with totally geodesic boundary. If § is another metric of constant scalar
curvature in [9]°, then § is Einstein. Moreover, if (W™, §) is not conformally equivalent to

(ST, h), then § = cg for some positive constant c. Hence this implies that § is a relative
Yamabe metric.

The second variation of I on C at a relative Yamabe metric § € C" of positive scalar
curvature implies the following estimate, which is a characterization of relative Yamabe
metrics in the positive case.

Proposition 2.6. (cf. [Au2, Proposition 5.24]) For each relative Yamabe metric § of posi-
tive scalar curvature on W, the first nonzero eigenvalue v1(—20g) of =g for the Neumann
boundary condition can be estimated from below :

n(=Lq) 2 i

“n-1
The characterization (2.1) of relative Yamabe constants also leads to the following
Sobolev inequality on W with a relative Yamabe metric § of positive scalar curvature:

(n=2)/n 1 1 .
2n/(n-2) . < 2 . 2 R
2 (/W 710 ) —cm/W‘df s 0 oy /f s
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for f € LY*(W), where ¢ = T 1) Y (W, M; 0[g]) > 0. Using the Moser iteration method
on the Sobolev inequality (2. 4) we obtain '

Proposition 2.7. (cf. [Ak1, Section 2]) There exists a positive constant 6, > 0 depending
only onn =dim W such that the following holds :

(1) Volg(B.(p)) > & cﬁ " for pe W and r < ¢ *Vol, (W)™,

where B,(p) denotes the geodesic ball of radius T centered at p with respect to §.

(2) diamy(W) < 2 ey Vol (W)!/m.

3. RELATIVE YAMABE INVARIANTS

Let W be a compact smooth n-manifold (n > 3) with boundary M (possibly M = §). We
remark that the relative Yamabe invariant Y (W, M) is nothing but the Yamabe invariant
Y (W) of the closed manifold W when M is empty. From the characterization (2.1) of
relative Yamabe constants, every technique of analyzing Yamabe invariants is available for
Y(W, M) on the interior Int(W) of W, under suitable modification. Thus the technique
developed by Kobayashi [K] implies the following result, which is a fundamental tool for
computations of the relative Yamabe invariant.

Theorem 3.1. (cf. [K, Theorem 2]) Let Wy and W, be compact connected smooth n-
manifolds (n > 3) with boundary My and My respectively. Then

—([Y (W, M) + Y (W, My)["/2)2/
Y (WitWa, My 1T My) > Y (Wi, M), Y (W, My) <0
min{Y{(Wy, M), Y (Ws, Ma)} otherwise.
Here WiilW, denotes the connected sum of Wy and Wi.
Similar to the classic Yamabe invariant, the minimax definition of relative Yamabe in-
variants is also rather unwieldy for many purposes. However, when the relative Yamabe

invariant of a manifold is nonpositive, the following gives a very useful reinterpretation of
the invariant.

Proposition 3.2. (cf. [An], [BCG], [Lel]) Let W be a compact connected smooth n-manifold
with boundary M. Then

n 2 ZfY(W M)
genféfo(w / | Rgl""dvg = { Y (W, M)["2 if Y(W, M) <

Here Riem" (W) = {g € Riem(W) | H;=0 along M}.
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Using Proposition 3.2. we obtain the following surgery theorems corresponding to ones
of Petean-Yun [PY] and Petean [P].

Theorem 3.3. (cf. [PY, Theorem 1]) Let Wy and Wy be compact connected smooth n-
manifolds with boundary My and My respectively. Suppose that a closed smooth k-manifold
S embeds into both Int(W1) and Int(Ws) with trivial normal bundle. Assume that k < 3.
Let Wfﬁ be the manifold obtained by gluing Wy and Wy along S. Then
(1) IfY({/Vh/\/fl) < 0 and Y(WQ,MQ) < O, then
Y (WS, My LLMy) > —([Y (Wi, Ma)[/2 + [Y (Wa, My) /2207,
(il) If Y(W, My) < 0 and Y (Wy, My) > 0, then Y(W5,, My 11 M) > Y (W3, My).

Theorem 3.4. (cf. [PY, Corollary 1], [P, Theorem 1]) Let W be a compact connected

smooth manifold of dimension n > 4 with boundary M. Let W be a manifold obtained
from W by performing surgery on Int(W) of codimension ¢ (1 < q¢ < n). Suppose that
Y(W, M) <0. Then

(i) Ifq>3, then Y(W, M) > Y(W, M).

(i) If q is different from 1,2 andn — 1, then Y (W, M) = Y (W, M).

Remark 3.5. In [AB1], we developed approximation technique which leads to gluing the-
orems of the boundary connected sum two manifolds along their boundaries for the rela-
tive Yamabe invariant. Using the technique, we showed that there are many examples of
manifolds with positive and nonpositive relative Yamabe invariants (see also [Ak2]). In
particular, we constructed a family of 4-manifolds with strictly negative relative Yamabe
invariant. In [AB2], we are studying the conformal cobordism theory of manifolds with
positive conformal classes in terms of the relative Yamabe invariant.
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