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TOTAL CURVATURE FOR OPEN SUBMANIFOLDS OF
EUCLIDEAN SPACES

FRANKI DILLEN AND WOLFGANG KUHNEL

ABsSTRACT. The classical Cohn-Vossen inequality states that for any Riemannian
2-manifold the difference between 27y (M) and the total curvature [ u KdA is
always nonnegative. For complete open surfaces in E® this curvature defect can be
interpreted in terms of the length of the curve “at infinity”. The goal of this paper
is to investigate higher dimensional analogues for open submanifolds of euclidean
space with cone-like ends. This is based on the extrinsic Gauss-Bonnet formula
for compact submanifolds with boundary and its extension “to infinity”. It turns
out that the curvature defect can be positive, zero, or negative, depending on the
shape of the ends “at infinity”. Furthermore we study the variational problem for
the total curvature of hypersurfaces where the ends are not fixed. It turns out
that for open hypersurfaces with cone-like ends the total curvature is stationary
if and only if each end has vanishing Gauss-Kronecker curvature in the sphere
“at infinity”. For this case of stationary total curvature we prove a result on the
quantization of the total curvature.

1. Introduction. The total curvature of Riemannian manifolds and submanifolds
has been a field of active research during the last 150 years. For compact manifolds
the so-called Gauss-Bonnet theorem is a milestone in differential geometry, both
in an extrinsic and an intrinsic version. It states that a certain curvature quan-
tity of the interior of a compact manifold plus another curvature quantity of the
boundary (including a discussion of angles if there are any) equals the Euler char-
acteristic, up to a constant depending only on the dimension. The intrinsic version
for even-dimensional manifolds is nowadays often called the Gauss-Bonnet-Chern
theorem. The extrinsic version is closely related with the Hopf index theorem, with
the mapping degree of the Gauss map and with the study of critical points of height
functions.

In the non-compact case Cohn-Vossen investigated the total curvature of a com-
plete open 2-manifold. In this case the boundary term is missing, and therefore in
general the same equality between the total curvature and the Euler characteristic
cannot hold. However, the missing boundary term is always nonnegative, leading to
the so-called Cohn-Vossen inequality.
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For higher-dimensional open manifolds, this missing boundary term is much less
understood, neither extrinsically nor intrinsically. In any case one has to assume
that the manifold is of finite topology and that the curvature is globally absolutely
integrable.

For hypersurfaces or submanifolds of euclidean space I[E"™! an extrinsic version

was investigated by P.Wintgen by means of the set of limit directions. By definition
this set is the part of the unit sphere S® C JE"*! which appears as the compactifi-
cation of M “at infinity”. If the submanifold behaves “asymptotically cone-like” at
the ends (in a sense to be specified below), then the ordinary Gauss-Bonnet theorem
implies the following result:
Theorem 1. If M™ C IE™"! is a complete submanifold with finitely many cone-like
ends, then the difference between the Euler characteristic and the total curvature can
be explicitly expressed as a sum of the even higher total mean curvatures of the set
“at infinity”, denoted by Mo C S™:

cnx(M) =TCa(M) = 3~

0<2i<n—1

Em TCoi(Mso)

Cm—n+2iCn—1-2i

Here ¢, denotes the volume of the k-dimensional unit sphere, and T°C) denotes
the (non-normalized) k% extrinsic total curvature in JE™*! or in S™, respectively.

This expression allows a further discussion of the validity of the Cohn-Vossen
inequality. It turns out that there is a simple 4-dimensional example in euclidean
5-space where this inequality does not hold. Remarkably enough, for this example
the total curvature is stationary in the class of all submanifolds with cone-like ends.
In more generality the variation of the total curvature leads to the following:
Theorem 2. Let M™ C IE™! be a complete open hypersurface with finitely cone-like
ends, n even. Then the gradient of the total curvature functional is the Gauss-
Kronecker curvature of the hypersurface “at infinity”.

This raises the question for a classification of compact hypersurfaces in the stan-

dard unit sphere with vanishing Gauss-Kronecker curvature. One can also ask for
the possible values of the total curvature in the stationary case. There is a partial
result as follows:
Theorem 3. Let M* C IE® be a complete open hypersurface with finitely many cone-
like ends and with stationary total curvature. Assume that for each end the rank of
the shape operator in the sphere “at infinity” is constant. Then the normalized total
curvature takes values in the integers:

3
KdV € Z.
7 Jar

Details and proofs will appear elsewhere.

2. The Cohn-Vossen inequality. For a compact oriented (and connected) Rie-
mannian 2-manifold (M, g) with boundary dA the classical Gauss-Bonnet theorem
states the equation

2mx(00) - |

M

KdA:/ k(s)ds
oM
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where x denotes the geodesic curvature on the oriented boundary.

In the case of non-compact 2-manifolds things are a little bit more complicated.
First of all one should assume that (M, g) is complete because for non-complete
metrics one cannot expect general results on the total curvature. Secondly, the
quantities x(M) and [,, KdA need not be finite numbers. If we assume that M

is of finite topological type then M is homeomorphic to a closed surface M with a
finite number py,...,pr of points removed (called ends), & > 1. Finally, one has
to assume that the Gaussian curvature K is absolutely integrable over M, that is,
Jas 1K |dA < oo. Then the following holds:

Theorem. (Cohn-Vossen) If (M, g) is a complete Riemannian 2-manifold of finite
topological type and with absolutely integrable Gaussian curvature K then the in-
equality

2mx (M) —/ KdA >0

Iy
holds. In particular we have [,, KdA < 2 if M is non-compact.

There are more subtle versions for the case that M is not of finite topological
type (then we can formally set x(M) = —oo) and that [,, KdA attains a value in
the extended real numbers [—o0, +-00]. Here the statement is that the Cohn-Vossen
inequality still holds. Furthermore, there are a number of additional conditions
under which the Gauss-Bonnet equality 27x(M) — [,, KdA = 0 continues to hold
in the non-compact case.

From the Gauss-Bonnet formula it seems to be obvious that the curvature defect
2x(M) — [,, KKdA can be calculated or controlled by the geodesic curvature of the
boundary curves in an exhaustion

MiCcMyCMsC---CM

of the given surface M by compact surfaces M; with boundary. However, it took a
surprisingly long time until this curvature defect was well understood.

P. Wintgen suggested that the curvature defect of a complete and properly im-
mersed surface in 3-space is the length of the set M, of so-called limit directions
limy, oo H%%;ﬂ He conjectured that one can always assign a finite length to this
set it the total curvature is finite. Unfortunately, this is not true in general, not
even if the norm of the second fundamental form is square integrable, a stronger

assumption.

3. The extrinsic Gauss-Bonnet theorem. For investigating higher dimensional
analogues of the classical Gauss-Bonnet formula for 2-manifolds, one can look at the
integrated extrinsic curvature of a compact hypersurface. Here a suitable type of
curvature is the Gauss-Kronecker curvature (defined as the determinant of the shape
operator) K = K, where n is the dimension of the manifold. In the even-dimensional
case this curvature is independent of the unit normal, in the odd-dimensional case
its sign depends on the unit normal. It is well known that K is intrinsic if n is even.
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NoTATIONS: In the sequel K denotes the Gauss-Kronecker curvature. The con-
stant ¢, denotes the volume of the standard unit sphere. These constants can be
expressed in terms of the Gamma function as follows: ¢, , = 27"/2/T'(n/2). The
symbol dV denotes the volume element of a submanifold, sometimes in the form
dViy for specifying the manifold on which it is defined.

The following theorem is classical.

Theorem (Gauss-Bonnet-Hopf). Let M™ C IE™*! be an embedded compact hypersur-
face such that M is the boundary of its interior My, C IE™! and let K denote
the Gauss-Kronecker curvature of M with respect to the inner normal (pointing to
Mint ). Then the following hold:

(1) jM [(dVM = Cp " X(]\{mt)

(ii) If n is even then x(M) = 2x(Mun) and, consequently, [, KdVa = % - x(M).

Moreover, this equality holds for arbitrary immersions f: M — IE™ of a
compact orientable n-manifold, even if M is not the boundary of some (n+1)-
manifold.

The essential difference between even and odd dimensions is that (ii) holds inde-
pendently of the nature (or even the existence) of an interior M;,;. As a matter of
fact, for odd dimensions the total curvature does depend on the choice of My, i.e.,
on the choice of the embedding.

In the case of submanifolds of higher codimension one has to regard the so-called
Lipschitz-Killing curvature which is defined as the determinant of the shape operator
A, in direction of a specific unit normal e

(A(X),Y) = (VxYie).

Therefore integrating the curvature requires the space of all unit normals of all points
(the total space of the unit normal bundle of an embedding or immersion)

LY (M) ={(p,e) | p€ M,|le]| =1,e L T,M}.

For a submanifold M™ C E™*! 1! (M) can be regarded as a submanifold of the
tangent bundle of JE"*!, or as a submanifold of M x I[E"*!. This space 1! (M) carries
a canonical orientation (induced by the outer normal) which is compatible with the
orientation of the ambient space, and it caries a so-called canonical volume form
dVon which is induced from this orientation. Locally we have dV, ., = dVjy AdVgn-m.
NoraTIONS: In the sequel K or K, denotes the Lipschitz-Killing curvature where
n indicates the dimension of the manifold where it is defined. More precisely, we
use the symbol K(e) or K,(e) for the Lipschitz-Killing curvature in direction of a
unit normal e.
Theorem. Let M"™ C IE™! be an embedded compact submanifold without boundary
(or an immersion of M), and let K denote the Lipschitz-Killing curvature, defined
on the unit normal bundle L' (M). Then the Gauss-Bonnet formula holds in the
Jollowing form:

/ KdVean = cm - X(]\/[)
L1(A)
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Moreover, if M is even we have x (L' (M)) = 2x(M).
In order to extend the extrinsic Gauss-Bonnet theorem to compact submanifolds

with boundary, one has to find an appropriate analogue for the right hand boundary
term in the classical formula

2mx (M) —‘/ KdA = w(s)ds.
M oM

In any case we have to distinguish between wnner points p € M \ dM and boundary
points p € OM. In the interior the curvature will be defined as above, i.e., at a point
p we consider the curvature

K(p) = 1 K, (e)dVsm-n
ecl}

and the total Lipschitz-Killing curvature
K(p)dVM = / I(nd‘/can~
Jpem 11
At the boundary it is quite natural to consider only the outer unit normals and to
integrate only over the set
L2 (0M) = {(p,e) | p€ OM, |le|]| = 1,p L T,0M, (e, voue) > 0}

where v, denotes the specific outer unit normal vector which is tangent to M,
which is perpendicular to dM and which points away from M.
Definition. (unit normal space, total curvature) For a compact submanifold M" C
IE™*! with boundary M we define the unit normal space N* by

N'=1'(M)u L} (0M).

It carries a canonical volume form dV,, as in the case without boundary. Then
the total curvature of M is the sum of the total curvatures of the two parts from
LY (M \ dM) and from L (9M):

JKchan :/ Kn(e)d%an+/ Kn—l("e>d%anu
1 ec LI (M\OM)

eell (OM)

TC(M,0M) = /

N

Theorem. For a compact submanifold M™ C IE™! with boundary OM (or an im-
mersion of M) the Gauss-Bonnet formula holds as follows:

TC(M,0M) = ¢, - x(M).
If m is even then we have x(N') = 2x(M).

Hence the Gauss-Bonnet difference term
emx (M) —/ K, dVean
L1(M\OM)

can be expressed as the integral over K,,_; over the set of outer unit normals at OM.

In view of an exhaustion of a noncompact manifold by compact manifolds with
boundary, the Gauss-Bonnet defect ¢,y (M) — f LI(AN\GA) KndV, g, is closely related
to this “outer curvature” of the “ideal boundary” in the sphere at infinity. For this
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purpose we first formulate the following theorem for submanifolds in the unit ball
which can be regarded as a model for the euclidean space after compactification by
a unit sphere at infinity.

Theorem. (Gauss-Bonnet theorem for submanifolds in the closed unit ball) Let
(M",0M™) C (B™ S™) be a compact submanifold which is orthogonal at the
boundary, i.e., the outer normal N of M at each boundary point coincides with the
outer normal of S™. Then for the Gauss-Bonnet defect the equation

C.
CmX(‘AI) - / Kdvz:an = Z _______Tﬁ_—/ [{‘Zidv;an
J LY (MN\OM) Cm—n+2iCn-1-2i J 11(8A1)

0<2i<n—1

holds where K; denotes the ™ elementary symmetric function of the shape operator
of the embedding OM — S™.
Corollary. (Special cases)

1. For a compact surface (M?,0M?) C (B*,5?) of this type we have

drx (M) — 2/ KdViy = 2 - length(OM).
M

2. For a compact hypersurface (M*, dM*) C (B, S*) of this type we have
8 1
~7T2X(]\’[) — 2 K4dVM = “/ (S - 2)dVQM
3 M 3 Jou
where S denotes the scalar curvature of A2

4. Limit directions and cone-like ends. It was the idea of P.Wintgen to study
the total curvature and total absolute curvature of complete open submanifolds in
JE™! by means of limit directions. A unit vector e € S™ is called a limit direction
if there is a sequence (py, Jnemv of points in M converging to one particular end such
that
: Pn
e= lim ——.
n—co ||pa|

The set of all limit directions of M is denoted by My,. One of Wintgen's results was
that the Gauss-Bonnet theorem

/ KdVian = cmx(M)
R

holds if M is even-dimensional, if K is absolutely integrable and if there are only
finitely many limit directions.

Especially, Wintgen’s set M, of limit directions in S™ provides an extrinsic ana-
logue of the ideal boundary, provided that M., has a reasonable structure, e.g.. as
a smooth submanifold of lower dimension.

Definition. (cone-like end) An end E of a complete submanifold M™ C E™" with
associated component ME in the set of limit directions is said to be (asymptotically)
cone-like if the following conditions are satisfied:
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1. There is a point ¢ such that for sufficiently large R the intersection EN.S ™(R;q)
is an (n — 1)-dimensional submanifold of the sphere of radius R around ¢, and

Jm S(ENS(Riq)) = ME

in the C%-topology. This property is actually independent of the choice of g so
we may assume that ¢ is the origin 0.
2. For every ¢ there is a number Ry such that for each R > Ro the angle between

outer unit normal of the submanifold £ N B™T(R;0) at any point p € E,
llp|l = R, and the position vector p is at most e.

Theorem. For a complete submanifold M™ C IE™! with with finitely many cone-like

ends the Gauss-Bonnet defect equals the total outer curvature of Mo, C S™ where

one has to sum up over the set of ends separately:

emx(M) — / KdVyn = 3, —— Ky Mas)
11 0<2i<n—1 Cm—n4+2iCn—1-2i
where K;(My) = le(Alm) K;dVean denotes the total 5% curvature of the set My
(for each end separately), regarded as a submanifold of the unit sphere.

Corollary.

1. If in addition all curvatures Ko of Mo are nonnegative then the Cohn-Vossen
inequality holds.
2. If in addition for each end ME 1is totally geodesic in S™ then we have

(M) - = / KdV =k
11

Cm
where k denotes the number of ends.

Corollary. For a 2-dimensional open surface M 2 ¢ E™*Y with cone-like ends the
Gauss-Bonnet defect equals the total length of Mo, C S™ (counted with multiplicity,
i.e. for each end separately):

enx(M) — [ KdA = length(Mu) > 0.
M 2m
This implies the Cohn-Vossen inequality.
Corollary. For an open hypersurface M* C IE® with cone-like ends the Gauss-Bonnet
defect 1s

i 1
iT(“X(A/[) — 2/ [{4d‘/1\[ = ~/ (S - 2)(1VA’[()0
3 A 3 Mo

where the integral has to be taken for each end separately.
Corollary. The Cohn-Vossen inequality does not hold in general for complete open
4-dimensional hypersurfaces in 5-space.

Indeed, it is sufficient to construct a hypersurface such that the hypersurface at in-
finity has vanishing Gauss-Kronecker curvature, for instance Cartan’s isoparametric
hypersurface.
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5. The variational problem for the total curvature. For compact hypersur-
faces of euclidean space one has Reilly’s formula for the variation of the higher mean
curvature functionals.

Theorem. For any compact hypersurface in euclidean space the gradient of the i*"
curvature functional K; = [ K; 1s the function —(i + 1) K1

For hypersurfaces of spheres one has the following.
Theorem. For a hypersurface in the unit n-sphere the gradient of the curvature func-
tional K; = [ K; is the function —(i + 1) K11 + (n — ) K;_1.

Using this formula we have the following.
Theorem. The gradient of the total outer curvature functional (= the right hand side
in Theorem 1) of a hypersurface in S™ (n even) is the negative Gauss-Kronecker
curvature — K, _1 of this hypersurface.
Corollary. The total curvature |, » KndV' of an even-dimensional open hypersurface
M C IE™" with cone-like ends is stationary (within the class of such hypersur-
faces having cone-like ends) if and only if each component of My has vanishing
Gauss-Kronecker curvature in the sphere “at infinity” or, equivalently, if it has one
vanishing principal curvature at each point.

This corollary raises the question what we can say about compact hypersurfaces
of even-dimensional spheres with vanishing Gauss-Kronecker curvature.

6. Hypersurfaces of S**! with vanishing Gauss-Kronecker curvature and
the quantization of total curvature. If M" is a hypersurface of S**! with van-
ishing Gauss-Kronecker curvature, then we can observe that the Gauss map G is
degenerate. In particular, if the rank of the shape operator is constantly & on M,
then the image G(M) is a submanifold of dimension k. It turns out that M then is
a tube of radius 7/2 over G(M).

If n = 3 one can prove that, if A is compact, then k cannot be 1. Moreover,
if £ = 2, then one can use the classical Gauss-Bonnet theorem to relate the total
curvature of M to the Euler characteristic of G(M).

Theorem. Let M3 C S* be a compact hypersurface with vanishing Gauss-Kronecker
curvature. Assume that for each end the rank of the shape operator is constant.
Then

1

5 M(S 2)dV € 7.

Combining this theorem with Theorem 1 and Theorem 2 we obtain the following.
Theorem. Let M* C IE® be a complete open hypersurface with finitely many cone-
like ends and with stationary total curvature. Assume that for each end the rank of
the shape operator in the sphere “at infinity” 1s constant. Then the normalized total
curvature takes values in the integers:

3 / Kdv e Z.
A2 Ju
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