EXISTENCE OF A FAMILY OF COMPLETE MINIMAL SURFACES OF GENUS ONE WITH ONE END AND FINITE TOTAL CURVATURE

KATSUHIRO MORIYA

Abstract

We will report our recent result on existence of a complex one-parameter family of complete minimal surfaces of genus one with one end and finite total curvature. The family connects a minimal surface with total curvature -12π and that with total curvature less than -12π.

1. Introduction

The purpose of this paper is to report our recent result [8] on existence of a complete minimal surface with finite total curvature in Euclidean space in terms of Weierstrass representation.

Let M be a two-dimensional oriented manifold. If $X: M \rightarrow \mathbb{R}^{3}$ is a complete minimal surface with finite total curvature, then we may assume M an open Riemann surface biholomorphic to a compact Riemann surface \bar{M} with finitely many points removed. The genus of \bar{M} is called the genus of X and each removed point a puncture point. The image of an neighborhood of each puncture point by X is called an end of X. The integral $\int_{M} K d A$ for the Gaussian curvature K and the area element $d A$ is called the total curvature of X. The total curvature of an oriented complete minimal surface is either $-4 \pi m$ for some non-negative integer m or infinite.

We will focus the case where a Riemann surface M is a square torus \bar{M} with one puncture point. By applying Jorge-Meeks's formula ([7, Theorem 4]), the total curvature is less than -4π in this case. We can see existence of the minimal surfaces from examples constructed by applying Weierstrass representation and theory of elliptic functions, for examples, Chen and Gakstatter [3], Bloß [2], Fang [4], and Abi-Khuzam [1].

In [8], we discussed existence of the minimal surfaces in terms of Weierstrass representation without constructing examples by elliptic functions. We will describe the outline of the proof of the following theorem:

Theorem 1.1 ([8]). There exists a complex one-parameter family of complete minimal surfaces of genus one with one end and total curvature less than -12π and greater than -36π.

Figure 1. A canonical basis $\{a, b\}$.

2. Elliptic curves

We will start with preliminaries on the theory of elliptic curves. For more details, see [5] or [6].

Let us denote by \bar{M} the elliptic curve which is the zero locus of a cubic polynomial

$$
w^{2}=z(z+1)(z-1)
$$

The Riemann surface \bar{M} is conformally equivalent to a square torus. We will introduce a representation of the elliptic curve \bar{M} as a two sheeted covering of the sphere $\mathbb{C} \cup\{\infty\}$ branched at $-1,0,1$, and ∞. The covering is obtained by cutting the sphere $\mathbb{C} \cup\{\infty\}$ along two intervals $[-1,0]$ and $[1, \infty]$ and by pasting two copies of this slit sphere along the slits. We will denote by S_{I} and $S_{I I}$ these two sheets. We will take the branches of w as follows:

$$
w= \begin{cases}\sqrt{x\left(x^{2}-1\right)} & x \in[-1,0] \subset S_{I} \\ -\sqrt{x\left(x^{2}-1\right)} & x \in[-1,0] \subset S_{I I} .\end{cases}
$$

Let a and b be two oriented one-cycles on \bar{M} indicated in Figure 1, where the parts of the cycles that lie on the sheet S_{I} are indicated by solid lines and those on the sheet $S_{I I}$ by broken lines. The set $\{a, b\}$ of cycles forms a canonical basis of the first homology group of \bar{M}, that is, the cycle a intersects the cycle b once positively.

We will recall that all holomorphic differentials on an elliptic curve form a onedimensional complex vector space. Since $d z / w$ is a holomorphic one-form on \bar{M}, any holomorphic one-form on \bar{M} is a constant multiple of $d z / w$. We can see that the integral $\int_{a} d z / w$ is not equal to 0 . Hence, the holomorphic differential

$$
\omega:=\left(1 / \int_{a} \frac{d z}{w}\right) \frac{d z}{w}
$$

on \bar{M} becomes the dual of a.
For a divisor D on \bar{M}, let D_{+}and D_{-}be two nonnegative divisors satisfying $D=D_{+}-D_{-}$. For a meromorphic function f on \bar{M} and a meromorphic one-forms η on \bar{M}, we will denote by (f) and (η) the divisors of f and η respectively. we will denote by P the point $(w, z)=(0,0)$ on \bar{M}. Let L be the complex vector space of
meromorphic functions on \bar{M} whose divisors are equal to or greater than $-8 P$:

$$
L=\{f \mid(f) \geq-8 P\} .
$$

We can see $\operatorname{dim} L=8$ from the Riemann-Roch theorem. Since

$$
\begin{equation*}
(z)_{-}=2 P, \quad(\omega)_{-}=3 P \tag{2.1}
\end{equation*}
$$

the vector space L is spanned by the following basis:

$$
1, \frac{1}{z}, w, \frac{1}{z^{2}}, \frac{w}{z}, \frac{1}{z^{3}}, \frac{w}{z^{2}}, \frac{1}{z^{4}} .
$$

3. An example of a minimal surface with total curvature -12π

In this section, we will recall the theory of complete minimal surfaces of genus one with one end and finite total curvature. For more details, see [9] or [10].

We will denote by \bar{M}, a, b, P, and ω as in Section 2 and M the open Riemann surface $\bar{M} \backslash\{P\}$. We can see that $\{a, b\}$ is a basis for the first homology group of M, too.

We can see the following holds:
Lemma 3.1. A pair (g, f) of meromorphic functions on \bar{M} satisfying

$$
\begin{align*}
& \operatorname{Re} \int_{\gamma}\left(\frac{1}{2}\left(1-g^{2}\right) f \omega, \frac{\sqrt{-1}}{2}\left(1+g^{2}\right) f \omega, g f \omega\right)=(0,0,0) \quad(\gamma=a, b) \tag{3.1}\\
& -2(g)_{-}+(f)=-n P, n \in \mathbb{Z}, n \geq 2 \tag{3.2}
\end{align*}
$$

produces a complete minimal surface with finite total curvature $X: M \rightarrow \mathbb{R}^{3}$ by

$$
X(p)=\operatorname{Re} \int^{p}\left(\frac{1}{2}\left(1-g^{2}\right) f \omega, \frac{\sqrt{-1}}{2}\left(1+g^{2}\right) f \omega, g f \omega\right) .
$$

The meromorphic function g of a pair (g, f) in Lemma 3.1 is the stereo-graphic projection of the normal Gauss map of the corresponding minimal surface X. Hence, the total curvature of the minimal surface corresponding to (g, f) is equal to $-4 \pi \operatorname{deg} g$.

For the convenience, we will denote by Φ the the triplet of integrands in (3.1) corresponding to a pair (g, f) :

$$
\begin{equation*}
\Phi=\left(\frac{1}{2}\left(1-g^{2}\right) f \omega, \frac{\sqrt{-1}}{2}\left(1+g^{2}\right) f \omega, g f \omega\right) \tag{3.3}
\end{equation*}
$$

Let us denote by F, N, and r three positive real numbers such that

$$
F=\int_{-1}^{0} \sqrt{x\left(x^{2}-1\right)} d x, N=\int_{-1}^{0} \frac{d x}{\sqrt{x\left(x^{2}-1\right)}}, r=\sqrt{\frac{2 F}{N}} .
$$

We will denote by G the meromorphic function r / w on \bar{M}. Then, we can show the following:

Lemma 3.2. The pair $\left(G, 1 / G^{2}\right)$ produces a complete minimal surfaces of genus one with one end and total curvature -12π by applying Lemma 3.1.

Proof. It is easy to see that the pair $\left(G, 1 / G^{2}\right)$ satisfies the condition (3.2) by (2.1). The triplet

$$
\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)=\left(\frac{1}{2}\left(\frac{w d z}{N r^{2}}-\omega\right), \frac{\sqrt{-1}}{2}\left(\frac{w d z}{N r^{2}}+\omega\right), \frac{d z}{N r}\right)
$$

of meromorphic differentials on \bar{M} is corresponding to $\left(G, 1 / G^{2}\right)$ by (3.3). Since Φ_{3} is exact, we see

$$
\int_{a} \Phi_{3}=\int_{b} \Phi_{3}=0
$$

We can see the real periods of Φ_{1} and Φ_{2} along a and b vanish. For example, the period of Φ_{1} along a is calculated as follows:

$$
\begin{aligned}
\int_{a} \Phi_{1}= & \frac{1}{2 N r^{2}} \int_{-1}^{0} \sqrt{x\left(x^{2}-1\right)} d x \\
& +\frac{1}{2 N r^{2}} \int_{0}^{-1}-\sqrt{x\left(x^{2}-1\right)} d x-\frac{1}{2} \int_{a} \omega \\
= & \frac{F}{N r^{2}}-\frac{1}{2}=0
\end{aligned}
$$

Hence, the pair ($G, 1 / G^{2}$) satisfies (3.1).
Thus the pair ($G, 1 / G^{2}$) produces a complete minimal surface of genus one with one end by applying Lemma 3.1. Since $\operatorname{deg} g$ is equal to 3 , the total curvature of the corresponding minimal surface is equal to -12π.

4. Existence of a family of minimal surfaces

In this section, we will show Theorem 1.1.
Proof of Theorem 1.1. We will denote by \mathcal{L} the complex vector subspace of L spanned by the following basis:

$$
\frac{1}{z^{2}}, \frac{w}{z}, \frac{1}{z^{3}}, \frac{w}{z^{2}}, \frac{1}{z^{4}}
$$

Let us define a set \mathcal{M} of meromorphic functions on \bar{M} by

$$
\mathcal{M}:=\left\{g \left\lvert\, \frac{1}{g}-\frac{w}{r} \in \mathcal{L}\right.\right\}
$$

We will consider \mathcal{M} as \mathbb{C}^{5} by identifying an element g of \mathcal{M} such that

$$
\frac{1}{g}-\frac{w}{r}=c_{1} \frac{1}{z^{2}}+c_{2} \frac{w}{z}+c_{3} \frac{1}{z^{3}}+c_{4} \frac{w}{z^{2}}+c_{5} \frac{1}{z^{4}}
$$

with an element $\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right) \in \mathbb{C}^{5}$. It is easy to see that each pair $\left(g, 1 / g^{2}\right)$ $(g \in \mathcal{M})$ satisfies the condition (3.2).

We can see that the tuple $\mathcal{F}=\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{6}\right)$ such that

$$
\mathcal{F}_{i}(g)=\int_{a} \Phi_{i}, \quad \mathcal{F}_{i+3}(g)=\int_{b} \Phi_{i}(i=1,2,3)
$$

defines a holomorphic map from \mathcal{M} to \mathbb{C}^{6} where $\left(\Phi_{1}, \Phi_{2}, \Phi_{3}\right)$ is the triplet of meromorphic one-forms corresponding to $\left(g, 1 / g^{2}\right)$ by (3.3). Then, each element $\left(g, 1 / g^{2}\right)$ $\left(g \in(\operatorname{Re} \mathcal{F})^{-1}(0, \ldots, 0)\right)$ produces a complete minimal surface with finite total curvature by applying Lemma 3.1. In Section 3, we have already seen that G which corresponds to $\left(c_{1}, \ldots, c_{5}\right)$ is an element of $(\operatorname{Re} \mathcal{F})^{-1}(0, \ldots, 0)$.

We can see that the following holds:

$$
\frac{\partial \mathcal{F}_{i}}{\partial c_{j}}(G)=\int_{a} \frac{\partial \phi_{i}}{\partial c_{j}}(G) d z, \frac{\partial \mathcal{F}_{i+3}}{\partial c_{j}}(G)=\int_{b} \frac{\partial \phi_{i}}{\partial c_{j}}(G) d z,
$$

where $\phi_{i}=\Phi_{i} / d z(i=1,2,3, j=1, \ldots, 5)$. Since we obtain

$$
\begin{aligned}
& \left(\frac{\partial \phi_{1}}{\partial c_{1}}(G), \ldots, \frac{\partial \phi_{1}}{\partial c_{5}}(G)\right)=\left(\frac{1}{r z^{2}}, \frac{\left(z^{2}-1\right)}{r w}, \frac{1}{r z^{3}}, \frac{a\left(z^{2}-1\right)}{r z w}, \frac{1}{r z^{4}}\right), \\
& \left(\frac{\partial \phi_{2}}{\partial c_{1}}(G), \ldots, \frac{\partial \phi_{2}}{\partial c_{5}}(G)\right)=\sqrt{-1}\left(\frac{\partial \phi_{1}}{\partial c_{1}}(G), \ldots, \frac{\partial \phi_{1}}{\partial c_{5}}(G)\right), \\
& \left(\frac{\partial \phi_{3}}{\partial c_{1}}(G), \ldots, \frac{\partial \phi_{3}}{\partial c_{5}}(G)\right)=\left(\frac{1}{z^{2} w}, \frac{1}{z}, \frac{1}{z^{3} w}, \frac{1}{z^{2}}, \frac{1}{z^{4} w}\right),
\end{aligned}
$$

the Jacobian matrix of \mathcal{F} at G becomes as follows:

$$
\left(\begin{array}{ccccc}
0 & C_{1} & 0 & C_{2} & 0 \\
0 & \sqrt{-1} C_{1} & 0 & \sqrt{-1} C_{2} & 0 \\
C_{3} & 0 & C_{4} & 0 & C_{5} \\
0 & -\sqrt{-1} C_{1} & 0 & \sqrt{-1} C_{2} & 0 \\
0 & C_{1} & 0 & -C_{2} & 0 \\
-\sqrt{-1} C_{3} & 0 & \sqrt{-1} C_{4} & 0 & -\sqrt{-1} C_{5}
\end{array}\right)
$$

where

$$
\begin{aligned}
& C_{1}=2 \int_{-1}^{0} \frac{\left(x^{2}-1\right)}{r \sqrt{x\left(x^{2}-1\right)}} d x, C_{2}=2 \int_{-1}^{0} \frac{\left(x^{2}-1\right)}{r x \sqrt{x\left(x^{2}-1\right)}} d x, \\
& C_{3}=2 \int_{-1}^{0} \frac{d x}{x^{2} \sqrt{x\left(x^{2}-1\right)}}, C_{4}=2 \int_{-1}^{0} \frac{d x}{x^{3} \sqrt{x\left(x^{2}-1\right)}}, \\
& C_{5}=2 \int_{-1}^{0} \frac{d x}{x^{4} \sqrt{x\left(x^{2}-1\right)}} .
\end{aligned}
$$

The rank of the Jacobian matrix of \mathcal{F} is equal to 4 since the number C_{i} does not vanish $(i=1, \ldots, 5)$. Thus, $\mathcal{F}^{-1}(\mathcal{F}(G))$ is a complex submanifold of \mathbb{C}^{5} of dimension one. The degree of any element of \mathcal{M} except G is greater than 3 and less than 9 . Thus, each pair $\left(g, 1 / g^{2}\right)\left(g \in \mathcal{F}^{-1}(\mathcal{F}(G))\right)$ except $\left(G, 1 / G^{2}\right)$ produces a complete minimal surfaces of genus one with one end and total curvature less than -12π and greater than -36π

References

1. F. F. Abi-Khuzam, Jacobian elliptic functions and minimal surfaces, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3837-3849.
2. D. Bloß, Elliptische Funktionen und vollständige Minimalfächen, J. Reine Angew. Math. 444 (1993). 193-220.
3. C. C. Chen and F. Gackstatter, Elliptische und hyperelliptische Funktionen und vollständige Minimalflächen vom Enneperschen Typ, Math. Ann. 259 (1982), no. 3, 359-369.
4. Y. Fang, A new family of Enneper type minimal surfaces, Proc. Amer. Math. Soc. 108 (1990), no. 4, 993-1000.
5. H. M. Farkas and I. Kra, Riemann surfaces, second ed., Springer-Verlag, New York, 1992.
6. P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley \& Sons Inc., New York, 1994, Reprint of the 1978 original.
7. L. P. Jorge and W. H. Meeks, III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), no. 2, 203-221.
8. K. Moriya, Existence of complete minimal surfaces of genus one with one end, preprint.
9. R. Osserman, A survey of minimal surfaces, second ed., Dover Publications Inc., New York, 1986.
10. K. Yang, Complete minimal surfaces of finite total curvature, Kluwer Academic Publishers Group, Dordrecht, 1994.

Institue of Mathematics
University of Tsukuba
Ibaraki 305-8571
Japan
moriya@math.tsukuba.ac.jp

