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EXISTENCE OF A FAMILY OF COMPLETE MINIMAL
SURFACES OF GENUS ONE WITH ONE END AND FINITE
TOTAL CURVATURE

KATSUHIRO MORIYA

ABSTRACT. We will report our recent result on existence of a complex one-pa-
rameter family of complete minimal surfaces of genus one with one end and finite
total curvature. The family connects a minimal surface with total curvature —127
and that with total curvature less than —127.

1. INTRODUCTION

The purpose of this paper is to report our recent result [8] on existence of a
complete minimal surface with finite total curvature in Euclidean space in terms of
Weierstrass representation.

Let M be a two-dimensional oriented manifold. If X: M — R? is a complete
minimal surface with finite total curvature, then we may assume M an open Riemann
surface biholomorphic to a compact Riemann surface M with finitely many points
removed. The genus of M is called the genus of X and each removed point a puncture
point. The image of an neighborhood of each puncture point by X is called an end
of X. The integral [,, K dA for the Gaussian curvature K and the area element
dA is called the total curvature of X. The total curvature of an oriented complete
minimal surface is either —47m for some non-negative integer m or infinite.

We will focus the case where a Riemann surface M is a square torus M with
one puncture point. By applying Jorge-Meeks’s formula ([7, Theorem 4]), the total
curvature is less than —4m in this case. We can see existence of the minimal surfaces
from examples constructed by applying Weierstrass representation and theory of
elliptic functions, for examples, Chen and Gakstatter [3], Blof [2], Fang [4], and
Abi-Khuzam [1].

In [8], we discussed existence of the minimal surfaces in terms of Welerstrass
representation without constructing examples by elliptic functions. We will describe
the outline of the proof of the following theorem:

Theorem 1.1 ([8]). There exists a complex one-parameter family of complete min-
imal surfaces of genus one with one end and total curvature less than —12w and
greater than —36m.
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FIGURE 1. A canonical basis {a, b}.

2. BELLIPTIC CURVES

We will start with preliminaries on the theory of elliptic curves. For more details,
see [5] or [6]. )
Let us denote by M the elliptic curve which is the zero locus of a cubic polynomial

w? = z(z + 1)(z - 1).

The Riemann surface M is conformally equivalent to a square torus. We will intro-
duce a representation of the elliptic curve A as a two sheeted covering of the sphere
C U {oc} branched at —1, 0, 1, and oco. The covering is obtained by cutting the
sphere C U {oo} along two intervals [—1, 0] and [1, oo] and by pasting two copies of
this slit sphere along the slits. We will denote by S; and S;; these two sheets. We
will take the branches of w as follows:

w = z(z?2—1) ze]-1,00C Sy,
]l -z(z2 1) z€[-1,0]C Sy

Let @ and b be two oriented one-cycles on A indicated in Figure 1, where the
parts of the cycles that lie on the sheet S) are indicated by solid lines and those on
the sheet S;; by broken lines. The set {a, b} of cycles forms a canonical basis of the
first homology group of M, that is, the cycle a intersects the cycle b once positively.

We will recall that all holomorphic differentials on an elliptic curve form a one-
dimensional complex vector space. Since dz/w is a holomorphic one-form on M,
any holomorphic one-form on M is a constant multiple of dz/w. We can see that
the integral fa dz/w is not equal to 0. Hence, the holomorphic differential

(/1)

on M becomes the dual of a.

For a divisor D on M, let D, and D_ be two nonnegative divisors satisfying
D = D, — D_. For a meromorphic function f on M and a meromorphic one-forms
n on M, we will denote by (f) and (n) the divisors of f and 7 respectively. we will
denote by P the point (w, z) = (0,0) on M. Let L be the complex vector space of
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meromorphic functions on M whose divisors are equal to or greater than —8P:
L={f(f) > ~8P}.
We can see dim L = 8 from the Riemann-Roch theorem. Since
(2.1) (z)- =2P, (w)- =3P,

the vector space L is spanned by the following basis:

3. AN EXAMPLE OF A MINIMAL SURFACE WITH TOTAL CURVATURE —127

In this section, we will recall the theory of complete minimal surfaces of genus
one with one end and finite total curvature. For more details, see [9] or [10].

We will denote by M, a, b, P, and w as in Section 2 and M the open Riemann
surface M \ {P}. We can see that {a, b} is a basis for the first homology group of
M, too.

We can see the following holds:

Lemma 3.1. A pair (g, f) of meromorphic functions on M satisfying

(3.1) Re/ (-;:(1 “9%%*?(1 +92)fw,gfw> =(0,0,0) (v=a,b),
(3.2) - 2(g)-+(f)=-nPneZ n>2

produces a complete minimal surface with finite total curvature X : M — R3 by

X(p) = Re /p (%(1 - ) fw, g(l +g2)fw7gfw> :

The meromorphic function g of a pair (g, f) in Lemma 3.1 is the stereo-graphic
projection of the normal Gauss map of the corresponding minimal surface X. Hence,
the total curvature of the minimal surface corresponding to (g, f) is equal to —4w deg g.

For the convenience, we will denote by @ the the triplet of integrands in (3.1)
corresponding to a pair (g, f):

o 1 : -1
(53) o= (G- 0 Pfonans).
Let us denote by F, IV, and r three positive real numbers such that
0 0 dx 2F
F= Va(z? -1 da:,N:/ ——— 7 = g =
‘/_1 ( ) 1 y/z(z? - 1) N

We will denote by G the meromorphic function r/w on M. Then, we can show the
following:

Lemma 3.2. The pair (G,1/G?) produces a complete minimal surfaces of genus
one with one end and total curvature —12w by applying Lemma 3.1.
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Proof. It is easy to see that the pair (G, 1/G?) satisfies the condition (3.2) by (2.1).
The triplet

1 fwdz vV—=1 fwdz dz
Dy, P9, P3) = [ = | — — . T =
(1, 22, %) (2 <N7“2 w) C2 (Nﬂ +w> ’ Nr)

of meromorphic differentials on M is corresponding to (G,1/G?) by (3.3). Since @3

is exact, we see
/ B = / By = 0.
a b

We can see the real periods of ®; and ®, along a and b vanish. For example, the
period of ®; along a is calculated as follows:

1 0
—_— 2 1) dr
/aq)1 SN /~1 Vr(z? = 1)dx
+—L/_l~\/'(a"2—1)d —1/
2Nr? o T3 aw

P,
Nr2 2
Hence, the pair (G,1/G?) satisfies (3.1).
Thus the pair (G,1/G?) produces a complete minimal surface of genus one with
one end by applying Lemma 3.1. Since degg is equal to 3, the total curvature of
the corresponding minimal surface is equal to —127. O

4. EXISTENCE OF A FAMILY OF MINIMAL SURFACES
In this section, we will show Theorem 1.1.

Proof of Theorem 1.1. We will denote by £ the complex vector subspace of L spanned
by the following basis:

Let us define a set M of meromorphic functions on M by
1 w
M::{g ———EL’}.

g T
We will consider M as C® by identifying an element g of M such that

I w 1 w
o= et T
z z z

w
sty
g T 2 z4

z
with an element (cy, co, c3,c4,¢5) € C®. It is easy to see that each pair (g,1/¢°)
(g € M) satisfies the condition (3.2).

We can see that the tuple F = (Fi,...,Fs) such that

Fi(g) 3/@2‘, Fitrs(9) "/I)“I’i (i=1,2,3)
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defines a holomorphic map from M to C® where (®;, @2, P3) is the triplet of mero-
morphic one-forms corresponding to (g,1/¢%) by (3.3). Then, each element (g, 1/¢%)

(g € (ReF)7Y0,...,0)) produces a complete minimal surface with finite total cur-
vature by applying Lemma 3.1. In Section 3, we have already seen that G which
corresponds to (ci, ... ,cs) is an element of (Re F)7*(0,... ,0).
We can see that the following holds:
OF; " 0¢i OFits 9¢;
G) = Q) dz, G) = G) d
a5, & = | 35,©) &= 5 3, (0 4

where ¢; = ®;/dz (1 =1,2,3,j = 1,...,5). Since we obtain

9, 91 )W 1 (-1 1 a(z*-1) 1
(801( )y 3Cr( )) = (?22 rw ’7*2’3’ rZW ’7'z4>’

(S0 ) -v(o. o).

9¢s 93 /1 1 1 1 1
(G0 52@) = (*@‘7;“7,) ’

the Jacobian matrix of F at G becomes as follows:

0 C]_ 0 02 0
0 v —1C4 0 V—=1C5 0
Cy 0 Cy 0 Cs
0 —y/—1C 0 V—=1C, 0 ’
0 4 0 -~y 0
—/=1C4 0 v =1C4 0 —/—1C5
where
0 2 0
(:r - 1) (x — 1)
Ci=2 dz Cy=2
! _17T\/T 2 1 rzy/x(z? — 1)
0 d 0 dz
03 =2 =92 —
17‘\/1(1’2—1 1 2?y/z(2x? = 1)
Cs=2

-1 a:%/ (z2—-1)

The rank of the Jacobian matrix of F is equal to 4 since the number C; does not
vanish (2 = 1,...,5). Thus, F~}(F(G)) is a complex submanifold of C® of dimension
one. The degree of any element of M except G is greater than 3 and less than 9.
Thus, each pair (g,1/¢%) (g € FYF(G))) except (G,1/G?) produces a complete
minimal surfaces of genus one with one end and total curvature less than —127 and
greater than —367 O
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