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COMPLETE SUBMANIFOLDS IN SPHERES*

QING-MING CHENG

Dedicated to Professor Katsuhiro Shiohama on his siztieth birthday

It is the purpose of this article to discuss complete submanifolds in spheres.
Complete submanifolds with parallel mean curvature vector in spheres and complete
submanifolds in spheres with constant scalar curvature will be mentioned. A result
of complete submanifolds in Euclidean spaces with constant scalar curvature is also
announced.

1. SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR

In this section, we shall study submanifolds with parallel mean curvature vec-
tor in spheres. First of all, we consider minimal submanifolds. Let M be an
n-dimensional compact minimal submanifold in the unit sphere S”*?(1). Then the
following Theorem due to Chern, do Carmo and Kobayashi [9] is well-known:

Theorem 1.1. If M is an n-dimensional compact minimal submanifold in the

unit sphere S"TP(1) with S < 5—1 . then M is totally geodesic, or p =1 and M is

P
wsometric to the Clifford torus, or p = n = 2 and M is isometric to the Veronese
surface. Where S denotes the squared norm of the second fundamental form.

Remark 1.1. In [10], Li and Li extended the pinching constant § < ="+ to S < %
P

2
if the codimension p is greater than 1.
In particular, when M is a minimal hypersurface, Cheng and Yang [7] extended
the result due to Chern, do Carmo and Kobayashi as the following:

Theorem 1.2. Let M be a compact minimal hypersurface in S"1(1) with constant
scalar curvature. If S < n+ %, then S =0 and M is totally geodesic or else S =n
and M is isometric to the Clifford torus.

In particular, when n = 3, Cheng and Wan [6] obtained the following
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Theorem 1.3. The totally geodesic sphere, the Clifford torus and the tube of the
Veronese surface are the only complete minimal hypersurfaces in S*(1) with con-
stant scalar curvature.

As a generalization of the result due to Chern, do Carmo and Kobayashi, Nomizu
and Smyth [12] studied hypersurfaces with constant mean curvature in the unit
sphere and proved the following:

Theorem 1.4. Let M be an n-dimensional hypersurface with constant mean cur-
vature in the unit sphere S"*1(1).

(1) If M is compact and the sectional curvature of M is nonnegative, then
M is isometric to the totally umbilical sphere or the Riemannian product
Sk (c1) x S*(ey) of spheres.

(2) When M is complete and the scalar curvature of M is constant, if the
sectional curvature of M is nonnegative, then M is isometric to the totally
umbilical sphere or the Riemannian product S" *(c1) x S¥(ca) of spheres.

Proof. By a direct computation, we have

1 7
(1.1) 5AS = >0 R+ (= ) Ry
ij,k=1 i<j

(1). If M is compact, we have that principal curvatures are constant and the
number of distinct principal curvatures is at most two from the Stokes formula
because the sectional curvature of M is nonnegative. The classification of isopara-
metric hypersurfaces due to Cartan yields that Theorem 1.4 holds.

(2). If M is complete and the scalar curvature is constant, we also have that
principal curvatures are constant and the number of distinct principal curvatures is
at most two from (1.1) because the sectional curvature of M is nonnegative. This
finished the proof of Theorem 1.4.

In particular, when n = 3, Cheng and Wan [6] completely classified complete
hypersurfaces with constant mean curvature and constant scalar curvature in the
unit sphere S*(1), that is, the following is proved:

Theorem 1.5. Let M be a 3-dimensional complete hypersurface with constant
mean curvature in the unit sphere S*(1). If the scalar curvature is constant, then
M is isometric to the totally wmbilical sphere, the Riemannian product S™ *(c1) x
Sk(cy) of spheres (k = 1.2) or the isoparametric hypersurface with three distinct
principal curvature due to Cartan.

For general cases, submanifolds with parallel mean curvature vector in spheres
were researched by many mathematician ( for examples, Alencar and do Carmo [1],
Cheng and Nakagawa [4], Shiochama and Xu [14], Yano and Ishihara [15]. Yau [18]
and so on). In particular, Shiohama and Xu [14] proved the following:
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Theorem 1.6. Let M be an n-dimensional compact submanifold with parallel mean
curvature vector in the unit sphere S"P(1). If

S < C(n,p, H),

then M 1is isometric to one of the following:
(1) the totally umbilical sphere;
(2) the Riemannian product S"~'(c1) x S*(ca) of spheres;
(3) the Veronese surface.

where
n+ ———-——2(::)1‘[2 - g((f 12) Vn2HY + 4(n — 1)H?,
; forp=1, orpzZandH;éO,
C(n,p,H) = 2 _ n(n-2) 2774 2
min{n + 5= 1)H ) oy Vn2H* +4(n — 1)H?,

5(2n—i—5nH2 by forp >3 orp=2and H=0.

Where H denotes the mean curvature.

2. SUBMANIFOLDS WITH CONSTANT SCALAR CURVATURE

In this section, we shall consider submanifolds in sphere with constant scalar
curvature. When the codimension is one, in [8], S.Y. Cheng and Yau proved the
following:

Theorem 2.1. Let M be an n-dimensional compact hypersurface with constant
scalar curvature n(n — 1)r, if r > 1 and the sectional curvature of M is non-
negative, then M is isometric to either the totally umbilical hypersurface or the
Riemannian product S*(c1) x S"F(c2) 1 < k < n — 1, where S¥(c) denote the
sphere of radius c.

Proof. By a direct calculation, we have

(2.1) O(nH) = > hiy —nPlgradH >+ (A = Aj)° Ky
1,3,k 1<j

where K;; is the sectional curvature for the 2-plane spanned by e; and e; and A;, for
1 =1,2,- - ,n are the principal curvatures. Since the scalar curvature is constant,
we have from the Gauss equation, we have

MPHV H =2 Z N Bk

Hence, we have, from r > 1,

(2.2) Z hZy > n?|grad H .
i3k
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From Stokes formula, we obtain that the mean curvature H is constant since the
sectional curvature is non-negative. Therefore, from the Theorem 1.4, we know
that Theorem 2.1 is true.

Remark 2.1. The differential operator [J is defined by, for any differentiable function
f defined on M,

n
Of = Y (nH — hyy)ViV,f,
ij=1
where H and h;; denote the mean curvature and the components of the second
fundamental form of M, respectively.
By making use of the similar method which was used by Nakagawa and the
author in [4] and the above differential operator O introduced by S.Y. Cheng and
Yau, Li [11] proved the following:

Theorem 2.2. Let M be an n-dimensional compact hypersurface with constant
scalar curvature n(n — 1)r, if r > 1 and
(r—1)+2 n—2

n—2 n(r—1)+2’

(2.3) S<(n-1)2

then M 1is isometric to either the totally umbilical hypersurface or the Riemannian
product ST (V1 —c?) x S""Ye) with ¢ = 22 < 222 yhere S is the squared norm
of the second fundamental form of M.

Proof. Since (2.3) holds, we can prove that

> (N = X)?Ki; > 0.

1<j

Hence, from the same assertions as in proof of Theorem 2.1, we can infer that the
mean curvature H is constant and M is an isoparametric hypersurface with at most
two distinct principal curvatures. Hence, Theorem 2.2 is proved.

Remark 2.2. We should notice that the condition r > 1 plays an essential role in
the proofs of the above Theorem 2.1 and Theorem 2.2.
On the other hand, we consider the following example:

Example 2.1. For any 0 < ¢ < 1, by considering the standard immersions
Sn=1c) ¢ R™, SY(V1 — ) € R? and taking the Riemannian product immersion
SHV1 —¢2) x S"1(c) — R?x R™, we obtain a compact hypersurface S*(v/1 — ¢2?)

xS™ 1(c) in $"T1(1) with constant scalar curvature n(n — 1)r, where r > 1 — 2.

The Example 2.1 shows that not all Riemannian products S*(v/1 — ¢?) x S"71(c)
appear in these results in Theorem 2.1 and Theorem 2.2. Since the Riemannian
product S1(+/1 — c2) x S"~1(c) has only two distinct principal curvatures and its
scalar curvature n(n — 1)r is constant and satisfies r > 1 — f; Hence, we would like
to ask the following:
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Problem 2.1. Let M be an n-dimensional complete hypersurface with constant
scalar curvature n(n — 1)r in S"TYH1). If M is of (m/y two distinct principal cur-
vatures one of which is simple, then, does r>1— £ hold/

In the following Theorem 2.3 we answer this Problem 2.1, affirmatively, and prove
that if 7 # =2 then S'(V/1 — ¢?) x §""}(c) is the only complete hypersurfaces in
S7+1(1) with constant scalar curvature n{n — 1)r and with two distinct principal

n(r—1)+2 ~2
) n—2 + n(;l—l)—%?'

curvatures one of which is simple such that S > (n —

Theorem 2.3. Let M be an n-dimensional complete hypersurface in S™+1(1) with

constant scalar curvature n{n — 1)r and with two distivzct principal curvatures one

of which is simple. Then r > 1 — 2 and, when r # o=, ifS>(n— 1)M +

n n—2

;;(,—rﬁjl%—;i, then M s isometric to the Riemannian pr()duct SHVT = ¢2) x S (e).

Furthermore, we consider the case that r = -’;—_—2

-1
Theorem 2.4.

(1) Let M be a complete hypersurface with two distinct principal curvatures

holds, we infer the following:

one of which is simple in S"tY(1). If r = 2=2 then S > (n—1 w -+
D n—1 n—2
Wﬁﬁ =n and if S = n holds on M, then M is isometric to the Clifford

torus Sl(\/g) x 5‘"—1(\/—n7_?);

(2) There are no complete hypersurfaces with two distinct principal curvatures

one of which is simple in S"+1(1) such thatr = =2 - )ﬁ(—%%i%
_2 .
+n(rn——1)+2 = .

n

hypersurface in S"*1(1) such that r = 2=2 and S = (n—1) "(Tn__lyz + n(T”:f;‘H =n.

Remark 2.5. The Clifford torus Sl(\/—) Sn=1(,/2=1) is a complete minimal

From Theorem 2.3, Theorem 2.4, we have

Corollary 2.1. Let M be an n-dimensional (n > 3) complete locally conformally
flat hypersurface with Comtam‘ scalar curvature n(n — 1)r in S"1(1). Then r >

1— 2 and, whenr # 2=2 if S > (n — )2 =2 yhen M s isometric

n—2 n(7'~1)+2’
to SY(v1—c?) x S™~ 1((,).

Proof. Since M is a locally conformally flat hypersurface, we know that M is of
at most two distinct principal curvatures and one of them is of at least n — 1
multiplicities. If at some point p, these principal curvatures are equal with each
other, then S = nH? at this point p. From the Gauss equation, we have S =

nH? = n(r — 1) > 0. Since S > (n — )"(Tn 1%“ + n(_r”’:f)*_z, we have n(r — 1) >

This is impossible. Hence M is of two distinct principal

) n(r—1)+2 n~—2
(”'*1) n—2 +n(r~1)+2'

curvatures and one of them is of n — 1 multiplicities. From the Theorem 2.3, we
know that M is isometric to S1(v/1—c2) x S""1(c). That is, Corollary 2.1 is
proved.
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Corollary 2.2. There are no complete locally conformally flat n-dimensional (n >

3) hypersurfaces in S**1(1) such that r = 2=2 and S > (n—1) "“;f;“ + n(f_'ﬁﬂ.

Proof. By making use of Theorem 2.4 and the same argument in Corollary 2.1, we
know that Corollary 2.2 is true.

From Theorem 2.3, Theorem 2.4 and Example 2.1, it is interesting to generalize
these results in Theorem 2.1 and Theorem 2.2 to the case r > 1 — 2. That is, it is

n
interesting to prove the following:

Problem 2.2. Let M be an n-dimensional complete hypersurface with constant

scalar curvature n(n — 1)r in S"TY(1). Ifr >1—2 and S < (n— I)Eﬁn::%ﬂ -+
n—2

IS IEST then M is isometric to either the totally umbilical hypersurface or the
Riemannian product S*(v/1 — c?) x S"~1(c).

When r = Z:%, we answer this Problem 2.2, affirmatively, in the following

Theorem 2.5. For the general case, we can not answer it yet.

Theorem 2.5. Let M be an n-dimensional complete hypersurface with constant

scalar curvature n(n—1)r (r = 2=2) in S"T1(1). If S < (n—l)ﬁ(—i{:%j—%nL;l—(fi%;g,

then M is isometric to the Clifford torus S*(y/ L) x S"71(y/ ”7—:1)

Proof. Since r = ?L{%, we know n(r — 1) + 2 = r. From the Gauss equation, we
have
0<n?H?
=S+n(n-1)(r-1)
n(r—1)+2 n—2
<(n—1 nin—1)(r -1
s(n-1) n—2 n(r—l)+2+n(n ) )
—2
=(n-—1) U +n(n—1)(r—1)

n—2 T
=14+(n-1)—n=0.

Hence, we infer H = 0 on M, that is, M is minimal and S = (n — 1)%*—'—% +
;(7"?% = n. Therefore, the assertion in Theorem 2.5 is true from the Theorem

1.1.

In order to prove Theorem 2.3 and Theorem 2.4, we consider n-dimensional
hypersurfaces in a unit sphere S"*1(1) with constant scalar curvature n(n — 1)r.
From now on, we assume that A is an n-dimensional complete hypersurface with
constant scalar curvature and with two distinct principal curvatures in S™*1(1) and
one of these two distinct principal curvatures is simple, that is, we assume

M=X=-=X _1=XA and X\, = .

The following Lemma 2.1 and Lemma 2.2 hold.
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Lemma 2.1. If M is of two distinct principal curvatures and A is the principal
curvature of n — 1 multiplicities, we obtain the following:

(1) Whenr -1 >0, S > (n— 1)"’<T_1)+2 + —"=2 _ holds if and only if

n—2 n(r—1)+2
o =T e N2 2r
wt =AM —r+ 1> S

(2) Whenl—2<r<landr#2=2 5> (n- 1)"(7'7;1%Jr2 +
and only if one of the following conditions holds
(a). w“”zkz—r%‘lz% and N2 >1—r

(b). w_”:)\2~7"+1§h-2§§ and A2 <1—r.

-2 .
n(rn»1)+2 holds if

Lemma 2.2. Let M be of two distinct principal curvatures and let A denote the

principal curvature of n — 1 multiplicities. If r <1 — %, then dzﬁi“’) 8 a monotone

increasing function of s.

Proof of Theorem 2.8. From the assumption of Theorem 2.3, we know that if w is
constant, then X is constant because of w™" = A2 —r + 1. Hence, the Theorem 2.3.
is true. Next, we shall prove that w must be constant. If w is not constant, we
shall obtain a contradiction. In fact, since w™™ = A\? — r + 1 satisfies the equation
d*w n—21

(24) ”CZS—Q— - ’lU( B E’E - ’)") o= 0,
we know that w(s) is a function defined in (—oo, +00) because M is complete and
the integral curve of principal vector field corresponding to pu is a geodesic. From
Lemma 2.1, we conclude the following:

(1) if r —1 > 0, then § > (n — 1)nr=1+2 n=2 _ holds if and only if

n—2 + n(r—1)+2
wr =A% -7 1> 2
(2 if1-2<r<landr# 22 §>(n—1)2=E2 4 02 holds if and
only if one of the following conditions holds
(). wm=AN—-r+1> ;L-z:’"—z and \2>1—r

(b). wr=A—-r4+1< nzjz and A2 <1—r.

From the equation (2.4), we obtain

1) if <1 — 2, then from Lemma 2.2, we know %% is an increasing function
_ n ds 8
of s
(2) if r—12>0, then
2
d*w > 0.
ds?
(3) if 1 — —% <r<landr# %:—f then one of the following inequalities:
d*w >0
ds? —
and )
d*w
<0
ds?

is satisfied.
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Hence, either % is an increasing function of s or % is a decreasing function of
s if w is not constant. Hence, we infer that it is impossible from the following
Proposition 2.1. The proof of Theorem 2.3. is completed.

Proposition 2.1. Let M be an n-dimensional complete hypersurface with constant
scalar curvature n(n — 1) and with two distinct principal curvatures in S™(1).
Let A denote the principal curvature of n — 1 multiplicities. Then w(s) is constant

- dw(s) - -
if = is a monotone function of s.

Proof of Theorem 2.4. (1). Since r = —Z{%, we have

S=(n—1\+pu?
nir—1) n-—2

= (= 1)+ (P - TSy
_ %;)\2 N n2(z/\—2 1)* n(n: 2) (r—1)
2 1
- %()\ - (n— 1))\)2 o
> n.
And S = n at some point if and only if A — (H~—117X = 0, that is, A = =L at this

point. From the Gauss equation, we know that A is minimal at this point. Hence,
if S =n on M holds, then M is a minimal hypersurface. From the theorem 1.1, we

know that M is isometric to the Clifford torus Sl(\/g) x ST/ 2=).

(2). Since r = 2:%, by making use of the same proof as one in Theorem 2.3, we

n(r—1)+2 —2
1) n—2 + 17,(7?1—1)-{’2

know that S > (n —
conditions holds

(a) w =X =r+1>2-and A2 >1-7r

holds if and only if one of the following

B wr=AN-r+l<and ¥ <1—r.
and S = (n — 1)"’(7;']‘%+2 + 71(,?1:12) +5 = n holds if and only if A2 = 1 — 7 holds.
Since S > (n—1) "(Tn'_l%ﬁ + n(rn—-_12)+2 holds and A? is a continuous function of s, we
conclude that A2 # 1 —r. Hence, we infer that either %—% is an increasing function of

sor ‘ii;’ is a decreasing function of s if w is not constant. Hence, we infer that w(s)

is constant from the above Proposition 2.1. From (2.4) we have \* = n%i Hence,

S=(n-1) "'(7;3“ + n(,r”:l% — = n. This is impossible. The proof of Theorem 2.4

is completed.
For submanifolds with higher codimensions, we obtained in [2]:

Theorem 2.6. Let M™ be an n-dimensional (n > 2) compact submanifold with
constant scalar curvature n(n — 1)r satisfying v > 1 in the unit sphere S"+P(1). If

S < afn,r),
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then M™ is isometric to the totally umbilical sphere S™(r) or the Riemannian prod-
uct S*(V1 = ¢2) x S"Y(c) with c = =2, where S is the squared norm of the second
fundamental form of M™ and

n(r—1)+2 _
(71 - ])”( 71—%+ + 71(1‘711%“%2’ fOT'p S 27
2 .
a(n,r) = ¢ n(r—1)+ 3”_5““27:2:2_1)(7 L)
— n-—-1)(r— ,24-2n—2)(r—1)2 -
_ (n=2)y/4+2(3n 1)(2nzg+(n +2n—2)(r—1)  forp> 3

3. SUBMANIFOLDS IN EUCLIDEAN SPACES

In [5], Cheng and Nonaka proved that a complete n-dimensional submanifold
with parallel mean curvature vector in a Euclidean space R™'P is isometric to
the totally umbilical sphere, or the totally geodesic Euclidean space R™ or the
generalized cylinder R x S7~1if § < % is satisfied. Where S and H denote the
squared norm of the second fundamental form and the mean curvature, respectively.
In [2], the author studied submanifolds with constant scalar curvature in Euclidean

spaces and successfully proved the following:

Theorem 3.1. The totally umbilical sphere, the totally geodesic Euclidean space
R™ and the generalized cylinder R} x S™~1 are the only complete n-dimensional

submanifolds with constant scalar curvature n(n — 1)r in a Euclidean space R"*P,
which satisfy S < E—(Z—:;lf

damental form.

Where S denotes the squared norm of the second fun-

Remark 3.1. The investigation of hypersurfaces with constant scalar curvature in
Euclidean spaces was been done very well, but the study of submanifolds with higher
codimensions and with constant scalar curvature in Euclidean spaces is not done
almost. Hence, the result is very important for the forward research of submanifolds
with constant scalar curvature.
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