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EXISTENCE OF A FAMILY OF COMPLETE MINIMAL 
SURFACES OF GENUS ONE WITH ONE END AND FINITE 

TOTAL CURVATURE 

KATSUHIRO ~,IORIYA 

ABSTRACT. ¥~re_ will report our recent result, on existence of a complex one-pa-

rarneter family of complete minimal surfaces~ of genus one ~vith one end and finite 

total curvature. The family connects a Ininimal surface with total curvat,ure -127r 

and that with total curvature less than -127T. 

1. INTRODUCTION 

The purpose of this paper is to report our recent result [8] on existence of a 

c,omplete minimal surfa,ce with finite tot,al c,urvature in Euc,lidean spa,c.e in tenrls of 

¥Vcierstr.a,ss representation. 

Let A[ be a t,wo-dhrrensional orient,ed ma,nifold. If X ! AI -> ~3 is a complete 

minhnal surf'a,ce with finit,e total curvature, then we may assmlle M an open Riemann 

surface biholomorphic to a compact. Riemann surface M wit,h finit,ely many points 

removed. The genus of M is called the genus of X and each removed point a. puncture 

poi'r7.t. The hrlage of an neigfhborhood of each puncture point by X is c,alled an end 

of X . The integral fA,f K dA for the Ga,ussian curvature K a,nd thc a,rea, element 

dA is called t,he total curvature of X. The total curvature of an orient,ed complete 

minimal surfa,c,e is either -47rm for some non-negative integer m or infinite. 

We will focus t.he case where a, R.iemann surfac.e M is a squ'are t,orus M wit,h 

one punct,ure point. By applying Jorge-h4eeks's formula ([7, Theorem 4]), the tot,al 

c'.urv'a,t,ure is less than -47T in this ca,se. ¥Ve c,a,n see existcnce of the minirn'd,1 surfaces 

from ex'alnplcs c',onstructed by applying ¥~Teierst,rass represcnta,tion 'a,nd theory of 

elliptic func't,ions, for examples, Chen and Ga,kstatt,er [3], BloB [2], Fang [4], a,nd 

Abi-Khuz'a..m [l]. 

In [8], ~ve discussed cxistenc.e of t,he minimal surfaces in terms of Weierstrass 

representa,tion wit,hout constructing exa,mples by elliptic funct,ions. ~~re ~vill describe 

t,he outline of t,he proof of the followingr theorcm: 

Theorem 1.1 ([8]). There exists a corn,plex one-parameter family oj' c'orn,plete min-

imal surfa.ces of ge'rbus one with one e72,d a,nd total curvature less t/?,a??, -19_7T and 

greater tha'r~ -36/~~ . 
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FIGURE l. A canonical basis {a, b}. 

2. ELLIPTIC CUl{VEs 

We will sta,rt with preliminaries on t,he theory of elliptic curves. For more det,ails, 

see [5] or [6]. 

Let us denote by M the ellipt,ic curve which is the zero locus of a cubic polynomial 

w = z(z+1)(z- 1). 

The Riemann surface M is conformally equiva,lent to a square torus. We will intro-

duce a representation of the elliptic curve M as a t,wo sheeted covering of t,he sphere 

C U {oo} bi:anc,hed at -1, O, 1, and oo. The covering is obtained by cutting the 

sphere C U {oO} along t,~vo intervals [-1, O] a=nd [1, oo] and by pasting twO copies of 

t,his slit sphere along the slit,s. ¥Vc will denote by SI and SII t,hese t,wo sheets. ¥Ve 

will t,a,ke the branches of w as follo¥vs: 

_ V,r7 x e [-1, O] C SI' 
w - _/rT x ~ [-1,0] C SII' 

Let a and b be t,~vo oriented one-c,yc;,les on ~[ indicated in Figure 1, where t,he 

pa<rts of the c'..vcles t=ha,t., Iie on t,he sheet, SI are indicat,ed by solid lines and t,hose on 

t,he sheet, SII by broken lines. The set, {a, b} of cycles forms a, ca7?,onical ba,sis of the 

first homology group of M, that is, t,he c',yc',le a intersects the cycle b once positively. 

We will recall that all holomorphic different,ials on an elliptic c,urve fonn a one-

diuensional complex vector space. Since dz/w is a holomorphic one-forrn on M, 
any holomorphic, one-form on M is a, c,onst,ant mult,iple of d_'-/w. We can see t,hat 

t,he int,egfral fa dzlt!' is not, equai t,o O. Hence, the holomorphic, difl'erential 

= f ~) (;-: (
 
/
 

~) l 
on Arf bec,omes the d?j.al of a. 

For a divisor D on M, Iet, D+ and D be t.~~ro nonnega,t,ive divisors sat,isfyin~g 

D = D+ ~ D_. For a. meromorphic funct,ion f on A,f and a, meromorphic, one-forms 
n on M~ ~ve will denot,e by (f) a.nd (rJ) the divisors of f a,nd n respec',tively. ~ve ~~"ill 

denote by P t,he point, (w, -7) = (O, O) on Af. Let, L be t,he complex ¥rect,or space of 
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llLeromorphic funct,ions on A.f whose divisors are equal to or great,er tha,n -8Pi 

L = {f I (f) ~ -8P}. 

We can see dim L = 8 from the Riemann-l~och theorem. Since 

(2.1) (z)_ = 2P, (cv) = 3P, 
the vector spac.e L is spanned by the following basis: 

l lwlw l l, -, w, -. 
2' ' 3' 2' 4' z z zz z z 

3. AN EXAlvIPLE OF A MINlh4AL SURFACE WITH TOTAL CUl~VATURE -127r 

In this sec'.t,ion, we will reca,ll t,he theory. of complet,e minima,1 surfa,ces of genus 

one with one cnd and finite total curvature. For more details, see [9] or [lO]. 

¥Ve will denote by M, a, b, P, and ~) as in Section 2 and M the open R.iemann 
surface M ¥ {P}. We can see that {a, b} is a basis for the first homology group of 

M, t,oo. 

We can see t,he following holds: 

Lemma 3.1. A pair (g, f) of meromorphic functions on M sa,tisfying 

¥FT ~
 

f
 
(
 

l
_
 
(1 - g2)fcL), (1 + g2)fcu,gfc()j = (O, O, O) (n( = a, b) (3.1) R.e 

2
 7 2 

(3.2) - 2(g) + (f) = -nP, n e Z, n ~ 2 

produces a complete minimal surface with finite total curvature X : M -> ~3 by 

1(1 9 )fce; ¥/IT(1+9 )fc() gf~) fP(2 - 2 , 2 , ) X(P) = Re - 2
 

The merornorphic funct,ion g of a pair (g, f) in Lemma, 3.1 is the st,ereo-graphic 

projection of the norma,1 Ga,uss ma,p of t,he c,orresponding miniual surfac,e X. Hence, 

the total curvature of the minimal surface corresponding to (g, f ) is equal to -47T deg g. 

For the convenience, we will denote by ~) the the triplet of integrands in (3.1) 

corresponding t,o a pair (g, f): 

VII: = (- )
 

l
 (1-g2)fuL), 2 (1+g2)f~),gfcu (3.3) 

~
>
 2

 

Let us denote by F, N, and r three positive real numbers such that 

o
 ~ ~ :=;f ' ':::: f_ 

f~Jdx N 
l
 

1
 

We will denotc by G the meromorphic, funct,ion 7'/w on M. Then, we can show t,he 
follo¥vin~)cr: 

Lemma 3.2. The pair (G, llG2) produces a complete minimal surf'a,ces of genus 

one with one e??,d arrd total cu7'vature -127r by applying Lemma 3.1. 
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Proof. It is ea.sy t,o see t,hat, the pair (G, llG2) sat,isfies the c'.ondit,ion (3.2) by (2.1). 

The triplet 

'T r'LL' dz dz (~>1'~>2'~>3)= ;(~;2 2 ~Nr'2 h~) 'Nr) )
 
)
 

~; 

of meromorphic differentials on M is corresponding t,o (G, llG2) by (3.3). Since ~> 

is exac,t. ~ve see 

f~)3= ~)3=0 
J
b
 We ca,n see the real periods of ~l and ~>2 along a and b va,nish. For exa,mple, the 

period of ~>1 along a is ca.lculated as follo¥vs: 

l::: f_ 1
 ~> 2Nr2 VTITi dx 

- fllJdX -+ 2Nr2 ~ ~) 
F 1 ~Nr2 ~ ~ = O 

Hence, the pair (G, llG2) satisfies (3.1). 

Thus t,he pair (G, llG2) produces a complet,e minimal surface of genus one with 

one end by a,pplying Lemma 3.1. Since debo- g is equal to 3, the total curvature of 

the correspondin~)cr miniual surface is equal to -127r. 
[
]
 

4. EXISTENCE OF A FAh41LY OF MINIMAL SURFACES 

In this section. we will show Theorem l.1. 

Proof of Theorem 1. 1. We will denote by L t,he complex ¥rector subspa,c',e of L spa,nned 

by the following ba,sis: 

1 w I tv 1 
z2' z " z3 2 z4 

Let us define a set Jv! of llLeromorphic funct.,ions on AI by 

-~ } J¥/!:~: g I u;eL . 

g 7 
We will conslder jV as C~) by identifying an element, g of j¥/( suc,h that. 

1 w 1
 

l
 

l
 w w - = cl IT + c4~~ + c5~: - + c2- + c:~ 

g r z2 z z3 z ~ b 
~vith an element (cl'c2,c3~c4~c5) e C5. It, is easy t,o see that, each pair (g, ll92) 

(g e jL/!) sa,tisnes t,he condition (3.2). 

We can see t,hat t,he t,uPle J' = (Jcl' ' ' " fl6) such that 

f:i(g) = f ~>~' f:~+3(g) / s = 
= ~> (z 1 2 3) 
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defines a holomorphic llLap frcurl J¥1! to C6 where (~>1, ~)2, ~)3) is the t,riplet, of mero-

morphic one-forms corresponding to (9, 1l92) by (3.3). Then, ea,ch element, (g, 1l92) 

(g c (Re J1)1(O, . . . , O)) produces a complGte lrLinimal surface with finit,e t,otal cur-

vature by applying Lernma 3.1. In Sect,ion 3, we have a,lready seen tha,t G which 
corresponds t,o (cl' ' ' ' ' c5) is an element of (ReT)-1(O, . . . , O). 

We can see that the following holds: 

af: df:i+3 G d ci ace ac : (G) = f = f (G) dz. (G) d z, Oc ( ) b ' a acj j acj 
where ipi = ~)i/dz (i = , 5). Sinc,e we obtain l, 2,3, j = 1, . . . 

l (z2-1) 1, a(z2,-1) l .. I ) l Oc (G) (G) = 
rz2 3 ' rztv 7" z4 ac ac rw rz 

l l 
z3w ' z2 ' 

the Jacobian matrix of f at G becomes as follows: 

O rTCI O VITC2 
O - rTCI O Vll~C2 
O Cl O -C2 - rTC3 O VITC4 O 

where 

dip ) _ _ ( (G) aip _ dip ' ' ' 2 G) VIT I G aipl (G) ' ( ac ( )~~" ' l ac5 ac ac5 

Oip ) _ ( _ _ ) (: , Oip _ ~ ,1, ; ,1~ I , ' ' ' 3(G) (G) 
z w z z w z2 z4w ac ac5 

o
 
o
 
C5 
o
 
o
 
- Vlrc5 

o (x2 - l) o (x2 - 1) 

C1 :~= 2 dx' C2 :~: 2 dx l r/rl~ -1 rxlr7 ' 
o dx o dx C3:~2 ,C4=2 l X2fT -1 x3 fIIT 
o dx 
f
_
 

C5 :=: 2 1 x4fl~: 

The rank of the Jacobian m'a,trix of Jr is equal to 4 since the number Ci does not, 
. . . , 5). Thus, f~1(f(G)) is a, cornplex subinanifold of C5 of dimension va=nish (i = 1, 

one. The degree of any elemcnt of j¥/! except G is gl~e'ater than 3 and less t,ha,n 9. 

Thus, each pa,ir (g, ll9'2) (g c J;-1(f(G))) exc,ept (G, llG2) produc.,es a complet,e. 

minimal surfa.ces of g'~enus one with one end and total c,urvature less than -127T a,nd 

1
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