
.Josca,i h･,Iat<hema,tica,1 ~,'10nographs 

vol 3 (2001)~ pp. 11~5-124 

COMPLETE SUBMANIFOLDS IN SPHERES* 

QING-~,'11NG CHENG 

Dedicated to PT'ofossor Katsuhiro Shiohama or', his sixtieth, birthday 

It is the purpose of this art,icle to discuss ccnrLplete submanifolds in spheres~'. 

Complete subma,nifolds with parallel mean curvature vector in spheres ancl complet,e 

sublrLanifolds in spheres wit,h constant, scalar curva,t,urc will be mentioned. A rcsult, 

of complete submanifolds in Euclidean spac.es with constant, scalar curvature is also 

announced. 

1. SUBMANIFOLDS WITH PARALLEL MEAN CUR;VAllURE VECroR 

In t,his section, we shall st,udy submanifolds ¥vit,h parallel mean curvat,ure vec-

t,or in spheres. First of all? we consider minhnal submanifolds. Let, A,f bc a.n 

T'.-dimensional compact minimal submanifold in the unit sphere Sn+p(1). Then t,he 

following Theorem due to Chern, do Carmo a,nd Kobayashi [9] is well-known: 

Theorem 1.1. If M is an n-dimensional co'm,pact minimal submanifold in t/?,e 
unit sr)here_ Sn+p(l~ with S < ni . then M is totally geodesic, or p = I aTrd M is 

! ~ ) - 2~ isometr'ic to the Clifford torus, or p = n = 2 and M is isometric to th,e Veror7,ese 

s'u,rface. Where S denotes the squared norm of the second fundamental J'orfT;.. 

Rema,rk 1.1. In [10], Li and Li ext,ended the l-T)inchingr const,ant S < 2fl t,o S < 23~~krl 

if the codimension p is g'rOa<t,er t,han 1. P 
[
]
 

In p.a,rticula,r~ when M'is a, minimal hypersurfa,ce~ Cheng and Y.ang 7 ext,ended 

t,he result due to Chern, do Ca,nrlo and Kobaya,shi as t,he following: 

Theorem 1.2. Let A,f be a compact minimal hypersur:face in Sn+1 (1) with, coT7.stant 

scalaT' curvature. If S < 7?, + ~, then S = O a'n.d M is totally geodesic oT' else S = n 

and A,1 is isometric to th,e Clifford torus. 

[
]
 

In particular~ when ??., = 3, Cheng a,nd ¥~ra,n 6 obt,a,ined t,he following 

Ke~) words a??.d phra.ses. submanifolds, t,ot,a,ll)' umbilica,1 subirlanifold, genera,lized c)'1inder, 

constant mean curvature, const,a.nt. scala,r curvat,ure and second fundamental form. 
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Theorem 1.3. The totally geodesic sph,ere, the Cli~fford torus and the tube of the 
Veronese surface are the o'rLly complete minimal h,ypersurfa,ces in S4(1) with con-

stant scalar curvature. 

As a, genera,liza=t,ion of t,he result, due t,o Chern, do CanrLo and Koba,yashi, Nomizu 

and Smyth [12] studied hypersurfa,ces wit,h constant, mean curvat,ure in the unit 

sphere a,nd proved t,he f'ollowing: 

Theorem 1.4. Let M be an n-dimensional hypersurface with constant mean cuT'-
vature in the unit sphere Sn+1(1). 

(1) If M is compact and the sectional cuT'vature of M is non77,c'_gative, then 

AI is isometric to the totally umbilical sphere or the Riemannian product 
Sn - k (cl) x Sk(c2) of spheres. 

(2) When A[ is complete and the scalaT CuTvatuTe. of M is constar7,t, uf the 

sectior7,al curvature of M is nonnegative, then M is isometric to the totally 

umbilical sphere or' the Riemannian product Snk(cl) x Sk(c2) of spheres. 

Proof. By a direct, comput,at,ion, we have 

(1.1) IAS = n (A･ - A･)2R･ ･ -hijk + 
t 3 ~3 t3 ' 2

 i,j,k=1 i<j 

(1). If A[ is compact, we have that principal curvatures arc constant and t,he 

number of distinct, principal curvatures is at most two from the Stokes fonnula 

because t,he sect,ional curvat,ure of M is nonnegative. The classiflcation of isopara-

metric hypersurfaces due to Cartan yields that, Theorem 1.4 holds. 

(2). If M is complet,e and the scalar curvature is constant,, we a,Iso have tha.t 

principal curvatures are constant and the number of distinct principal c.urvatures is 

at most, t,wo frolrL (1.1) because t,he sectional curvat,ure of M is nonnegative. This 

finished thc proof of Theorern 1.4. 

In particula,r, when rt. = 3, Cheng and Wa,n [6] cornpletely cla,ssified complet,e 

hypersurfaces with const,a.nt mean curvat,ure and constant sca<la,r curvature in the 
unit sphere S4(1), tha,t, is, the following is proved: 

Theorem 1.5. Let A,1 lje a 3-dimensional complete hypersurface with constant 
mean curvature iT2, the un'it sphere S4(1). If the scalar curvature is constant; then 

M is isometric to the totally umbilical sphere; the Riema7?,nian product Sn-k(cl) x 

sk(c2) of spheres (k = l.2) or the isoparametric h,ype'rsurf'ace with three dist,inct 

principal curvature due to Cartar2.. 

For general cases~ submanifolds with parallel mean curva=ture vector in spheres 

¥vere researched by many mat,hematician ( for examplcs, Alencar and do Carulo [1], 

Cheng and Nakagawa [4] , Shiohama and Xu [14] , Y'.mo and Ishihara [15] , Yall [18] 

and so on). In particular, Shiohama and Xu [14] proved t,he following: 
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Theorem 1.6. Let M be an n-dimensional compact sub'rrlLa,'n,ifold tljith para,llel mean 

c'u,rvatu're vector in the unit sphe're Sn+p(1). If 

S ~ C(n~ P, H), 

then M is isometric to one of the following; 

(1) the totally um,bilical spheref 

(2) the Riemannian product Sn-1(cl) x S1(c2) of spheres 

(3) the Ve_ronese surfrJ,ce. 

'u)h e re 

n + n3 H2 - n(n-2) r~2H4 4 'n I H2 2(n-1) 2(n-1) V vb~JI ~ + ~(1!' - i)11 ~, 

C(n,p, H) - for p = 1, or p = 2 and H ~ O, 

min{n + 2(#1)H2 - n(n2) /~lTIV 
2 (n - I ) 

1,_3(2TL + 5nH2)}, forp Z 3 or p = 2 and H = O. 

Where H denotes the mean curvature. 

2. SIJ-BMANIFOLDS WITll CONS[1'ANT SCALAR CURVATURE 

In t,his section, we shall consider subma,nifolds in sphere with constarLt scalar 

curvature. ¥Vhen the codimension is one, in [8], S.Y. Cheng and Yau proved the 

follo~ving: 

Theorem 2.1. Let M be an n-dimensiorbal compact h,ypersurface with constant 
scalar curvature n(n - l)r, if r ~ 1 arrd the'sectior7,al curvature of I~f is non-

negative, then 1~1 is isometric to either the totally umbilical hypersurface or th,e 

Riemannian product Sk(cl) x Sn-k(c2) I ~ k < n - 1, where Sk(c) denote the 

sphere of radius c. 

Proof. By a direct calculat,ion~ we have 

(2.1) [](nH) = ~ h~~jk ~ n lgladHj2 + ~(At - A3) K~3 

i,j,k i<j 
where I'(ij Is the sect,ional curv.a,ture for the 2-plane spanned by ei and ej a,nd Ai, for 

~ ' ' ~ n are the principal curvatures. Since the sca,lar curvature is const,ant, i = 1 2.-

we ha¥re from the Ga,uss equation~ we have 

2n HVkH = 2 ~ Aihiik. 

Hence~ we have~ f'rom r Z l, 

(2.2) ~ hijk ~ ?1 IgladHI 
i,,3,k 
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From St,okes foruula, ~ve obtain t,ha,t the mc(a<n cl"Irvat,ure H is const,ant, since t,he 

sect,iona,1 curva,t,ure is non-nega,t,ive. Therefore, frorn t,he Theorem l.4, ~vO~. kno~v 

t,hat, Theorem 2.1 is t,rue. 

Remark 2. 1. The diffcrent,ial operator L] is defined by, for any different,ia,ble funct,ion 

f clefined on Af~ 

n 
[]f = ~; (nH - ht3)V~V3f 

i,j=1 

where H and h.?.j denote the mean curvature and t,he component,s of t,he second 

funda,mental forul of A,f, respectively. 

By making use of t,he similar method ¥vhich was used by Naka,gawa and t,he 
aut,hor in [4] and the a,bove differential operator [] int.roduced by S.Y. Cheng and 

Yau~ Li [1l] pro¥red the following: 

Theorem 2.2. Let M be rJ,n n-dimensional compact hypersurface with, consta,nt 
scalar curvature n(n - l)r; ifr Z I and 

(2.3) S < (n - l)n(r - l) + 2 + n - 2 
n - 2 T}(r - l) + 2' 

then A/1 is isometric to either the totally umbilical hypersurface or the Riemannia'r~ 

product Sl(fr7) x Sn-1(c) with c2 - n-2 < n-2 n ; where S is the squared norrn 
~ nr -

of the second fundame77;tal form of M. 

Proof. Since (2.3) holds, we can prove that, 

~(Ai - A ) K~3 > o 

t<3 

Hence, from the same ass.ert,ions as in proof of Theorem 2.1, we can infer tha,t, t,he 

mea,n curvature H is const,ant and M is an isoparamet,ric hypersurface with at most 

t¥vo distinct principal curva,tures. Hence, Theorem 2.2 is proved. 

Remark 2.2. We should not,ice tha,t the condition T' ~ 1 plays an essent,ial role in 

t,he proofs of the above Theorem 2.1 and Theorem 2.2. 

On the other ha,nd, we consider t,he following example: 

Example 2.1. For any O < c < l, by considering the standard immersions 
Sn1(c) C Rn, S1(~T17) C R2 a,nd taking t,he Riema.nnia,n product irnmersion 

S1 ( fr7) x Sn-1 (c) '> R2 x Rn~ we obt,a,in a compact hypersurfa,ce S1 (¥/Tll7) 

xSn'1(c) in Sn+1(1) ¥vith constant scalar curvature n(n - l)r~ ~vhere r' > I - ~ 
1~ ' 

The Exa,mple 2. I shows that, not, all R,iema,nnia,n products Sl (VT17) x ,S'n- I (c) 

appear in t,hese rcsult,s in Theorem 2.1 a,nd Theorem 9-.2. Since t,he Riemannian 
l-)roduct Sl(/r7) x S?7-1(c) has only t~vo distinct, principa,1 curvatures and it,s 

sc,al'ar curvature n('n. - l)'r is const,ant, and sa,t,isfics r > I - ~･ Hence~ we lvould like 

t,o ask t,he follo¥ving: 
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Problem 2.1. Let A,f be an 7?.,dimensiona,1 com.plete hypersurfa,ce with c07?,stant 
sca,la,r c?1,'rvature Tz,('n.  l)r i'r7. Sn+1(1). If A.1 is 0<f only t'tl)o distinct princ'ipal cur-

vat'u,7~es one of which is sim,ple, then, does 7" > I - ~ hold? 

In t,he following Theorem 2.3 we a,nswer t,his Problem 2.1 ~ afiirmat,ively, a,nd prove 

;{-f , then Sl(VTI7) x Sn1(c) is the only complete hypersurfaces in t,h,at, if r ~ 

sn+1(1) with const,a=nt, sc.al'ar curvature n(n - l)r a,nd with two distinct principa,l 
n (r - I ) +2 

n-2 + n2 curva,tures one of which is simple such that S Z (n - l) 
n(r-1)+2 

Theorem 2.3. Let Af be an Tz,-dimensional complete hypersuTface in Sn+1(1) with 

cor?,sta,nt scala,r curvature n(n - l)r aud with two disti7?,ct principa,1 ctl,rvatures o'n,e 
n (?' - I ) + 2 of wh'ich is simple. Then r > I - ~ aud; when r ~ ;f2 ?;,fSZ (n - l) n2 + 

then A.1 is isor7li,etric to the Riemannian product S1(VT17) x Sn1(c) 7~2 
rl('r 1) +2 ; 

Furthermore~ we consider t,he case that, r = ~~2 holds~ we infer the following 

Theorem 2.4. 
(1) Let M be a com,plete h,ypersurface with two distinct principal curvatures 
one of which is simple in Sn+1(1). I,fr - ;;~~, then S > (n - l)n('~,1;+2 + 

n2 the??. AI is isometric to the Clifford = n and if S = n holds on M, 
?'~(r-1)+2 

torus S1( l)xSn-1(')! 
V
,
 (2) There are no complete hypersurfaces with two distinct principal curvatures 

one of which is si,mple iT2, n(T'-1)+2 n  2 Sn+1(1) such that r = and S > (n-1) 
n - I n - 2 + n-2 n(r-1)+2 = n 

V~) is a complete mmmlal Re'rrba,rk 2.3. The Clifford torus Sl(Vrn) x Sn-1( ' 

hypersurface in Sn+1 (1) such that r = ~~~ and S = (n- l) ?'(7'1)+2 n 2 + n-2 - n(r1)+2 = r?. 
From Theorem 2.3, Theorem 2.4, we have 

Corollary 2.1. Let AI be an n-dimensional (n > 3) complete locally conformally 
flat h,ypersurface with co'r~stant scalar curvature T2.(7?, - 1)r in Sn+1(1). Then r > 

n(r~t;+2; then Al is isomet'ric ~~21' if S ~ (n - l) _ 1 - ~ and, wher2, r ~ 

to Sl(/rl7) x Sn-1(c). 

P'roof. Since A,f is a locally conformally flat, hypersurfa,ce, we know that M is of 

at most, t,wo distinct principal curvatures and one of thern is of at least, n - l 

multiplicit,ies. If at some 1')oint, p~ these principal curvat,ures are equal wit,h ea,ch 

ot,1"le,r, t,hen S = nH2 a,t, t,his point p. From thc Gauss equ.a,t,ion, we have S = 

n(r-1)+2 n2 ¥ve have n(r I > 77,H2 = n(r - 1) Z O. Since S Z (n - l) n-2 + ?7'('r1)+2' ~ ~ ) -
?t (r - I ) +2 n2 This is hrl ossible Hence M is of two distinct rinci al (J~ - 1) ?~'-2 + n(1~-1)+2 ' P ' ' ' P P< 

curva,tures and one of them is of n - I multiplicit,ies. From the Theorern 2.3, wc 

kno~v t,hat, AI is isomet,ric to S1(¥/rl7) x Sn1(c). Th･.It is, Coroll'd,ry 2.1 is 

pro¥'ecl. 
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Corollary 2.2. There are no corr',plete locally confor'mally flat T7,-di'rrLensior2,al (n > 

3) hypersur:fa,ces in Sn'+1(1) such th,at r = ~~i a,nd S > (T?'- 1)n(?'-1)+2 n  2 + n - 2 

, n('i'l)+2 Proof. By ma,king use of Theorem 9-.4 a,nd t,he same argument, in Corolla,ry 2.1, we 

kno~v t,hat Corollary 2.2 is true. 

From Theorem 2.3, Theorem 2.4 and Exa,mple 9-.1~ it, is int,eresting to generalize 

t,hcse results hl Theorem 2.1 a,nd Theorem 2.2 t,o the case r > I - ~･ That is~ it, is 

interesting to prove t,he following: 

Problem 2.2. Let M be an n-dimensional complete hyper'surfa,ce with, constant 
n(r-1)+2 j scalar cu'rvature n(n - l)r in Sn+1(1). If r > I - ~ a,nd S ~ (n - l) 
n - 2 T 

n-2 ?1'('r-1)+2' then M is isometric to either the totally umbilical hypersurface or the 

Riemannian product S1(VI~7) x Sn-1(c). 

¥~rhen r = ~~~, we ansv;'er t,his P. roblem 2.2, a,flirmat,ively, in the followh"Ig 

Theorem 2.5. For the general case, we can not ans~~"er it yet. 

Theorem 2.5. Let M be an n-dimensional complete hypersurface with constant 

scalar c21,rvature.n(n- 1)r (r = ;;~~ n(?~ 1~+2 n-2 ) in Sn+1(1). IfS ~ (n-1) ,:'~'-. +n(r1)+2; 

then M zs zsometr~c to the ClifJord torus S (V/r_n) x Sn l(V~,) 

n=2 Proof. Since r = n-1' we know n(r - 1) + 2 = r. From the Gauss equation, we 

have 

O / 2 zJ2 - n 11 

= S + n(n - 1)(r - l) 

~ (n - 1)n(r - l) + 2 n - 2 + ?1.(n - l)(r - l) 
+ n - 2 n(r - l) + 2 

n-2 = (n - l) r T, + n(n - l)(r - 1) 
n-2+ 

= I + (n - l) - = n O 

, n(r?~1;+1~- ~ Hence, ¥ve infer H = O on A,f, tha.t is. A,f is minimal a<nd S = (n - l) _ 
n - 2 n(r1)+'2 = n. Therefore, t,he assert,ion in Theorem 2.5 is true from the Theorem 

l.1. 

In orcler t,o prove Theorem 2.3 and Theorem 2.4, we consider n-dimensional 
hypersurfaces in a, unit sphere Sn+1(1) wit,h const,ant, scalar curva,ture 72;(n - 1)r. 

From now on, we a,ssume that M is an r7,-dimensiorLal coml')let,e hypersurface with 
const,ant, scalar curvat,ure and with t,wo distinct principa,1 c',urva,tures in Sn+1 (1) a,nd 

one of t,hese t,~vo distinct princ.ipal curvatures is simple, t,hat, is, we assume 

Al = A2 = ' A a.nd A?~ = 11. . . = A?~_1 = 

The follo~~'~ing Lemma 2.1 and Lemma 9-.9- hold. 
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Lemma 2.1. If M is of two di,stinct pri77,cipal curvatures and A is the pri'n,cipa,l 

ct!'rva,t'u,re of71' - I multiplicities, we obtain the following; 

(1) When r - I Z O, S ~ (n - l)n(rn~11;+2 + n(rn_Ll;+2 holds ij' and only if 

w~n = A2 - r + I > 71.2r2' 

(2) Wh,en I - ~ < r < I and r ~ ~~, S > (n - l)n(rn~1;+2 + n(?~-1)+2 holds ~:f n-2 

a'n,d only if one of the following conditiOns holds 

n 2 1 ~ (a). w =A2-r+1 > aTrdA > l-r - n-2 
n 2r andA2 < I -r (b). w~ =A2 -r+ I < 

- n-2 
Lemma 2.2. Let A,f be of' two distinct principal curvattl,res and let A denote the 
pT'incipal ct!'rva,ture of n - I mtl,Itiplicities. If r ~ I - ~ , ther2 d~!s) is a monotone 

increasing fu7?,ctio'rb of s. 

Proof of Theorem 2.3. From t,he assumption of Theorem 2.3~ we know that if ~) is 
constant, t,hen A is constant beca,use of w~n = A2 - r + l. Hence, the Theorem 2.3. 

is true. Next,, we shall prove that w must be constant. If w is not, constant, we 
shall obt,a,in a, contra^diction. In fa,ct, since w~n = A2 - r + I sat,isfies the equation 

d 2 w n-2 In ~T)=0~ - w( (2.4) 
d s2 2 w 

we know that w(s) is a function defined in (-oo~ +0o) beca,use M is complete a,nd 

the integra,1 curvc of principal vector field corresponding to /x is a geodesic. From 

LelTmla 2.1~ we conclude the following: 

n(r-1)+2 n-2 + n2 holds if and only if (1) if T' - I Z O, then S Z (n - 1) 
n(r-1)+2 

wn = A2 - r + I > n2r2' 

n(r-1)+2 ?~2 (2) if I - ~ < r < I and r ~ n_n'~i, S ~ (n - 1) + n(r-1)+2 holds if and 

only if one of the following conditions holds 

(a). w~n = A2 - r + I Z n2~72 and A2 ~ I - r 

and A2 < I -(b). w~ =A2 -r+1 < r - n-2 
From the equation (2.4), we obt.ain 

(1) if r < I - ~ then from Lemma 2.2 we know -wd is an inc.rca,sing function 

of s 

(2.) if r - I Z O, then 

d2w > o 

ds2 ~ 
(3) if I - ~ < r < I and r ~ 'i~-2, t,hen one of the following ine,qualit,ies 

?~' 

d 2 w 

>0 ds2 ~ 

and 
d 2 Ijj 

ds2 ~ O 

is s'at,isficd. 
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Hence, eit~her cJLu)=d~ is a,n increasing funct,ion of s or rL~~Lu'tw is a decre,asing' function of 

s if t!) is not const,ant,. Hence, ~ve infer tha,t it is_ impossible from t,he following 

Proposit,ion 2.1.. The proof of Theorem 2.3. is complet,c'd. 

Proposition 2.1. Let M be an ndimensional com;plete hypers~1,'rfrl,ce 'u)ith, constant 

scalar' cuT'vature ?~'(n - l)r and with two distinct principal cur'va,t?1,res in S~I+1(1). 

Let A denote the principal curvature of n - I multiplicities. Th,er7, ~l;(s) is cor?,stant 

dw(s) u
f
 
ds is a monotone function of s 

Proof o,f Theore'm; 2.4. (1). Since r = n-2. we have 
n-1 ' 

S = (n - l)A2 + I~2 

n(r - 1) n - 2 
= (n - l)A2 + ( - 2 

A
)
 2A 2 n2 n2(r - l)2 _ n(n - 2) (r - 1) 

A2 + 

~ 4 4A2 2 n2 l (A - )2 + n ~ 4 (n - l)A 
> n. 

And S = n at some point if and only if A - 1 = O that is A2 = 
(n1)A ' ' 

n~1 at t,his 

point. Frorn t,he Ga,uss equation, we know tha,t, M is minimal at t,his point. Hence~ 

if S = n on M holds, then M is a minimal hypersurfa,ce. F'rcurL the t,heorem 1.1, we 

know that, M iS iSometriC to the Clifford torus Sl(/) x Sn l(V~) 

(2). SirLce r = ;;~~ , by making use of the same proof as one in Theorem 2.3, we 

kno¥v t,ha,t S > (n - 1) n(r-1)+2 n-2 + n2 holds if and only if one of the following 
n(r-1)+2 

condit,ions holds 

(a). w~n = A2 - r + I > n2r2 and A2 > I - r 

(b). wn = A2 - T. + I < n2r2 and A2 < I - r 

T?.(r  I ) +2 n - 2 + n - 2 7~' holds if a,nd only if A2 = I - 7' holds 'and S = (n - l) n('r1)+2 = 
n(r1)+2 n-2 + n-2 holds and A2 is a cont,inuous funct,ion of s, we Since S > (n- l) 

n(r-1)+2 
conclucle t,ha,t A2 ~ I - r. Hence, we infer th,at, either d-w is 'a,n inc'.reasing funct,ion of 

d s 

s r d-~!; is a decrea=sin~r funct,ion of s if w is not const,ant,. Henc,e. ~ve infer t,hat, w(s~ 

1 . Hence is const,arrt, frorn the a,bove Proposition 2.1. From (2.4) we have A2 -
~ n-1 

n(r~ 1~+2 n--'! = n. This is hnpossible. The proof of Theorem 2.4 S = (72, - l) ,tT_. + n(r-1)+2 

is complet,ed. 

For subrna,nifolds wit,h higher codimensions, we obt,a.ined in [2]: 

Theorem 2.6. Let Aln be an n-dirn,eT2,sional (??, > 2) compact submanifold with 
constar',t sca,laT' curvatur'e n(n - l)r satisf:ying ?' > I i'n, th,e ur','it sphere Sn+p(1). If 

S ~ a'(n, r), 
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squarcd　nor皿ofthc　second　f皿互xia．inent＆1fon皿＆nd　the㎜ean　curv＆ture，respective1y．

h［2］，the　a耐hor　s～d三ed－s泌bn蛾豆｝玉fo1ds　with　co鵬t泳nt　sca1ar　curv就ure　in　Euc1ide泓n

spaccs＆nd　s皿ccessfu11y　pmved　the　fo11owing：

珊eorem3ユ．珊パo舳μα舳伽α～ψ鮒，伽きo舳”εo伽化肋cZ肋α“μc6
Rれα棚伽g㎝εグ舳舵d　cψ舳ぴR1×3卜1αブε伽o几勿ω岬1ε亡θれ一幽m㎝3づonα1

舳6mα〃oZゐω舳coη8亡α〃5cα1αザ㎝mα左刎ザεれ（れ一1）γ伽α莇c1沽α肌即㏄εR叶P，

舳・1川榊3≦γ工（芸三1）「1舳舳Hεη淋伽・榊棚・・ヅm・！伽舳・d伽一
ぬm㎝亡αけ0㎜。

刀θ肌αザん3．1．The　i亙west三g＆t亘on　Of　hypers泄rf＆ces　with　const＆批sca！肌curv＆ture三n

E泄c1id俄ns脾㏄s　wasbee篶d－one　wry　weu，b砒thestud－y　ofsubm我nifo1d－s　with　highcr

codimensions　and　wi尤h　c（）nstanもscalar　c汲rv就ure　in　Euc1id－ean　spaces　is　not　done

a1most．Hence，亡he　res砒is　very　in｝portant　fOr　the　forward　research　ofsub蛆泓nifo1ds

with　const舳t　sca1鮒c皿rv眺篶亙℃．
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