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viii An Algorithmic Study on Basic Planning Problems

Abstract

In this dissertation, we investigate two basic planning problems in Opera-
tions Research, non-probabilistic one and probabilistic one, through realistic
planning problems. The first one is a Combinatorial Planning Model , which
can be solved through algorithms of Deterministic Turing Machine. The sec-
ond one is a natural model for Planning under Uncertainty. In Chapter 1,
we give our motif and outline of this dissertation. In Chapter 2, we treat
Combinatorial Planning Problems which at present don’t give us any kind of
polynomial-time algorithms. In Chapter 3, we treat Combinatorial Planning
Problems which give us polynomial-time algorithms. In Chapter 4, we treat
Planning Problems under Uncertainty. In Chapter 5, we apply a genetic al-
gorithm to a problem which belongs to Combinatorial Planning Problems in
Chapter 2. In Chapter 6, we state the profits and losses of the two methods,
non-probabilistic and probabilistic, in model buildings and algorithms based
on the author’s thirty year experiences. Then we confirm that probabilistic
treatments like genetic algorithm will be more important in the future.



Chapter 1

Introduction

1.1 Motivation

In this dissertation, we would like to investigate basic planning problems in
Operations Research. The first one is a Combinatorial Planning Model, in
which we see that there lies a great gap between a model which at present
doesn’t give us any kind of polynomial-time algorithms (Chapter 2) and the
other model which allows us polynomial- time algorithms ( Chapter 3) . This
gap is a well-known P vs. NP problem. The second one is a natural model
for Planning under Uncertainty. We call it Uncertain Programming, because
we are going to make a plan even if we are not sure of the exact values of
the input problem data itself. Uncertainty may come from the ambiguity of
the input data, the lack of a number of data,or the fact that some data must
obey legal regulations and so on(Chapter 4). In Chapter 5 we treat the
Combinatorial Planning Problem in the framework of Uncertain Programming,
i.e. , Genetic Algorithm. Genetic Algorithm has been successfully applied to
some kinds of Combinatorial Problems. Yet, here we have tried to combine
Genetic Algorithm and Domain Specific Knowledge which we can get through
Mathematical Programming. Finally in Chapter 6, we summarize our results
through summing up both theoretical and computational considerations.

Let’s see in a little detail what I have experienced since 1970. In 1970, I
got a job in Mitsubishi Research Institute. There, I was ordered to make some
programs in Operations Research. They were

1. Travelling Salesman problem(TSP),

2. Capacitated Facilities Location Programming (CFLP) problem

and other statistical problems. It is very easy to describe the Traveling Sales-
man problem. Given N cities in a country. Let the coordinates of the city i be

1
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(xi, yi)(1 ≤ i ≤ N) and define dij =
√

(xi − xj)2 + (yi − yj)2(1 ≤ i, j ≤ N).
A salesman visits all the N cities once and only once to sell his commodi-
ties. He makes an itinerary, or a tour and visits city i1 first, city i2 second,
· · ·, city iN last and then comes back to city i1. A tour t will be denoted by
t = (i1, i2, · · · , iN , iN+1), where iN+1 = i1. Then solve

minimize

N∑
j=1

dijij+1
(1.1)

subject to

(i1, i2, · · · , iN , iN+1) : tour. (1.2)

This is a Euclidean Traveling Salesman problem with N cities. See Fig-
ure 1.1 just below. We can easily see that there are (n − 1)!/2 tours for
theEuclidean Traveling Salesman problem. (n − 1)!/2 is much greater than
2n which is not a polynomial function in n. It is well known that Travel-
ing Salesman problem is NP-complete(See,Garey and Johnson[44],Lawler et
al.[137],Reinelt[172],Yamamoto and Kubo[201], Trevisan[194]).
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Figure 1.1: A Euclidean TSP with N cities

CFLP problem is expressed as

minimize
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m∑
i=1

n∑
j=1

tijxij +
m∑

i=1

fiyi (1.3)

subject to

n∑
j=1

xij ≤ ciyi (1 ≤ i ≤ m) (1.4)

m∑
i=1

xij ≥ dj (1 ≤ j ≤ n) (1.5)

m∑
i=1

yi = l (1.6)

xij ≥ 0 (1.7)

yi = 0 or 1, (1.8)

where input data tij stands for unit transportation cost from potential depot
location i to demand destination j, fi denotes fixed construction cost at poten-
tial depot location i when we determine to construct a new depot at location
i, ci is a maximum capacity of commodity at potential depot location i, dj is
a commodity demand at j, l is the total number of new depots that we have
to construct. Furthermore, xij , yi are decision variables such that

xij = amount of commodities to be transported from i to j,

yi =

{
1, if we construct a new depot at i
0, if we don’t construct a new depot at i.

We devised an excellent computer program to solve the real world CFLP
problem with another efficient heuristic one. Computational results of our
computer programs can be found partly in Mukawa,H., Sensui,J., Iwamura,K.
and J.Kase[161]. As for the efficient heuristic algorithm for the CFLP Problem,
the readers can consult Sorimachi,Y.[188]. They worked very well for a real
world input data.

On the contrary, we were not able to develop an efficient computer pro-
gram to solve the TSP for a real world data. Through IBM 360/370, the fastest
computer in 1970 in the world, our algorithm using a minimum spanning tree
bound needed more than ten minutes for a TSP problem instance(input data)
sized 30 cities. At that time it meant that it cost more than 300 thousand
yen to solve a 30 city TSP and so a 100 city TSP is far from being able to
be solved. Furthermore its computing time varied drastically as the problem
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instances changed. This was a great surprise for me because I faithfully im-
plemented an algorithm of Little,J.D.C. et al.[142] with the most professional
programming techniques given by Mr. H. Mukawa. Our computer program
showed both exponential computing time and its computing time dependency
on each problem instance. We were shocked by its computational inefficiency
and its unpredictable computing time. “ Oh! What a shock. Little et al.’s
algorithm got the prize because it solved a US state capital TSP problem. Yet,
it showed a poor computing efficiency. A great difference from the CFLP. But
why? ” At that time, researchers considered that there must be an excellent
algorithm to solve the TSP for all kinds of input data. Today we can see the
true nature of the TSP in Applegate, Bixby, Chvatal and Cook[6] as follows:

Table 1.1: Computing Time of an Exact Algorithm in [6]

Name Cities Tree of subproblems Running time
gr120 120 1 node 3.3 seconds
lin318 318 1 node 24.6 seconds
pr1002 1002 1 node 94.7 seconds
gr666 666 1 node 260.0 seconds

att532 532 3 nodes 294.3 seconds
pr2392 2,392 1 node 342.2 seconds
ts225 225 1 node 438.9 seconds

pcb3038 3,038 193 nodes 1.5 days
fnl4461 4,461 159 nodes 1.7 days
pla7397 7,397 129 nodes 49.5 days

usa13509 13,509 9,539 nodes about 10 years

After finding a job at the Dept. of Math. , Josai University, I started
a theoretical research activities in Integer Programming. I found a knapsack
typed integer programming problem computationally greedily solvable through
D.P.technique. Then, I changed my interest to Set-covering/Set- partitioning
problems. At that time, still now I think, there was a rumor that general
algorithms for the linear integer programming problems such as Gomory’s
fractional integer programming algorithm are inefficient for real world data.
So, it was the time to try to invent a specific algorithm to solve a specific
problem such as the Set- partitioning problem. Furthermore it has a wide ap-
plication in transportation engineering. For example, air line crew scheduling,
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bus routing, truck dispatching and so on. I made a great effort to develop an
efficient computer algorithm to solve the Set-Partitioning Problem. I paid ev-
ery attention to make the computer program as fast as possible. It amounted
over 600 pages documents to devise three computer programs to solve the Set-
Partitioning Problem. The interested readers can have information through
Suzuki, H. and K.Iwamura[190] , Iwamura,K. and Y. Maeda[101][102] ,Maeda,
E. and K.Iwamura[153]. Still, our computational experiments showed the same
aspect as I had experienced in developing computer programs to solve TSP.
Exponential computing time and a heavy data dependent computing
time. One data was solved by one algorithm efficiently while another data
of the same size wasn’t solved in one week through FACOM 230-38S. Of the
three algorithms, I was not able to say that this one was always superior to
that one.

Then I changed my interest to problems which gave us a polynomial time
algorithm. I got three results in greedoid and greedy algorithms.

And furthermore I have changed my mind to Planning Problems under
Uncertainty, because I knew it very well that there were some cases in which
an OR Researcher had to make a decision, independent of the fact if he had
enough and complete input data or not. Here I have mainly adopted Genetic
Algorithm to carry out computing jobs.

Finally I have co-worked with Prof.Fushimi, Prof. Morohoshi and my
student Mr. Shibahara to combine Genetic Algorithm and Domain Specific
Knowledge of the problem itself. Here we combine stability in computing
time of Genetic Algorithm with better individuals in the starting generation
mathematical programming analysis can wisely produce.

1.2 An Overview

Here, we would like to see how the author’s motive leads to results. We treat
nine problems in all, two in Chapter 2, three in Chapter 3, three in Chapter
4 and one in Chapter 5.

In Chapter 2 section 1, we discuss on some theorems of knapsack prob-
lem. Extending the solution procedure proposed by Dreyfus, S.E. and K.L.
Prather[28], we devise a solution procedure of an ILP with all the constants
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nonnegative integer which is viewed as an ILP of knapsack type. We pro-
vide the validity proof of this procedure. In 1966, Gilmore, P.C. and R.E.
Gomory[50] found the periodicity of the knapsack function for the first time.
Hu, T.C.[66] stated this fact with a complete proof in the case ρ1 > ρ2. We
also prove this fact in the case

ρ1 = · · · = ρk > ρk+1 ≥ · · · ≥ ρn.

This with the proof of Hu, T.C. offers an elementary but complete proof for
the periodicity property of an arbitrary knapsack function. We also make an
effort to find a small knapsack length b from which knapsack function has
periodicity property.

In Chapter 2 section 2 we revise Dual All Integer Algorithm when we ap-
ply it to solve Set Partitioning Problem. Historically, researchers transformed
Set Partitioning Problem into Set Covering Problem, thus enlarging the col-
umn size of the problem from n to n+m (See, Garfinkel and Nemhauser[46]).
Enlarging the problem size directly leads to more computing time needed which
is a disaster to decision makers. In our treatment, we save both computing
time and in-core memory size. This kind of improvement is important, be-
cause this kind of improvement is also possible for almost all kinds of NP-hard
Combinatorial Problems with linear constraints.

After brief introduction of Greedoid in Chapter 3 section 1 , we treat a
problem to get a lexicographically optimal base of a submodular system with
respect to a positive weight vector(Chapter 3 section 2).

We show and prove the existence and uniqueness of the lexicographically
optimal base. Then, we propose an algorithm to get the lexicographically op-
timal base. This algorithm completely differs from the one Fujishige[36] pro-
posed for a polymatroid. We show that the lexicographically optimal base of a
positive submodular system is the unique optimal solution of the correspond-
ing p(> 1)-dratic separable mathematical programming problem. Finally, we
see that the first problem of Morton, von Randow and Ringwald [160] can be
captured and solved within our framework.

In Chapter 3 section 3, we first investigate the reason the greedy al-
gorithm in section 2 proceeds inversely. We see that the lexicographically
minimum base of the dual supermodular polyhedron coincides with the lexi-
cographically maximum base of the submodular polyhedron. Showing an al-
gorithm(dual) to get the lexicographically minimum base answers the above
mentioned problem. We also see that the lexicographically maximum base of
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a simplification of a submodular polyhedron can be changed to that of the
original submodular polyhedron through proportional weighting. The same
fact holds for an expansion of a given simple submodular polyhedron.

In Chapter 3 section 4, we show that the greedy algorithm over greedoid
is a special case of a discrete decision process model. Therefore there is a
possibility that we have some other equi-maximal cardinal set systems with its
objective functions for which a greedy type algorithm works.

Although not included in this dissertation, we got another application of
greedy algorithm over greedoid. That is “ Drawing a tree on parallel lines”
(See, [104][61]). In this application a greedoid reduces to a shelling struc-
ture. A matroidal approach to the tree drawing problem on parallel lines
appeared in the thesis of Mr. Fukuhara who was a student of Prof. Kajitani
at Tokyo Institute of Technology. Yet it produced no algorithms to solve this
problem(See,[41](1990)). Treating the problem from a greedoidal point of view,
we have devised both two polynomial time tree drawing heuristic algorithms
and the exact polynomial time algorithm.

The need for Uncertain Programming is almost clear. In Chapter 4 sec-
tion 2 we give A Genetic Programming for Chance Constrained Programming.
We show how we pose the problem. Then we show how we invent an algo-
rithm to solve this problem. We give computational results for two examples
from the literature. We also give computational results for Stochastic Resource
Allocation Problem and An Abstract Example.

In Chapter 4 section 3 we present Chance Constrained Integer Program-
ming Models for Capital Budgeting in Fuzzy Environments, where uncertainty
comes from fuzziness/possibility.

In Chapter 4 section 4 we treat Topological Optimization Models for
Communication Network with Multiple Reliability Goals under our Uncertain
Programming Philosophy. We have found that our treatment was successful.

In Chapter 5 we have tried to solve the well-known ,yet notorious Set
Covering Problem by Genetic Algorithm. As already stated out , we took
careful consideration for the first population of our Genetic Algorithm using
LP like information. We carefully implemented our algorithm. We used bit-
wise representation to store coefficient matrix information. Computational
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results are given for three small, yet meaningful input data and two randomly
generated medium sized input data.

In Chapter 6 we summarize our results from both model-building and
methodological point of view.



Chapter 2

Combinatorial Models

2.1 Knapsack Problem

Historically, Knapsack Problem was considered to be the easiest Combina-
torial Problem. It was also considered one specific problem in Integer Pro-
gramming. Among the all integer linear programming (abbreviated as ILP),
integer linear programming with nonnegative integer constants (including co-
efficients of constraint matrix) , one constrained, is called Knapsack Problem
[28][47][48][49][50][184]. Knapsack Problem with all the variables restricted to
0-1 is sometimes called 0-1 Knapsack Problem [152][179]. In [82], the author
reported a solution procedure of an ILP having a similar structure with 0-1
Knapsack Problem. Here in subsection 1, the author will show, extending the
solution procedure proposed by Dreyfus, S.E. and K.L. Prather [28], a solution
procedure of an ILP with nonnegative integer constants which is of Knapsack
type. Theorem 1 and Theorem 2 provide the validity of this procedure which
was not given in [28] even for the Knapsack case. Although the periodicity of
the Knapsack function was for the first time found by Gilmore, P.C. and R.E.
Gomory [50], it is hard to follow up their proof (see [56]). In [66] Hu, T.C.
stated this fact with a complete proof in the case ρ1 > ρ2

1 . We also prove
this fact in Theorem 4 in subsection 2, in the case of

ρ1 = · · · = ρk > ρk+1 ≥ · · · ≥ ρn.

This with the proof of Hu, T.C. offers an elementary, but complete proof for
the periodicity property of any Knapsack Function. We also tried to find
the small Knapsack length b from which Knapsack Function has periodicity
property. This section comes from K.Iwamura[83].

Example We have a company named ENHANCE-PROJECT-EFFICIENCY(EPE).
EPE has limits on its capital and labour power. Its capital is limited within

1 The meaning of ρi is given in Assumption 5.

9
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8 units, whereas its labour power is limited to 4 units at the most. Now at
hand, it has 3 profitable projects named A,B,C. Project A uses 4 capital units,
1 labour unit and produces 6 returns. Project B uses 3 capital units, 2 labour
units and produces 9 returns. Project C uses 3 capital units, 3 labour units
and produces 7 returns. EPE is allowed to open plural A projects and/or
projects A and C altogether and so on. Then find a total project plan which
produces maximum total returns under its limits on capital and labour power.
Letting EPE opens xA - A projects, xB-B projects, xC-C projects, EPE has to
solve the following ILP(Integer Linear Programming) of Knapsack type;

maximize

6xA + 9xB + 7xC

subject to

4xA + 3xB + 3xC ≤ 8

1xA + 2xB + 3xC ≤ 4

xA, xB, xC : non-negative integers.

2.1.1 ILP with Nonnegative Integer Constants

Notations. LetN = {1, 2, 3, · · ·} be the set of natural numbers, N0 = N∪{0},
I = {· · · ,−1, 0, 1, · · ·} the of integers, Nn

0 = N0×· · ·×N0 n-fold direct product
of N0, I

m= m-fold direct product of I for m,n ∈ N . Notation x ≥ 0 integer
means each component of x is nonnegative integer. And iff means if and only
if.

We concentrate on the following ILP with b regarded as a parameter, b ∈
Im.

F (b) : max cx subject to wix ≤ bi(1 ≤ i ≤ m), x ≥ 0 integer,
where c = (c1, · · · , cn), x = (x1, · · · , xn)T , wi = (wi1, · · · , win), b = (b1, · · · , bm)T

and T denotes transpose operation.
As an ILP with nonnegative integer constants, we assume

Assumption 1. cj, wij ∈ N0 (1 ≤ i ≤ m, 1 ≤ j ≤ n) and all these constants
including m,n ∈ N are fixed.

Therefore optimal objective function value of F (b) is a function of b. So
we define

Definition 1.

f(b) =




max cx subject to wix ≤ bi(1 ≤ i ≤ m), x ≥ 0 integer, b ∈ Nm
0 ⊂ Im

−∞, b ∈ Im \Nm
0 .
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Definition 2. x ∈ Nn
0 is called a feasible solution for F (b) (or simply, feasible)

iff wix ≤ bi(1 ≤ i ≤ m) and is called an optimal feasible solution for F (b) (or
simply, optimal) iff x is feasible and attains f(b) (i.e., cx = f(b)).

If wij0 = 0(1 ≤ i ≤ m) and cj0 = 0 we can disregard xj0 in the definition of
f(b). Moreover if wij0 = 0(1 ≤ i ≤ m) and cj0 > 0 we can make f(b) as large
as possible. Therefore, hereafter we can assume without loss of generality

Assumption 2. For any j(1 ≤ j ≤ n) there exists i(1 ≤ i ≤ m) such that
wij > 0.

And for any optimal x, if there exists j0, cj0 = 0 then

(x1, · · · , xj0−1, 0, xj0+1, · · · , xn)T

is also optimal. So we can assume without loss of generality

Assumption 3. cj > 0 for any j(1 ≤ j ≤ n).
Next we define (See [3])

Definition 3. [wij ,∞) = {w : wij ≤ w and w is a real number}, w·j =

(w1j , · · · , wmj)
T ,

m∏
i=1

[wij ,∞) = m-fold direct product of [wij,∞)(1 ≤ i ≤ m).

And we call b ∈ Im breakpoint and write b: b.p. iff

f(b) > max
1≤i≤m

f((b1, · · · , bi−1, bi − 1, bi+1, · · · , bm)T ).

Definition 4. Write b: n.b.p. iff b is not a breakpoint.
From Assumptions 1,2,3, 0 ≤ f(b) for any b ∈ Nm

0 . Moreover

Lemma 1. (1) f(b) ≥ max
1≤i≤m

f((b1, · · · , bi−1, bi − 1, bi+1, · · · , bm)T ) for any

b ∈ Nm
0 .

(2) 0 = (0, · · · , 0): b.p.
(3) If Nm

0 � b: b.p. then for any x: optimal , wix = bi(1 ≤ i ≤ m).

Lemma 2. For b ∈ Nm
0 , w·j ≤ b for some j iff f(b) > 0.

Remark. w·j ≤ b for some j is equivalent to b ∈ n⋃
j=1

m∏
i=1

[wij,∞). So for b ∈ Nm
0 ,

b ∈ n⋃
j=1

m∏
i=1

[wij ,∞) (respectively b �∈ n⋃
j=1

m∏
i=1

[wij,∞)) iff f(b) > 0 (respectively

f(b) = 0).

Lemma 3. For b ∈ Nm
0 , if f(b) > 0 then f(b) = max

1≤j≤n
{f(b− w·j) + cj}.

In order to obtain f(b) for b in
n⋃

j=1

m∏
i=1

[wij,∞), we may proceed step by step

the origin owing to Lemma 3. But the following Lemma 4 enables us to go
back only through the breakpoints.
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Lemma 4. For any b: b.p. & b ∈ n⋃
j=1

m∏
i=1

[wij,∞), we have

f(b) = max
1≤j≤n,b−w·j:b.p.

{f(b− w·j) + cj}.

Proof. f(b) = max
1≤j≤n

{f(b − w·j) + cj} by Lemmas 2 and 3. Suppose that

the maximum is attained at b − w·j: n.b.p. then there exists i such that (2)
b1 = (b1, · · · , bi−1, bi−1, bi+1, · · · , bm)T , f(b) = f(b−w·j)+cj = f(b1−w·j)+cj.

On the other hand b is b.p. so f(b) > f(b1) > 0 (for, if f(b1) = 0 then one of
bi−1−wij, bk−wkj(k �= i) becomes negative, so that 0 < f(b) = −∞+cj < 0.
Contradiction.). Applying Lemma 3 for b1 we obtain

f(b) > f(b1) = max
1≤l≤n

{f(b1− w·l) + cl} ≥ f(b1− w·j) + cj

and by (2) f(b1− w·j) + cj = f(b) contradiction. Q.E.D.

In order to obtain a solution procedure, we define and prove

Definition 5. For b ∈ Nm
0 let

R(b) = {y : y ∈ Nm
0 , yi ≤ bi(1 ≤ i ≤ m)} \ {b}

and
B(b) = {y : y ∈ R(b)&y : b.p.}

(Note that b �∈ R(b) and b �∈ B(b).)

Theorem 1. Assume that we have calculated B(b0) and f(b) for all b ∈ B(b0).
(1) If b0: b.p. then we can get the optimal value f(b0) and optimal solution

which gives f(b0) by Lemma 4.
(2) If b0: n.b.p. then finding bmax such that

f(bmax) = max
b∈B(b0)

f(b)

we see that f(bmax) = f(b0). So for the optimal solution which gives f(b0) we
can take that of bmax.
Proof. First part is Lemma 4 itself. If b0: n.b.p. then after finding bmax as
stated in Theorem 1, we see that there exist no b.p. in

{y : y ∈ Nm
0 , (bmax)i ≤ yi ≤ (b0)i(1 ≤ i ≤ m)} \ {bmax}.

For, if there existed b̂ then from the definition of b.p.

f(bmax) < f(b̂), b̂ ∈ B(b0)

which contradicts the definition of bmax. Moreover as b0: n.b.p. f(bmax) =
f(b0). Q.E.D.
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Definition 6. Provided that B(b0) has been calculated and b0: b.p., we call

PB(b0) = {b : b− w·j ∈ B(b0) ∪ {b0} for some j(1 ≤ j ≤ n)} \ (B(b0) ∪ {b0})

the set of potential breakpoints generated by b0. And we call the element of
PB(b0), potential breakpoint (p.b.p.) for b0.

The meaning of p.b.p. will be clear. We can easily obtain

Lemma 5. There exist no b.p. in

(Nm
0 \

n⋃
j=1

m∏
i=1

[wij,∞)) \ {0}

(that is there exist no p.b.p. for the origin in this set.).

Theorem 2. Assume that B(b) has been calculated for b ∈ n⋃
j=1

m∏
i=1

[wij,∞). b:

b.p. iff

f(b) = max
1≤j≤n,b−w·j∈B(b)

{f(b− w·j) + cj} > max
y∈B(b)

f(y).

Remark.Under the assumption of Theorem 2, we see that if

f(b) = max
1≤j≤n,b−w·j∈B(b)

{f(b− w·j) + cj} ≤ max
y∈B(b)

f(y)

then b: n.b.p..
Proof. If part is trivial. Only if part; for y ∈ B(b), yi ≤ bi(1 ≤ i ≤ m) so that
f(y) ≤ f(b). As b : b.p. and b �= y, f(b) > max

y∈B(b)
f(y). Q.E.D.

Definition 7. As usual for b, b′ ∈ Nm
0 , we say that b is lexicographically equal

or smaller than b′ iff b = b′ or b1 < b′1 or there exists k(1 ≤ k ≤ m − 1)
such that b1 = b′1, · · · , bk = b′k, bk+1 < b′k+1. And the set of current potential
breakpoint CPB(bk) be such that CPB(bk) = PB(bk)\ ({previous established
b.p.} ∪ {previously established n.b.p.}).

Concluding all the preceding results, we obtain a solution procedure for an
ILP with nonnegative integer constants.

An Algorithm to solve an ILP with Nonnegative Integer Constants

Step 1. If Ass.1-Ass.3 is not satisfied, then go to Step 8.

Step 2. Set k := 1, bk := 0(zero vector), B(bk) := ∅ and mark b1 : b.p.

Step 3. Calculate the set of current potential breakpoint CPB(bk).

Step 4. If CPB(bk) ∩ (R(b) ∪ {b}) = ∅, then go to Step 6.
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Step 5. Calculate bk+1 by bk+1 := lexicographically minimum of y ∈ CPB(bk)∩
(R(b) ∪ {b}). If

max
bk+1−w·j∈B(bk+1)

{f(bk+1 − w·j) + cj} > max
y∈B(bk+1)

f(y),

then markbk+1:b.p., set k := k + 1 and go to Step 3. Otherwise set
CPB(bk) := CPB(bk) \ {bk+1} and go to Step 4.

Step 6. Find bmax by

f(bmax) = max
b′∈B(bk)∪{bk}

f(b′).

Step 7. Take the optimal solution of bmax as that of b.STOP.

Step 8. Print out the adequate message. STOP.

It is easy to check that this procedure reduces to that of Dreyfus and
Prather when m = 1.

Example. m = 2, n = 3, c = (6, 9, 7), w1 = (4, 3, 3), w2 = (1, 2, 3), b =
(8, 4)T . In the following Table 2.1

M1 = max{f(bk+1 − w·j) + cj : 1 ≤ j ≤ n, bk+1 − w·j ∈ B(bk+1)}

and

M2 = max{f(y) : y ∈ B(bk+1)}.
It is evident to determine CPB(bk) from already generated potential break-
points and the elimination rule Solution Procedure indicates. The signal in
the right upper corner of p.b.p. means as follows.

S1 (α) : eliminated from iteration α− 1 to α because this is established to be
a b.p..

S2 ∗ : eliminated because this is not in R(b) ∪ {b},i.e., infeasible.

S3 ∗∗
α eliminated from iteration α − 1 to α because this is revealed to be a

n.b.p..

At iteration 5 calculation is stopped because CPB(b5) ∩ (R(b) ∪ {b}) = φ
with the optimal solution x1 = 0, x2 = 2, x3 = 0 and the optimal value f(b) =
18.
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Table 2.1: An Example to Show How our Algorithm Works

Previously p.b.p. generated Optimal feasi-
k established B(bk) at iteration k bk+1 M1 M2 f(bk+1) ble solution

breakpoint i.e.,bk + w.j for bk+1 when
bk bk+1 : b.p.

j = 1 j = 2 j = 3

1 0 ∅ 4(3) 3(2) 3∗∗2 3 0
0 1 2 3 2 9 0 9 1

0
2 3 0 7(4) 6(4) 6∗ 3

2 0 3 4 5 3 7 9
4 1
1 6 0 6 0

0
3 4 0 8(6) 7(4) 7∗∗5 6 0

1 0 2 3 4 4 18 9 18 2
0

4 6 0,3,4 10∗ 9∗ 9∗ 7 1
4 0,2,1 5 6 7 3 15 9 15 1

0
5 7 0,3,4 11∗ 10∗ 10∗ 7

3 0,2,1 4 5 6 4 13 18
8 2
2 12 9 12 0

0
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2.1.2 Periodicity Property of Knapsack Function

As m = 1 we write w·1 ≡ w = (w1, · · · , wn). Assumption 1 – Assumption 3
reduce to

Assumption 4. cj , wj ∈ N(1 ≤ j ≤ n)
and the problem

F (b) : max{cx : wx ≤ b, x ≥ 0 integer},

where we set
f(b) = max{cx : wx ≤ b, x ≥ 0 integer}

which is called Knapsack function[50].

Example Company EPE is asked from a tiny jeweler to let him know how
to cut off a 33cm long gold bar. He can make a green jewel using 5cm with
profit 5 thousand yen. A black jewel using 7cm with profit 7 thousand yen. A
purple one using 13cm with profit 6 thousand yen. A blue one using 11cm with
profit 5 thousand yen. And that’s all he can make from the 33cm long gold
bar. To answer for the jeweler, EPE just solves the following (one dimensional
) Knapsack Problem;

maximize

5x1 + 7x2 + 6x3 + 5x4

subject to

5x1 + 7x2 + 13x3 + 11x4 ≤ 33

x1, x2, x3, x4 ≥ 0(integers)

, where the jeweler is advised to produce

x1 − green jewel,

x2 − black jewel,

x3 − purple jewel,

x4 − blue jewel.

Lemma 3 reduces to

Lemma 6. For b ≥ wα ≡ min
1≤j≤n

wj, there exists optimal x with xj0 > 0 iff

f(b) = f(b− wj0) + cj0.
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Following the line of Hu, T.C. [66], we can assume without loss of generality

Assumption 5. ρ1 ≥ ρ2 ≥ · · · ≥ ρn where ρj = cj/wj(1 ≤ j ≤ n).

Remark. Under this assumption either ρ1 > ρ2holds or there exists k(2 ≤
k ≤ n) such that

ρ1 = · · · = ρk > ρk+1 ≥ · · · ≥ ρn.

Definition 8. For s ∈ N0 let

f(b;LEs) = max{cx : wx ≤ b, x ≥ 0 integer,x1 ≤ s}.

With this definition we can prove in a same way as Hu did when s = 0 [66],

Lemma 7. In the case ρ1 > ρ2, for s ∈ N0, b ∈ N , if

b ≥ ρ1w1/(ρ1 − ρ2) + w1s

then f(b;LEs) < f(b) (that is, for any optimal x for F (b), x1 > s). Until we
arrive at the end of this section, let us assume and define

Assumption 6. ρ1 = · · · ρk > ρk+1 ≥ · · · ≥ ρn(2 ≤ k ≤ n, n ≥ 2).

Definition 9. Let a be the greatest common divisor of w1. · · · , wk and di be
such that wi = adi(1 ≤ i ≤ k) (Note that d1, · · · , dk are mutually prime.).
Then

f(b) = max


ρ1a(

k∑
j=1

djxj) +
n∑

j>k

cjxj : a(
k∑

j=1

djxj) +
n∑

j>k

wjxj ≤ b, x ≥ 0 integer


 .

So we define

fa(b) = max


ρ1at+

n∑
j>k

cjxj : at+
n∑

j>k

wjxj ≤ b, (t, xk+1, · · · , xn) ≥ 0 integer


 .

Applying Lemmas 6 and 7 to fa(b)

Lemma 8. (1) f(b) ≤ fa(b).
(2) If b ≥ ρ1a/(ρ1 − ρk+1) then fa(b) = fa(b− a) + ρ1a.
(3) If b ≥ ρ1a/(ρ1 − ρk+1) + as then for any optimal x for fa(b), t > s.

To find small b from which f(b) = f(b− a) + ρ1a we prepare
Lemma 9. For u, v such that u < v,

(1) if u is integer then there exists an integer in the interval [u, v],
(2) if u is not integer then there exists integer in [u, v] iff [u] + 1 ≤ v where

[u] is the greatest integer which is less than or equal to u.
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Lemma 10. For mutually prime e1, e2 ∈ N with e1x
0
1 + e2x

0
2 = 1, it holds for

t ∈ N that (−tx0
2/e1) ∈ I, or [−tx0

2/e1]+1 ≤ tx0
1/e2 iff there exists x1, x2 ∈ N0

such that t = e1x1 + e2x2.
Proof. Only if part; As

(tx0
1/e2)− (−tx0

2/e1) = t(e1x
0
1 + e2x

0
2)/(e1e2) = t/(e1e2) > 0,

by Lemma 9 there exists p ∈ I, (−tx0
2/e1) ≤ p ≤ (tx0

1/e2). Letting x1 =
tx0

1 − e2p and x2 = tx0
2 + e1p, e1x1 + e2x2 = t (x1, x2 ∈ N0). If part can be

proved similarly. Q.E.D.

Remark. Condition −tx0
2/e1 ∈ I, or [−tx0

2/e1] + 1 ≤ tx0
1/e2 is satisfied if

t ≥ e1e2.
Assuming d1 ≤ · · · ≤ dk (if not, reindex the xj so as to satisfy this condi-

tion), we have three cases. (a) d1 = · · · = dk, (b) 1 = d1 < dk, (c) 1 < d1 < dk.
In case (a)

f(b) = f(b− a) + ρ1ad1 = f(b− a) + c1

for b ≥ c1/(ρ1−ρk+1) is easily derived. In case (b) fa(b) = f(b) for any b ∈ N0

is also easily derived. And as fa(b) = fa(b− a) + ρ1a for b ≥ ρ1a/(ρ1 − ρk+1)
we have f(b) = f(b− a) + ρ1a for b ≥ ρ1a/(ρ1 − ρk+1). To attack case (c) we
prepare Condition (A) 1 < d1 ≤ · · · ≤ dk and d1 < dk and that there exist γ
and δ such that dγ, dδ are mutually prime.

Remark. Condition (A) is always true when k = 2.

Lemma 11. Under Condition (A), let dγx
0
γ + dδx

0
δ = 1, r = min{t : t ∈

N,−tx0
δ/dγ ∈ I or [−tx0

δ/dγ] + 1 ≤ tx0
γ/dδ} then for t ∈ N , t ≥ r there exist

x1, · · · , xk ∈ N0 such that at = w1x1 + · · ·+ wkxk.
Proof. Corresponding dγ, dδ to e1, e2 in Lemma 10, there exist xγ , xδ such that
t = dγxγ + dδxδ. Noting that adγ = wγ, adδ = wδ and setting xi = 0(i �= γ, δ)
we have at = wγxγ + wδxδ = w1x1 + · · ·+ wkxk. Q.E.D.

Remark. In fact, r = dγdδ − (dγ + dδ) + 1 [189].

Theorem 3. Under Condition (A) let bA = 〈ρ1a/(ρ1 − ρk+1) + ar〉. If b ≥ bA
then f(b) = f(b− a)+ ρ1a, where 〈x〉 is the least integer which is greater than
or equal to x and r is defined in Lemma 11.
Proof. As 〈x〉 ≥ x, b ≥ ρ1a/(ρ1 − ρk+1) + ar. And by Lemma 7 for any
optimal x for fa(b), t > r and by Lemma 11 there exist x1, · · · , xk ∈ N0 such
that

at = w1x1 + · · ·+ wkxk = a(d1x1 + · · ·+ dkxk)

which lead to fa(b) = f(b). Noting the fact ρ1a/(ρ1 − ρk+1) ≤ b and using
Lemma 8 fa(b) = fa(b−a)+ρ1a. As b−a ≥ ρ1a/(ρ1−ρk+1)+a(r−1) similar
argument as above yields fa(b− a) = f(b− a). Q.E.D.
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For b ≥ bA + a(dj − 1) = b̃j ,

f(b) = f(b− a) + ρ1a = · · · = f(b− wj) + ρ1wj = f(b− wj) + cj

so that the optimal solution for F (b) can be obtained by adding 1 to the jth
component of the optimal solution for F (b − wj)(1 ≤ j ≤ k). This property
is called periodicity property. Finally, we can prove in an elementary way that
any Knapsack function has this property.

Lemma 12. For any j(2 ≤ j ≤ k) there exists uj ∈ N such that for any
t ∈ N , t ≥ uj there exist x1, · · · , xj ∈ N0 with (d1, · · · , dj)t = d1x1 + · · ·+djxj ,
where (d1, · · · , dj) is the greatest common divisor of d1, · · · , dj.
Proof. (By induction). When j = 2, set e1 = d1/(d1, d2), e2 = d2/(d1, d2)
and apply Lemma 10 with its Remark so that we can take u2 = d1d2/(d1, d2)

2.
This proves Lemma for j = 2. Assuming Lemma is valid for j, let vj+1 be such
that

((d1, · · · , dj+1)/(d1, · · · , dj))vj+1 ≥ uj

and ((d1, · · · , dj+1)/(d1, · · · , dj))vj+1: integer then for t ≥ uj+1,

uj+1 = vj+1 + (d1, · · · , dj)dj+1/((d1, · · · , dj), dj+1)
2

(i.e. t− vj+1 ≥ (d1, · · · , dj)dj+1/((d1, · · · , dj), dj+1)
2), applying this Lemma for

(d1, · · · , dj) and dj+1(k = 2) there exists x1···j, xj+1 ∈ N0 such that

(d1, · · · , dj+1)(t− vj+1) = (d1, · · · , dj)x1···j + dj+1xj+1.

Noting x1···j + ((d1, · · · , dj+1)/(d1, · · · , dj))vj+1 ≥ uj and from the assumption
of induction, there exist x1, · · · , xj ∈ N0 such that

(d1, · · · , dj)(x1···j + ((d1, · · · , dj+1)/(d1, · · · , dj))vj+1) = d1x1 + · · ·+ djxj .

So that (d1, · · · , dj+1)t = d1x1 + · · ·+ dj+1xj+1 for t ≥ uj+1. Q.E.D.

By (d1, · · · , dk) = 1 and Lemma 12 we obtain

Theorem 4. If b ≥ 〈ρ1a/(ρ1− ρk+1) + auk〉 then f(b) = f(b− a) + ρ1a, where
uk is given in Lemma 12.

Recalling the Remark beneath the Assumption 5 we have showed that the
Knapsack function always has periodicity property.

Example. n = 4, c = (5, 7, 6, 5), w = (5, 7, 13, 11). As 5/5 = 7/7 > 6/13 >
5/11, k = 2, a = 1, d1 = 5, d2 = 7, Condition (A) is satisfied with γ = 1,
δ = 2. And we have

x0
1 = −4, x0

2 = 3, r = 29, bA = 〈13/7 + 29〉 = 31, b̃1 = 35, b̃2 = 37.
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According to the stopping criterion of references [46][66], it is assured that
from k = 31, bk = 42 there is no use calculating further. So, in this example
our stopping criterion is superior to that of [46][66].

2.2 Set Partitioning Problem

A careful consideration when one solves the Set-Partitioning Problem by dual
all integer algorithm is presented. It saves both computing time and memory
size.

Example A dispatching company DISPATCH EXPRESS(DE) has to dispatch
some boxes of beverages to four sites S1,S2,S3,S4, where it places vending
machine.See Figure 2.1. DE has to visit each site once a day, picking up
some routes from candidate routes R1,R2,R3,R4,R5. Each route is automati-
cally generated depending on traffic conditions so that today R1 lets DE visit
S1,S3,S4 with cost 2. R2 lets DE dispatch its commodity to S2 only with cost
3. R3 lets DE visit S3,S4 with cost 6. R4 lets DE visit S1,S2 with cost 1.
Finally R5 lets DE visit S2 and S3 with cost 5. Then, picking up the most
costless routes is just solving the following Set Partitioning problem;

minimize

2x1 + 3x2 + 6x3 + 1x4 + 5x5 (2.1)

subject to

1x1 + 1x4 = 1 (2.2)

1x2 + 1x4 + 1x5 = 1 (2.3)

1x1 + 1x3 + 1x5 = 1 (2.4)

1x1 + 1x3 = 1 (2.5)

xj = 0 or 1(1 ≤ j ≤ 5). (2.6)

Here

xj =

{
1 means that DE has to pick up route Rj
0 means that DE shouldn’t pick up route Rj.

2.2.1 Introduction

A Set Partitioning Problem,

minimize
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Figure 2.1: An Example of the Set Partitioning Problem

x0 =
n∑

j=1

cjxj

subject to

n∑
j=1

aijxj = 1(1 ≤ i ≤ m), xj : binary(1 ≤ j ≤ n), (2.7)

where cj positive integer, aij = 0 or 1 can be solved by Dual All Integer
Algorithm [46][66]. Salkin and Koncal [175][176][177] transformed this problem
to the Set Covering Problem,

maximize

u0 =
n∑

j=1

(cj + Lhj)(−xj)

subject to

n∑
j=1

aijxj ≥ 1(1 ≤ i ≤ m), xj : binary(1 ≤ j ≤ n), (2.8)
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where integer L is greater than
∑n

j=1 cj, hj =
∑m

i=1 aij and then solved
the original Set Partitioning Problem successfully.

Setting xn+i =
∑n

j=1 aijxj − 1(1 ≤ i ≤ m), they applied Dual All Integer
Algorithm to the dual feasible all integer tableau as follows [46][66];

1 −x1 −x2 · · · −xn

u0 0 c1 + Lh1 c2 + Lh2 · · · cn + Lhn

xn+1 −1 −a11 −a12 · · · −a1n

xn+2 −1 −a21 −a22 · · · −a2n
... =

...
...

...
...

...
xn+m −1 −am1 −am2 · · · −amn

(2.9)

Maximum tableau size could grow as large as (m + n + 2)(n + 1), where we
include a cut row.

Recently, Imai[74] discussed the importance to approximately solve the Set-
Partitioning Problem greedily. But its performance is still Ω(lnn). Therefore
we think that the arguments below will be still worth stating.

2.2.2 Another Transformation

Let’s consider another transformation which transforms (??) to
maximize

v0 = −
n∑

j=1

cjxj

subject to

n∑
j=1

aijxj = 1(1 ≤ i ≤ m) (2.10)

xj ≥ 0 (2.11)

xj : integer(1 ≤ j ≤ n) (2.12)

where v0 = −x0.

LetM be any integer greater than the minimal value x0 of (2.7), for example
M =

∑n
j=1 cj + 1 ,then we see that

v(2.12) > −M (2.13)
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as v(2.7) = −v(2.12), where v(P ) denotes the optimal value of the 0-1
integer programming problem (P ).

Consider one more problem such as

maximize

w0 = −
n∑

j=1

cjxj −M
m∑

i=1

xn+i

subject to

n∑
j=1

aijxj − xn+i = 1(1 ≤ i ≤ m), xu ≥ 0integer(1 ≤ u ≤ m+ n). (2.14)

We easily see that the following properties hold.

Property a (2.14) has a dual feasible integer solution xj = 0(1 ≤ j ≤
n), xn+i = −1(1 ≤ i ≤ m) with the same dual feasible all integer tableau
as (2.9), u0, L replaced by w0,M .

Property b (2.12) has a feasible integer solution if and only if (2.14) has
a feasible integer solution whose objective function value w0 is greater
than −M .

Property c v(2.14) ≥ −∑n
j=1 cj −mM

From these properties, we can obtain an optimal integer solution of (2.14)
after finite iterations of Dual All Integer Algorithm. Moreover we have,

v(2.14)



> −M, iff every optimal solution of (2.14) is an optimal integer

solution of (2.12) and v(2.14) = v(2.12),
≤ −M, iff (2.14) is infeasible,

so that we get the next Procedure d.

Procedure d; Every time any variable xu (n + 1 ≤ u ≤ n + m) becomes
nonbasic in the course of dual pivoting, we can drop xu and its corresponding
column from the tableau.
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2.2.3 Illustrative Example

We quote Dual All Integer Algorithm from [46].

Step 0;(Preparation) Prepare simplex tableau,

xBi
= yi0 +

∑
j∈R

yij(−xj), (0 ≤ i ≤ m) (2.15)

where xB = x0 = objective function value, xBi
(1 ≤ i ≤ m) are ba-

sic variables xj (j ∈ R) are nonbasic variables. A vector v �= 0 is called
lexicographically positive if its first nonzero component is positive. We use
notation v >L 0 to denote v lexicographically positive. We use yj to denote
the j-th column of the simplex tableau (2.15). Simplex tableau (2.15) is called
dual feasible if yj >L 0 for all j ∈ R, all integer if yij(0 ≤ i ≤ m, 0 ≤ j ≤ n)
are all integers. [u] denotes the largest integer less than or equal to u.

Step 1:(Initialization) Begin with a dual feasible all integer tableau (2.15).Go
to step 2.

Step 2:(Test for optimality) If the solution is primal feasible, it is optimal
to (2.15). STOP. If not, go to Step 3.

Step 3:(Cutting and pivoting) Choose a source row (i �= 0) in the tableau
with yi0 < 0, say i = r. The topmost row with yi0 < 0, must be chosen
at least periodically. Select the lexicographically smallest column with
yrj < 0, say j = k, as the pivot column. Compute h by

h = min
j∈Rr

M j

yrj

where Rr = {j ∈ R|yrj < 0},Mk = −1,M j = min{u|yj + uyk >L

0, u integer} for j ∈ Rr\{k}.
If h = 1, execute one dual simplex iteration with the pivot element yrk.

If h < 1, adjoin the cut

s = [hyr0] +
∑

{j∈R}
[hyrj](−xj)

with h = h, to the bottom of the tableau. Execute a dual simplex
iteration with s as the departing variable and xk as the entering variable.
In any case, if xk is a slack from a cut, delete the xk row. Return to step
2.
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To see the power of Procedure d, we take Example from [46]( page 315).

minimize

3x1 +7x2 +5x3 +8x4 +10x5 +4x6 +6x7 +9x8

x1 +x2 = 1
x3 +x4 +x5 = 1

x5 +x6 +x7 = 1
x7 +x8 = 1

x2 +x4 +x6 = 1

We start with the dual feasible all integer tableau (2.16) which is obtained
through replacing u0, L by w0,M =

∑8
j=1 cj + 1 = 53.

1 −x1 −x2 −x3 −x4 −x5 −x6 −x7 −x8

w0 265 56 113 58 114 116 110 112 62
x9 −1 −1p −1
x10 −1 −1 −1 −1
x11 −1 −1 −1 −1
x12 −1 −1 −1
x13 −1 −1 −1 −1

(2.16)

r = 1, Rr = {1, 2}, k = 1, M 1 = −1, M 2 = −2, yrk = −1 (having p on its
upper right) gives h = 1. Pivoting on yrk makes x1 basic, x9 nonbasic so that
we may drop x9 column from the new tableau (2.17).

1 −x2 −x3 −x4 −x5 x6 −x7 −x8

w0 209 57 58 114 116 110 112 62
x1 1 1
x10 −1 −1p −1 −1
x11 −1 −1 −1 −1
x12 −1 −1 −1
x13 −1 −1 −1 −1

(2.17)

r=2, k=2, M2 = −1, M3 = −1, M4 = −2, yrk = -1 (having p on its upper
right) gives h = 1. Pivoting on yrk makes x3 basic, x10 nonbasic so that we
may drop x10 column from the next tableau (2.18)
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1 −x2 −x4 −x5 −x6 −x7 −x8

w0 151 57 56 58 110 112 62
x1 1 1
x3 1 1 1
x11 −1 −1 −1 −1
x12 −1 −1 −1
x13 −1 −1 −1 −1

(2.18)

Doing in this way, i.e.,
x5 basic, x11 nonbasic and so drop x11 column;
x7 basic, x12 nonbasic and so drop x12 column;
x6 basic, x13 nonbasic and so drop x13 column;
x4 basic, x5 nonbasic and so drop none,
we get final tableau (2.19) which is optimal,

1 −x2 −x5 −x8

w0 −17 1 4 4
x1 1 1
x3 0 −1 2 −1
x4 1 1 −1 1
x7 1 1
x6 0 1 −1

(2.19)

As v(2.19) = -17> -53, we see that x1 = x4 = x7 = 1, xj = 0(otherwise),x0 =
17 is an optimal solution. Final tableau size is half as large as the original.
We also do away with needless calculations for the deleted columns.



Chapter 3

Greedoid and Greedy Algorithm

3.1 What is Greedoid?

A Greedoid(B.Korte and L.Lovász[118](1984)) is a set system (E,F) , where
E is a finite set and F is a class of subsets of E satisfying

• (G1) ∅ ∈ F
• (G2) If ∅ �= X ∈ F then X − {a} ∈ F for some a ∈ X
• (G3) If X, Y ∈ F with | X |>| Y |, then there exists a ∈ X − Y such

that Y ∪ {a} ∈ F

Sets belonging to F are called feasible sets. A set system (E,F) satisfying
the above axioms (G1), (G3) and the following (M2)

• (M2) If X ⊂ Y ∈ F then X ∈ F

are called Matroid([199]). Hence Greedoid is a direct relaxation of Matroid
and so it has a lots of application in Combinatorial Optimization.

Let (E,≤) be a partially ordered set( poset,Birkhoff[11]). So, the set E
with ordering ≤ satisfies

for any x ∈ E, x ≤ x (3.1)

If x ≤ y and y ≤ x, then x = y (3.2)

If x ≤ y and y ≤ z, then x ≤ z. (3.3)

A lower ideal is a subset X of E such that

X � x and y ≤ x implies y ∈ X.

27
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Let F be a class of subsets of E which are lower ideals in the poset E. Then,
we see that (E,F) is a greedoid which are called poset greedoid(.Korte and
Lovász[117][119][122], Korte, Lovász and Schrader[129]). A greedoid (E,F) is
said to be an interval greedoid, if X ⊆ Y ⊆ Z,X ∪ {a} ∈ F and Z ∪ {a} ∈ F
imply Y ∪ {a} ∈ F(interval property). This condition is equivalent to ;

• (B) whenever X, Y, Z ∈ F such that X, Y ⊆ Z then X ∪ Y ∈ F .

An interval greedoid is called a shelling structure if E ∈ F .Thus the family
of a shelling structure is closed under union.
ExampleTo clarify the difference between greedoid and matroid, we give here
three examples.

Let E1 = {a, b, c} and (E1,≤) be a poset given in the Figure 3.1.

��
��
a

��
��
b ��

��
c

�
�

�
�

�
�

�
�

Figure 3.1: Poset (E1,≤)

Letting F1 be the set of lower ideals of (E1,≤), we get

F1 = {∅, {a}, {a, b}, {a, c}, {a, b, c}}

which satisfies (G1),(G2),(G3) and so F1 is a greedoid(poset greedoid). We see
that F1 is closed under set union and intersection operations with ∅, E1 ∈ F1.
Yet we have {b} ⊂ {a, b} ∈ F1&{b} /∈ F1 and so (E1,F1) is not a matroid.

Let E2 be a set of edges of a triangle in the Figure 3.2.

A subset X of E2 is called independent if X does not contain a circuit in
it. Let F2 be the set of independent sets. Then we get

F2 = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}

which satisfies (G1),(M2),(G3) and so (E2,F2) is a matroid. Note that (G1),(M2),(G3)
imply (G1),(G2),(G3) and therefore every matroid is a greedoid(matroid gree-
doid).
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Figure 3.2: Triangle E2
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Figure 3.3: Chain Poset (E3,≤)

Let (E3,≤) be a chain poset as in the Figure 3.3.

Let F3 be the set of lower ideals of (E3,≤). Then we get a chain poset
greedoid (E3,F3), where

F3 = {∅, {a}, {a, b}, {a, b, c}}

and (E3,F3) is not a matroid. Again we see that F3 is closed under set union
and intersection with ∅, E3 ∈ F3.
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3.2 Lexicographically Optimal Base of a Sub-

modular System with Respect to a Weight

Vector

Submodular system has been developed by Fujishige [37][38](1978-1987). He
posed an algorithm to get lexicographically optimal base of a polymatroid with
respect to a weight vector through geometric consideration[37] (1980). We have
shown that the same results hold for a submodular system with f(A) > 0 (φ �=
A ∈ D) and have presented a greedy procedure in an algebraic way (1987). In
response to our work and to questions proposed by the author, Fujishige[38]
(1987) has extended the same results for an arbitrary submodular system and
has presented an algorithm to get it. His algorithm, which is not a direct
extension of the algorithm for polymatroid, contains an oracle computation
which has been pointed out by Morton, von Randow and Ringwald [160](1985).
Here, we show a greedy procedure to get it though algebraic consideration,
which is quite different from Fujishige’s algorithm [36][38](1980,1987), because
we get it algebraically.

Submodular system is essentially a poset greedoid with submodular func-
tion on it, which is implicitly stated in Fujishige and Tomizawa[40] (1983).
Greedoids are created and have been investigated by Korte and Lovász[117][128]
(1982-1986). Our result is a natural consequence through the study of gree-
doids and submodular systems. This chapter comes from K.Iwamura[92](1995).

3.2.1 Submodular System, Submodular Polyhedra and
Their Basic Characteristics

We use the same symbol and terminology as that of Fijishige [37](1984). Let E
be a finite set and denote by 2E the set of all the subsets of E. Let a collection
D of subsets of E be a distributive lattice with set union and intersection as
the lattice operations, i.e., for any X, Y ∈ D we have X ∪ Y,X ∩ Y ∈ D. A
function f from D to the set R of reals is called a submodular function on D
if for each pair of X, Y ∈ D

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

A pair (D, f) of a distributive lattice D ⊆ 2E and a submodular function
f : D → R is called a submodular system. We assume that φ,E ∈ D and
f(φ) = 0. Note that the value f(φ) does not affect the other value f(A) at
A ∈ D because A ∪ φ = A, A ∩ φ = φ. Given a submodular system (D, f),
define a polyhedron Pf by

Pf :=
{
x ∈ RE | x(X) ≤ f(X)(∀X ∈ D)

}
,
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where RE is the set of vectors x = (x(e) : e ∈ E) with coordinates indexed by
E and x(e) ∈ R(e ∈ E) and

x(X) :=
∑
e∈X

x(e).

We call Pf the submodular polyhedron associated with the submodular sys-
tem (D, f). Define

Bf := {x ∈ Pf | x(E) = f(E)} ,
which is called the base polyhedron associated with (D, f).

Lemma 3.1 Let x ∈ Pf and A,B ∈ D. If x(A) = f(A), x(B) = f(B), then
x(A ∩ B) = f(A ∩B) and x(A ∪ B) = f(A ∪ B) hold.

Proof. Same as that of Fujishige [35](1978). Q.E.D.

Let χu be a characteristic function of u, i.e, χu(e) = 1 for e = u and
χu(e) = 0 for e ∈ E \ {u}. Define a saturation function sat(): Pf → 2E by

sat(x) := {u ∈ E | ∀d > 0, x+ dχu �∈ Pf} (x ∈ Pf).

Then we have the following lemma, where ℘(x) := {A ∈ D|x(A) = f(A)}.

Lemma 3.2 Let x ∈ Pf . Then sat(x) satisfies

sat(x) ∈ D, x(sat(x)) = f(sat(x)).

Furthermore, ℘(x) is a distributive lattice with a partial order relation defined
by the set inclusion and sat(x) is the maximum element of ℘(x).

Proof. Same as that of Fujishige [36](1980). Q.E.D.

Note that sat(x) is a function from Pf into D.

Lemma 3.3 Let x ∈ Pf . Then x ∈ Bf iff sat(x) = E.

Proof. Use the definition of Bf and Lemma 3.2. Q.E.D.

For x ∈ Pf , u ∈ sat(x), we can define dependence function dep() : Pf → D
and also we can introduce capacity, exchange capacity and so on (Fujishige
[37][38](1984,1987)), but we do not go into the details because we do not use
them.

Let n := |E|. For any real sequences a = (a1, · · · , an) and b = (b1, · · · , bn)
of length n , a is called lexicographically greater than or equal to b if for some
j ∈ {1, · · · , n}
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ai = bi (i = 1, 2, · · · , j − 1)

aj > bj

or

ai = bi (i = 1, 2, · · · , n).

A vector w ∈ RE such that w(e) > 0(e ∈ E) is called a weight vector. For
a vector x ∈ RE , denote by T (x) the n-tuple (or sequence) of the numbers
x(e)(e ∈ E) arranged in order of increasing magnitude. Given a weight vector
w, a base x of (D, f) is called a lexicographically optimal base with respect
to the weight vector w if the n-tuple T ((x(e)/w(e))e∈E) is lexicographically
maximum among all n-tuples T ((y(e)/w(e))e∈E) for all bases y of (D, f). The
mathematical programming problem to get x ∈ Bf such that

T ((x(e)/w(e))e∈E) = Lexicographically maximum T ((y(e)/w(e))e∈E)

subject to y ∈ Bf

is called wlob (weighted lexicographically optimal base) problem for submodu-
lar system.

3.2.2 Existence and Uniqueness of a Lexicographically
Optimal Base with Respect to a Weight Vector

Let

c1 := min

{
f(A)

w(A)
| φ �= A ∈ D

}
, uc1(e) := c1w(e)(e ∈ E).

Then we see that uc1 ∈ Pf holds. By Lemma 3.2, we have

uc1(sat(uc1)) = f(sat(uc1)).

Let A1 be a set such that

c1 =
f(A1)

w(A1)
, φ �= A1 ∈ D.

Then A1 ⊆ sat(uc1), because

∀e ∈ A1, ∀d > 0, (uc1 + dχe)(A1) = c1w(A1) + d > f(A1).

Thus we get φ �= sat(uc1) ∈ D. Therefore, we are in a position such that

uc1(e) = c1w(e)(e ∈ E), uc1 ∈ Pf , φ �= sat(uc1) ∈ D, uc1(sat(uc1)) = f(sat(uc1)).
(3.4)
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In case sat(uc1) = E, by Lemma 3.3, we see that

uc1 ∈ Bf . STOP

In case sat(uc1) ⊂ 1 E, let

ε1 := min

{
f(A)− uc1(A)

w(A \ sat(uc1))
| A \ sat(uc1) �= φ,A ∈ D

}
.

Then by Lemma 3.1, we get ε1 > 0. Let c2 := c1 + ε1, and let

uc2(e) :=



c1w(e) = uc1(e), e ∈ sat(uc1)

c2w(e) = uc1(e) + ε1w(e), e ∈ E \ sat(uc1).

By the definition of uc2 and ε1, and by the fact that uc1 ∈ Pf , we get uc2 ∈ Pf .
Furthermore we get ℘(uc1) ⊆ ℘(uc2) and so sat(uc1) ⊆ sat(uc2). From the
definition of ε1, we have a set

A1 ∈ D,A1 \ sat(uc1) �= φ such that ε1 =
f(A1)− uc1(A1)

w(A1 \ sat(uc1))
.

Then

uc2(A1) = uc2(A1 ∩ sat(uc1)) + uc2(A1 \ sat(uc1))

= c1w(A ∩ sat(uc1)) + (c1 + ε1)w(A1 \ sat(uc1)) [by the definition of uc2]

= c1w(A1) + ε1w(A1 \ sat(uc1))

= uc1(A1) + ε1w(A1 \ sat(uc1))

= f(A1)

and so A1 ∈ ℘(uc2).
By Lemma 3.1 and sat(uc1) ∈ ℘(uc2), we have

sat(uc1) ⊂ sat(uc1) ∪A ∈ ℘(uc2).

Thus sat(uc1) ⊂ sat(uc2). From Lemma 3.2 and uc2 ∈ Pf , we have

uc2(sat(uc2)) = f(sat(uc2)). (3.5)

Therefore, we are in a position such that

uc2(e) =




c1w(e)(e ∈ sat(uc1)),

c2w(e)(e ∈ E \ sat(uc1)),

uci
∈ Pf(i = 1, 2), φ �= sat(uc1) ⊂ sat(uc2) ∈ D

uci
(sat(uci

)) = f(sat(uci
))(1 ≤ i ≤ 2) and c1 < c2.

(3.6)

1 X ⊂ Y means that X is a proper subset of Y .
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Continuing this process, we get ucP
such that sat(ucP

) = E, i.e., ucP
∈ Bf .

Set

c(e) :=




c1(e ∈ sat(uc1))

c2(e ∈ sat(uc2) \ sat(uc1))

...

ci(e ∈ sat(uci
) \ sat(uci−1

))

...

cP (e ∈ sat(ucP
) \ sat(ucP−1

) = E \ sat(ucP−1
))




(3.7)

Then we have

ucP
(e) =




c1w(e)(e ∈ sat(uc1))

c2w(e)(e ∈ sat(uc2) \ sat(uc1))

...

ciw(e)(e ∈ sat(uci
) \ sat(uci−1

))

...

cPw(e)(e ∈ sat(ucP
) \ sat(ucP−1

))

ucP
�∈ Bf , φ �= sat(uc1) ⊂ · · · ⊂ sat(ucP

) = E which are all in D,

uci
(sat(uci

)) = f(sat(uci
)) (1 ≤ i ≤ p)

and
c1 < · · · < cP . (3.8)

Note. For a positive submodular system (D, f), i.e., submodular system with
f(A) > 0(φ �= A ∈ D), we see that c1 > 0.

Theorem 3.1. (Existence) Let c(e)(e ∈ E) be those defined by (3.7). Then
the vector x defined by

x = (c(e)w(e))e∈E (3.9)

is a lexicographically optimal base with respect to the weight vector w.
Proof. Let z ∈ Bf . We show that an equality

T ((z(e)/w(e))e∈E) ≤l T ((x(e)/w(e)e∈E) (3.10)

holds. First note that

z(A) ≤ f(A) (φ �= A ∈ D) (3.11)
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holds. Let q := (q1, · · · , qn), n = |E|, be any permutation corresponding to x
such that

x(q1)

w(q1)
= · · · = x(qj1)

w(qj1)
= c1 <

x(qj1+1)

w(qj1+1)
= · · · = x(qj2)

w(qj2)
= c2 < · · · <

<
x(qjP−1+1)

w(qjP−1+1)
= · · · = x(qjP

)

w(qjP
)

= cP , jP = n, cj0 = 0.

Let Si = {qji−1+1, qji−1+2, · · · , qji
}(1 ≤ i ≤ p). Then we have S1 = sat(uc1),

Si = sat(uci
) \ sat(uci−1

)(2 ≤ i ≤ p).

If
z(q1)

w(q1)
< c1, then (3.10) holds.

If
z(q1)

w(q1)
≥ c1,

z(q2)

w(q2)
< c1, then (3.10) holds.

...

If
z(q1)

w(q1)
≥ c1, · · ·, z(qj1)

w(qj1)
≥ c1, then we see that

z(e)

w(e)
=
x(e)

w(e)
= c1 (e ∈ S1) (3.12)

holds by z(S1) ≥ c1w(S1) = uc1(S1) = f(S1) and by (3.11).

If
z(e)

w(e)
= c1(e ∈ S1);

z(qj1+1)

w(qj1+1)
< c2, then (3.10) holds.

If
z(e)

w(e)
= c1(e ∈ S1),

z(qj1+1)

w(qj1+1)
≥ c2,

z(qj1+2)

w(qj1+2)
< c2, then (3.10) holds.

...

If
z(e)

w(e)
= c1(e ∈ S1),

z(qj1+1)

w(qj1+1)
≥ c2, · · · , z(qj2)

w(qj2)
≥ c2, then we see that

z(e)

w(e)
= c2 =

x(e)

w(e)
(e ∈ S2)

holds because z(e) = c1w(e) (e ∈ S1) and

z(S2 + S1) ≤ f(S2 + S1) = uc2(S2 + S1) = z(S1) + c2w(S2) ≤ z(S2 + S1).

Continuing in this way, we see that (3.10) holds for any z ∈ Bf . Q.E.D.
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Theorem 3.2. (Uniqueness, Fujishige[36] (1980)) Let c(e)(e ∈ E) be those
defined by (3.7). Then the vector x defined by (3.9) is the unique lexicograph-
ically optimal base of (D, f) with respect to a weight vector w.
Proof. Same as that of Fuhishige (1980). Use (3.8), especially

sat(uci
) ∈ D, uci

(sat(uci
)) = f(sat(uci

)).

Q.E.D.

Based on these algebraic arguments, we present an algorithm to get the
lexicographically optimal base of submodular system (D, f) with respect to a
weight vector w.

Algorithm to get the lexicographically optimal base

Step 1. Set i := 1 and compute ci := min
{

f(A)
w(A)
|φ �= A ∈ D

}
and

set uci
(e) := ciw(e)(e ∈ E).

Step 2. If sat(uci
) = E, then STOP.

Step 3. Compute

εi := min

{
f(A)− uci

(A)

w(A \ sat(uci
))
| A ∈ D,A \ sat(uci

) �= φ

}

and set ci+1 := ci + εi and set

uci+1
(e) :=



uci

(e), e ∈ sat(uci
),

uci
(e) + εiw(e), e ∈ E \ sat(uci

).

Set i := i+ 1 and go to Step 2.

Theorem 3.3. (Fujishige [36](1980)) Let x̂ ∈ Bf and let w be a weight vector.
Define

ĉ(e) := x̂(e)/w(e) (e ∈ E)

and let the distinct numbers of ĉ(e) (e ∈ E) be given by

ĉ1 < ĉ2 < · · · < ĉp̂.

Furthermore, define Ŝi ⊆ E(1 ≤ i ≤ p̂) by

Ŝi := {e ∈ E | ĉ(e) ≤ ĉi} (1 ≤ i ≤ p̂).

Then the following three conditions are equivalent:
(i) x̂ is the lexicographically optimal base of Pf with respect to w;
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(ii) Ŝi ∈ D and x̂(Ŝi) = f(Ŝi)(1 ≤ i ≤ p̂);
(iii) For any e ∈ Ŝi, φ �= dep(x̂, e) ⊆ Ŝi(1 ≤ i ≤ p̂).

Remark. If one of the three conditions holds, then we have p̂ = p.

Given a submodular system (D, f) and a weight vector w and p > 1, define
a mathematical programming problem

P : min fw(x) =
1

p

∑
e∈E

x(e)p

w(e)p−1
subject to x ∈ Bf and x ≥ 0.

Fujishige[36] (1980) showed that for a polymatroid (D, f) with p = 2, its
unique solution is the lexicographically optimal base w.r.t. w. Morton, Von
Randow and Ringwald[160] (1985) extended it for p > 1, where (D, f) is a
polymatroid. We can easily see that for a positive submodular system (D, f)
with p > 1, the same result holds. As for an arbitrary submodular system,
P might be infeasible. For example, for a submodular system (D, f) with
f(A) < 0(A ∈ D). So, consider another problem

P̂ : min fw(x) =
1

p

∑
e∈E

x(e)p

w(e)p−1
subject to x ∈ Bf .

We have an example for which P̂ has no optimal solution as follows: Let E =
{1, 2, 3}, D = {φ, {3}, {1, 2, 3}}, f(φ) = 0, f({3}) = −2, f({1, 2, 3}) = −3.
Then (D, f) is a submodular system with base polyhedron

Bf = {(x1, x2, x3) | x1 + x2 + x3 = −3, x3 ≤ −2} .
Let w = (1, 1, 1). The lexicographically optimal base x∗ becomes x∗ = (−1

2
,−1

2
,−2).

Let p = 3 and let x1 = x2 = − (t+3)
2

, x3 = t(≤ −2). Then (x1, x2, x3) ∈ Bf

with

3fw(x) = t3 − 1

4
(t+ 3)3 → −∞ as t→ −∞.

Problem P̂ for this case has no minimum solution. For an even natural num-
ber p, if there exists a minimum solution x̂ for P̂ , then we see that x̂ is the
lexicographically optimal base w.r.t. w.

Theorem 3.4. (Fujishige[36] (1980), Morton, von Random and Ringwald
[160](1985)) Let x∗ be the lexicographically optimal base of a positive sub-
modular system (D, f) with respect to a weight vector w and let p > 1. Then
x∗ is the unique optimal solution of the problem P .

3.2.3 Illustrative Example

Example Let E = {1, 2, 3},D = {∅, {1}, {1, 2}, {1, 3}, {1, 2, 3}} , f(∅) = 0, f({1}) =
3, f({1, 2}) = 5, f({1, 3}) = 4, f(E) = 6. Then D is a distributive lattice and
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f is a submodular function on D. Therefore,x = (x1, x2, x3) ∈ Pf in and only
if

x1 ≤ 3, x1 + x2 ≤ 5, x1 + x3 ≤ 4, x1 + x2 + x3 ≤ 6.

x ∈ Bf if and only if x ∈ Pf , x1 +x2 +x3 = 6. Applying our Primal Algorithm
for a positive weight vector w = (2, 1, 2), we get (0, 0, 0) −→ (2, 1, 2) −→
(2, 2, 2):lexicographically optimal base of Bf .

We will further show that the first problem of Morton, von Random and
Ringwald[160] (1985) can be solved within our framework. Their problem is
as follows:

min
n∑

j=1

λjx
p
j subject to Ax ≥ c, x ≥ 0, (3.13)

where λj > 0(1 ≤ j ≤ n), p > 1, cn ≥ cn−1 ≥ c1 ≥ 0, and

A = (aij)n×n with aij =

{
1, i ≥ j
0, i < j.

Let ei be the i-th column vector of A,

E := {ei | 1 ≤ i ≤ n},
Fj := {ei | 1 ≤ i ≤ j} (1 ≤ j ≤ n),

F0 := φ,

Dj := E \ Fj = {ej+1, · · · , en} (0 ≤ j ≤ n)

Let D = {E = D0, D1, · · · , Dn−1, Dn = φ}. Let ρ(Dj) := cn − cj(0 ≤ j ≤ n),
where c0 = 0. Then (E,D, ρ) is a submodular system with φ, E ∈ D, ρ(φ) = 0.
For x, y ∈ Rn

+, define x ≤ y if x(e) ≤ y(e)(e ∈ E), where R+ is the set of
nonnegative reals. (Rn

+,≤) is a poset with this partial order. Define

P := {x ∈ Rn
+ | Ax ≥ c},

O(3.13) := the set of optimal solutions to (3.13), minimal P := the set of
minimal elements of P . Then we easily see that

O(3.13) ⊆ Bρ ⊆ minimal P ⊆ P.

Hence the problem (3.13) is equivalent to

min

{
1

p

n∑
i=1

x(ei)
pw(ei)

1−p | x ∈ Bρ

}
,
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where w(ei) = λ
− 1

(p−1)

i . Let dj =
j∑

i=1
w(ei)(1 ≤ j ≤ n) and d0 = 0. Then

w(Dj) = dn− dj(0 ≤ j ≤ n). Now let us apply our algorithm to this problem:

c′1 := min

{
ρ(Dj)

w(Dj)
| 0 ≤ j ≤ n− 1

}

= min

{
cn − c0
dn − d0

,
cn − c1
dn − d1

,
cn − c2
dn − d2

, · · · , cn − cn−1

dn − dn−1

}
.

Let s′(0) = n and

c′1 =
cn − cs′(1)

dn − ds′(1)

and uc′1(ei) = c′1w(ei)(1 ≤ i ≤ n). Then uc′1(Dj) = c′1(dn − dj),

sat(uc′1) = ∪
{
A | A ∈ D, uc′1(A) = ρ(A)

}
= Ds′(1)

for which s′(1) is the least index j such that

c′1 =
cn − cj
dn − dj

, 0 ≤ s′(1) < s′(0).

If s′(1) = 0, then sat(uc′1) = E. STOP.
If s′(1) �= 0, then sat(uc′1) �= E and so compute

ε′1 := min

{
ρ(A)− uc′1(A)

w(A \ sat(uc′1))
| A ∈ D,A \ sat(uc′1) �= φ

}

= min

{
cn − cj − c′1(dn − dj)

ds′(1) − dj
| 0 ≤ j ≤ n− 1, j < s′(1)

}
,

where
cn − cj − c′1(dn − dj)

ds′(1) − dj

=
cs′(1) − cj
ds′(1) − dj

− c′1.

Let

ε′1 :=
cs′(1) − cs′(2)
ds′(1) − ds′(2)

− c′1.

Then (ds′(2), cs′(2)) is a point (dj, cj), 0 ≤ j < s′(1) with the smallest slope

coefficient
cs′(1)−cj

ds′(1)−dj
. Hence we see that

s′(0) = n = s(m), s′(1) = s(m−1), · · · , s′(m−1) = s(1), s′(m) = s(0),

which is the same result as that of Morton, von Randow and Ringwald, al-
though the decision proceeds inversely. The reader would have noticed that
the (E,D) here, is a poset greedoid which comes from a chain as in the Figure
3.4.

The reason for the inverse decision process will be investigated in the next
section.
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3.3 Primal Dual Algorithms for the Lexico-

graphically Optimal Base of a Submodu-

lar Polyhedron and Its Relation to a Poset

Greedoid

In the preceeding subsection, we proved the existence and uniqueness of a
lexicographically optimal base of a submodular system with respect to a weight
vector (Iwamura, K.[92](1995)). There we presented a greedy procedure to get
it, which is quite different from Fujishige’s algorithm [36][38](1980, 1987) and
explains the algorithm of the first problem of Morton, G. and von Randow,
R. and Ringwald, K.[160](1985). There, we noticed that the greedy procedure
proceeds inversely to the algorithm of Morton, G. and von Randow, R. and
Ringwald, K. (1985) and asked ourselves why?

Here, we present another algorithm to get a lexicographically optimal base
of a submodular system with respect to a weight vector. When the distributive
lattice of a submodular system is simple, it is, in fact, a poset greedoid. It
is well known that there exist two algorithms to find an optimal base of a
matroid and/or a shelling structure (Korte, B. and Lovász, L. [120](1984)),
Iwamura, K.([89](1985)) for a linear objective function. Hence our result can
be considered as another example for which there exist two or more greedy
algorithms. This chapter is based on K. Iwamura[93](1995).

3.3.1 Definition

Let E be a finite set and denote by 2E the set of all the subsets of E. Let
a collection F of subsets of E be a distributive lattice (Birkhoff[11]) with set
union and intersection as the lattice operations, i.e., for any X, Y ∈ F we have
X ∪ Y,X ∩ Y ∈ F . A function f from F to the set R of reals is called a
submodular function (Fijishige,S.[37]) on F if for each pair of X, Y ∈ F

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ).

A triple (E,F , f) of a finite set E and a distributive lattice F ⊆ 2E and a
submodular function f : F → R is called submodular system. We assume
that φ,E ∈ F and f(φ) = 0. It is well known that for a distributive lattice
F ⊆ 2E with φ,E ∈ F there uniquely exist a partition Π = {A1, · · · , Ak} of
E and a partial order ≤ on Π satisfying F � X iff there exists an ideal I of
poset (Π,≤) such that X = ∪{Ai|Ai ∈ I} (Birkhoff G.[11], Fujishige, S. and
Tomizawa, N.[40]). Note that the correspondence X ↔ I is a bijection. For
a submodular system (E,F , f), by identifying each X ∈ F with I ⊆ Π, we
obtain a distributive lattice F ′ ⊆ 2E′

with E ′ = Π and a submodular function
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f ′ : F ′ → R. That is to say,

F ′ := {I ⊆ Π | ∪{Ai ∈ I} ∈ F}
= {I ⊆ Π | I is an ideal of (Π,≤)} ,

f ′(I) := f(∪{Ai|Ai ∈ I}) for I ∈ F ′. We see that (E ′,F ′) is a poset greedoid
(Korte, B. and Lovász, L.[117][118]) and hence (E ′,F ′, f ′) is still a (simple)
submodular system. (E ′,F ′, f ′) is called a simplification of (E,F , f).

For a submodular system (E,F , f), define a submodular polyhedron P (f)
and a submodular base polyhedron B(f) by

P (f) =
{
x ∈ RE | x(X) ≤ f(X)(X ∈ F)

}
,

B(f) =
{
x ∈ RE | x(X) ≤ f(X)(X ∈ F) and x(E) = f(E)

}
,

where coordinates indexed by E and x(e) ∈ R(e ∈ E) and

x(X) :=
∑
e∈X

x(e).

Define
F := {E −X | X ∈ F},
f(E −X) := f(E)− f(X)(E −X ∈ F).

Then
F = {X ⊆ E | X is an upper ideal of (E,≤)}

with φ,E ∈ F , f(φ) = 0 and f is supermodular on F , i.e., for each pair of
X, Y ∈ F ,

f(X ∪ Y ) + f(X ∩ Y ) ≥ f(X) + f(Y ).

(E,F , f) is called dual supermodular system of (E,F , f). Define a supermod-
ular polyhedron P (f) and supermodular base polyhedron B(f) by

P (f) :=
{
x ∈ RE | x(X) ≥ f(X)(X ∈ F)

}
,

B(f) :=
{
x ∈ RE | x(X) ≥ f(X)(X ∈ F) and x(E) = f(E)

}
respectively (Fijishige, S.[37]). Then we have

f(φ) = f(φ) = 0, f(E) = f(E), B(f) = B(f).

Any vector x ∈ B(f) = B(f) is called a base of B(f) = B(f). Let χu be
a characteristic function of u, i.e., χu(e) = 1 for e = u and χu(e) = 0 for
e ∈ E \ {u}. Define a dual saturation function sat() : P (f)→ 2E by

sat(x) =
{
u ∈ E | ∀d > 0, x− dχu �∈ P (f)

}
.
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Then we have the following lemmas, where

A(x) :=
{
A ∈ F | x(A) = f(A)

}

(Iwamura, K.[92], Fujishige, S.[36]).

Lemma 3.4 Let x ∈ P (f) and A,B ∈ F . If x(A) = f(A), x(B) = f(B), then
x(A ∩ B) = f(A ∩B) and x(A ∪ B) = f(A ∪ B) hold.

Lemma 3.5 Let x ∈ P (f). Then sat(x) satisfies

sat(x) ∈ F , x(sat(x)) = f(sat(x)).

Furthermore A(x) is a distributive lattice with a partial order relation defined
by the set inclusion and sat(x) is the maximum element of A(x).

Lemma 3.6 Let x ∈ P (f). Then x ∈ B(f) iff sat(x) = E.

Let n := |E|. For any real sequences a = (a1, · · · , an) and b = (b1, · · · , bn)
of length n , a is called lexicographically greater than or equal to b if for some
j ∈ {1, · · · , n}

ai = bi (i = 1, 2, · · · , j − 1)

aj > bj

or

ai = bi (i = 1, 2, · · · , n).

A vector w ∈ RE such that w(e) > 0(e ∈ E) is called a weight vector. For
a vector x ∈ RE , denote by T (x) the n-tuple (or sequence) of the numbers
x(e)(e ∈ E) arranged in order of increasing magnitude. Given a weight vector
w, a base x of P (f) is called a lexicographically maximum base with respect
to the weight vector w if the n-tuple T ((x(e)/w(e))e∈E) is lexicographically
maximum among all n-tuples T ((y(e)/w(e))e∈E) for all bases y of P (f). The
mathematical programming problem to get x ∈ B(f) such that

T ((x(e)/w(e))e∈E) = Lexicographically maximum T ((y(e)/w(e))e∈E)

subject to y ∈ B(f)

is called wl max b (weighted lexicographically maximum base) problem for a
submodular base polyhedron B(f).

For a vector x ∈ RE , denote by T (x) the n-tuple (or sequence) of the num-
bers x(e)(e ∈ E) arranged in order of decreasing magnitude. Given a weight
vector w, a base x of B(f) is called a lexicographically minimum base with
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respect to the weight vector w if the n-tuple T ((x(e)/w(e))e∈E) is lexicograph-
ically minimum among all n-tuples T ((y(e)/w(e))e∈E) for all bases y of P (f).
The mathematical programming problem to get x ∈ B(f) such that

T ((x(e)/w(e))e∈E) = Lexicographically minimum T ((y(e)/w(e))e∈E)

subject to y ∈ B(f)

is called wl min b (weighted lexicographically minimum base) problem for su-
permodular base polyhedron B(f).

3.3.2 Primal Dual Algorithms for the Lexicographically

Optimal Base of a Submodular Polyhedron and Its
Relation to a Poset Greedoid

In the preceeding section (Iwamura[92]), we have developed an algorithm to
get the (unique) lexicographically maximum base with respect to the weight
vector w.

Algorithm to get the lexicographically maximum base(Primal)

Step 1. Set i := 1 and compute

ci := min

{
f(A)

w(A)
| φ �= A ∈ F

}

and set Uci
(e) := ciw(e)(e ∈ E).

Step 2. If sat(Uci
) = E, then STOP.

Step 3. Compute

εi := min

{
f(A)− Uci

(A)

w(A \ sat(Uci
))
| A ∈ F , A \ sat(Uci

) �= φ

}

and set ci+1 := ci + εi and set

Uci+1
(e) :=



Uci

(e), e ∈ sat(Uci
),

Uci
(e) + εiw(e), e ∈ E − sat(Uci

).

Set i := i+ 1 and go to Step 2.

With Lemmas 3.4-3.6, similar arguments as that of Iwamura, K.[92] show
that the following algorithm produces the lexicographically minimum base with
respect to the weight vector w.

Algorithm to get the lexicographically minimum base(Dual)
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Step 1. Set i := 1 and compute

ci := max

{
f(A)

w(A)
| φ �= A ∈ F

}

and set Uci
(e) := ciw(e)(e ∈ E).

Step 2. If sat(Uci) = E, then STOP.

Step 3. Compute

εi := min

{
Uci

(A)− f(A)

w(A \ sat(Uci
))
| A \ sat(Uci

) �= φ,A ∈ F
}

and set ci+1 := ci − εi and set

Uci+1
(e) :=



Uci

(e), e ∈ sat(Uci
),

Uci
(e)− εiw(e), e ∈ E \ sat(Uci

).

Set i := i+ 1 and go to Step 2.

Suppose that the above algorithm stops after d iterations, then we have

Ucd
(e) =




c1w(e)(e ∈ sat(Uc1))

c2w(e)(e ∈ sat(Uc2) \ sat(Uc1))

...

ciw(e)(e ∈ sat(Uci
) \ sat(Uci−1

))

...

cdw(e)(e ∈ sat(Ucd
) \ sat(Ucd−1

) = E \ sat(Ucd−1
)),

Ucd
∈ B(f) = B(f), φ ⊂ 2 sat(Uc1) ⊂ · · · ⊂ sat(Ucd

) = E which are all in F ,
Ucd

(sat(Uci
)) = f(sat(Uci

)) (1 ≤ i ≤ d) and c1 > c2 > · · · > cd.

Theorem 3.5 (Primal-dual theorem). The above Ucd
is the lexicographi-

cally maximum base with respect to the weight vector w.
Proof. We use Theorem 3.3 (See, Iwamura, K.[92]). Define ĉ(e) := Ucd

(e)/w(e)(e ∈
E). Then we see that p̂ = d with ĉ1 = cd, ĉ2 = cd−1, · · ·, ĉd = c1. Using
Ucd
∈ B(f) = B(f), we get

Ucd
(E) = f(E) = f(E),

2 X ⊂ Y means that X is a proper subset of Y .
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and
Ucd

(E − sat(Uci
)) = f(E)− f(sat(Uci

))

= f(E)− {f(E)− f(E − sat(Uci
))}

= f(E − sat(Uci
)),

where

φ ⊂ E − sat(Ucd−1
) ⊂ E − sat(Ucd−2

) ⊂ · · · ⊂ E − sat(Uc1) ⊂ E,

all in F . Furthermore

E − sat(Uci
) = {e ∈ E | ĉ(e) ≤ ci+1} (0 ≤ i ≤ d− 1).

Hence by Theorem 3.3 we get that Ucd
is the lexicographically maximum base

with respect to weight vector w. Q.E.D.

A careful reader would have noticed that the proof for Theorem 3.1 of
Iwamura, K.[92] remains valid for z ∈ P (f). Hence the following mathematical
programming problems,

Lexicographically maximum T ((y(e)/w(e))e∈E),
subject to y ∈ P (f)

Lexicographically minimum T ((y(e)/w(e))e∈E),
subject to y ∈ P (f)

have the same solution as that of wl min b - and wl max b - problem. Hence,
we call these problems wlo (weighted lexicographically optimal)-problems for
a submodular system.

Let (E,F , f) be a submodular system and let (E ′,F ′, f ′) be its simplifica-
tion. Let w(e) > 0(e ∈ E) be a weight vector and let

w′(Ai) :=
∑
e∈Ai

w(e) > 0 (Ai = e′i ∈ E ′(1 ≤ i ≤ k)).

Theorem 3.6 Let x′(e′)(e′ ∈ E ′) be the lexicographically maximum base
of (E ′,F ′, f ′) with respect to the weight vector w′ just above. Let x(e) =
(w(e)/w′(e′i))x

′(e′i) for any e ∈ e′i, e
′
i ∈ E ′. Then x(e)(e ∈ E) is the lexi-

cographically maximum base of (E,F , f) with respect to the weight vector
w.
Proof. Submodular polyhedron corresponding to (E ′,F ′, f ′) and (E,F , f)
become

P (f ′) =
{
x′ ∈ RE′ | x′(A) ≤ f ′(A)(A ∈ F ′)

}
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and
P (f) =

{
x ∈ RE | x(X) ≤ f(X)(X ∈ F)

}
respectively.

Let c′(e′) = (x′(e′)/w′(e′))(e′ ∈ E ′) and let c(e) = x(e)/w(e))(e ∈ E). Let
the distinct numbers of c′(e′)(e′ ∈ E ′) be given by c′1 < · · · < c′p′ and define

S ′
i = {e′ ∈ E ′ | c′(e′) ≤ c′i},
Si = {e ∈ E | c(e) ≤ c′i}.

Then the distinct numbers of c(e)(e ∈ E) are just the same as that of c′(e′)(e′ ∈
E ′). By Theorem 3.3 , we see that

S ′
i ∈ F ′ and x′(S ′

i) = f ′(S ′
i)(1 ≤ i ≤ p′).

x ∈ B(f) because for any X ∈ F , X = ∪{Ai|Ai ∈ I}, I ∈ F ′ and

x(X) =
∑
Ai∈I

∑
e∈Ai

x(e) =
∑
Ai∈I

x′(Ai) = x′(I) ≤ f ′(I) = f(X)

with x(E) = f(E). By the definition of F ′ and S ′
i ∈ F ′, we get

F � ∪{Aj |Aj ∈ S ′
i} = {e ∈ E|c(e) ≤ c′i} = Si

with x(Si) = f(Si) for 1 ≤ i ≤ p′.
Again by Theorem 3.3 , we get the conclusion. Q.E.D.

Let (E ′,F ′) be an arbitrary poset greedoid on E ′ = {e′1, · · · , e′m}. Let f ′

be a submodular function on F ′ with f ′(φ) = 0. Then (E ′,F ′, f ′) is a simple
submodular system. For each e′i ∈ E ′, assign a subset E ′

i of E such that

E ′
i ∩ E ′

j = φ(1 ≤ i < j ≤ m) and ∪m
i=1 E

′
i = E.

Let |E| = ∑m
i=1 |E ′

i| = n, and let

F := {∪i∈IE
′
i | {e′i|i ∈ I} ∈ F ′} .

Then clearly (E,F) is a distributive lattice with set union and intersection
as the lattice operations, and φ,E ∈ F . Define f : F → R by f(∪i∈IE

′
i) =

f ′({e′i|i ∈ I}) for any {e′i|i ∈ I} ∈ F ′. Then f is a submodular function with
f(φ) = 0 and so (E,F , f) is a general submodular system, which we call the
expansion of (E ′,F ′, f ′). In fact, the simplification of (E,F , f) is (E ′,F ′, f ′).
Given a positive weight vector w(e)(e ∈ E), define

w′(e′i) := w(E ′
i) =

∑
e∈E′

i

w(e).



Chapter III. Greedoid and Greedy Algorithm 47

Then w′(e′i) > 0 for any e′i ∈ E ′.

Corollary 3.7 (Expansion theorem). Let x′(e′)(e′ ∈ E ′) be the lexico-
graphically maximum base of (E ′,F ′, f ′) with respect to the weight vector w′.
Let

x(e) =
w(e)

w′(e′i)
x′(e′i)

for any e ∈ E ′
i e

′
i ∈ E ′. Then x(e)(e ∈ E) is the lexicographically maximal

base of (E,F , f) with respect to the weight vector w.
Proof. Same as Theorem 3.6. Q.E.D.

3.3.3 Concluding Remark

Historically, submodular systems and greedoids have developed independently.
But as we have seen, the algorithms to get the lexicographically optimal base of
a submodular system can be derived by the algorithms for a simple submodular
system, where its underlying distributive lattice is a poset greedoid. It might
be interesting to investigate whether we can extend our results to a more
general greedoid, say a shelling structure([119]).

3.4 Discrete Decision Process Model Involves

Greedy Algorithm Over Greedoid

In the past thirty years, a huge amount of research activities to develop good
algorithms for discrete optimization problems were carried out. Through
these activities, it has widely acknowledged that a special algebraic struc-
ture named matroid allows us a very nice algorithm, a greedy algorithm (cf.
D.J.A.Welsh[199]). Korte and Lovász[118] [120] showed that such a greedy
algorithm also exists for a much wider algebraic structure - a greedoid - with
a little bit restricted objective function. Here we see that this greedoid with
its greedy algorithm lies within a discrete decision process(K.Iwamura[91]) .

3.4.1 Greedy Algorithm over Matroid

Let Q be the collection of independent sets of a matroid on Σ. Let R be the
set of reals. Let c : Σ → R be a cost function and extend c : 2Σ → R in the
obvious way

c(F ) =
∑
f∈F

c(f) (F ⊆ Σ).

We well know[199]that the optimization problem

min{C(F );F ∈ B}, B is the base set of (Σ, Q) (3.14)
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can be effectively solved by

The Greedy algorithm

Step0: Set k = 1.

Step1: Choose a member xk such that {x1, . . . , xk} ∈ Q and c(xk) ≤ c(x) for
all x ∈ Σ \ {x1, . . . , xk−1} such that {x1, . . . , xk−1, x} ∈ Q.

Step2: If no such x exists,stop. Otherwise set k = k+ 1 and return to Step1.

Let q0 = ∅.Define λ : Q× Σ→ Q ∪ {qd} by

λ(F, a) =

{
F ∪ {a}, if a ∈ Σ \ F and F ∪ {a} ∈ Q,
qd, otherwise,

where qd �∈ Q.
Set QF = B. Then M = (Q,Σ, q0, λ, QF ) is a finite automaton, where
Q: state space,
Σ: alphabet,
q0 ∈ Q: initial state,
λ: state transition function,
QF ⊆ Q: the set of final states,
qd: dead state.

Let h : R×Q× Σ→ R be defined by

h(ξ, F, a) =

{
ξ + c(a), if a ∈ Σ \ F and F ∪ {a} ∈ Q,
+∞, otherwise.

Let ξ0 = 0 (zero). Then Π = (M,h, ξ0) is a recursive loopless monotone
sequential decision process (γ-lmsdp)([67]),in fact, it is a multi-stage sequential
decision process.

Let Σ∗ = {a1 . . . an : ai ∈ Σ(0 ≤ i ≤ n), n ≥ 0} and let h̄(x) = h(ξ0, q0, x)
and let λ̄(x) = λ(q0, x) for any x ∈ Σ∗.Note that h̄(xa) = h(ξ0, q0, x) + c(a)
holds. Define the set of optimal policy O(Π) by

O(Π) = {x ∈ F (M) :∼ (∃y ∈ F (M))(h̄(y) < h̄(x))},

where F (M) is the set of accepting strings of M .

Let G(q) be defined by

G(q) = min{h̄(x) : λ̄(x) = q} for q ∈ Q.
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Let Qi = {F ∈ Q : |F | = i} for i = 0, 1, . . . , r, where r is the rank of
(Σ, Q). Consider the sequence

Q0, Q1, Q2, . . . , Qr

and call each element of Q in the above list from left to right

q0 = ∅, q1, q2, . . . , qn−1

with the dead state qd = qn, |Q| = n.

Ibaraki[67](1973) proposed an algorithm to get O(Π) for γ-lmsdp Π.

An Algorithm to get O(Π)

LetX(qj) = {x ∈ Σ∗ : λ̄(x) = qj}and letX(qi)a = {xa : x ∈ X(qi)}.

Step1: Set G(q0) = ξ0,
X(q0) = {ε} (ε is the empty string), j = 1.

Step2: If j = n then go to Step3. Otherwise set
G(qj) = min{h(G(gi), qi, a) : λ(qi, a) = qj , i < j, a ∈ Σ}.
X(qj) = ∪{X(qi)a : λ(qi, a) = qj , i < j, a ∈ Σ}
and set j = j + 1 and return to Step2.

Step3: Set
G∗ = min{G(qj) : qj ∈ QF},
O(Π) = {x : x ∈ X(qj) and qj ∈ QF and h̄(x) = G∗}
and stop. G∗ is the value of the optimal
policies O(Π).□

Theorem 3.8 Any greedy solution of the optimization problem (1) belongs to
O(Π). In fact, the greedy algorithm is a special form of the above algorithm
to get O(Π).□

3.4.2 Greedy Algorithm over Greedoid

It is easy to see that the same theorem holds for both greedy algorithm
over greedoid and greedy algorithm over symmetric matroids.See,B.Korte and
L.Lovász[118](1984) and A. Bouchet[16](1987).
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Chapter 4

Uncertain Programming

4.1 The Need for Uncertain Programming

In Capital Budgeting Problem, let cj be the profit obtained when one invest
aj amount of money to project j. But, is it really true that project j needs
exactly aj amount of money? If the cost structure changes , so does the
amount of money needed to invest to project j, of course. In some situation
we have to think that aj is a random variable from normal distribution,or
a random variable from log-normal distribution, and so on. Or, it might be
a fuzzy and/or possibility number. The same phenomenom also occurs to
cj . Even under such uncertain situation, one has to make a plan and decide
somehow. Therefore there exists need for uncertain programming,decision-
making/planning under uncertainty.

Management decisions are sometimes made in uncertain environments.
Stochastic programming offers a means of considering the objectives and con-
straints with stochastic parameters[25][32][109]. One method dealing with
stochastic parameters in stochastic programming is the so-called stochastic
programming with recourse which minimizes the original costs and expected
recourse costs. The other one, chance constrained programming (CCP), was
developed by Charnes and Cooper[18]. The basic technique of CCP is to
convert the stochastic constraints to their respective deterministic equivalents
according to the predetermined confidence level. It is also well-known that the
concept of CCP has been extended to chance constrained goal programming
and chance constrained multiobjective programming.

As a stochastic search method based on the mechanics of natural selec-
tion and natural genetics, genetic algorithm (evolution program or evolution
strategies) has been applied to a wide variety of problems(Goldberg[54] and
Michalewicz[156]), such as optimal control problems, transportation problems,
traveling salesman problems, drawing graphs, scheduling and machine learn-
ing. And the three main avenues of research in simulated evolution, genetic
algorithm, evolution program and evolution strategies, are summarized by

51
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Fogel[34].So, throughout this book, Uncertain Programming means Program-
ming under Uncertainty.

4.2 A Genetic Algorithm for Chance Constrained

Programming

In this section, we will focus our attention on the technique of chance con-
strained programming(CCP), including chance constrained goal programming
(CCGP) and chance constrained multiobjective programming(CCMOP). A ge-
netic algorithm will be presented for solving CCP, CCGP and CCMOP. In
order to deal with stochastic constraints, Monte Carlo simulation is employed
to check the feasibility of a solution in the proposed genetic algorithm. Fi-
nally, we use some numerical examples to illustrate the effectiveness of genetic
algorithm for chance constrained programming.

A typical formulation of chance-constrained programming (CCP) may be
written as follows:




max Eξf(x, ξ)

subject to:

Pr{ξ | gi(x, ξ) ≤ 0, i = 1, 2, · · · , p} ≥ α

(4.1)

where x is a decision vector, ξ is a stochastic vector, f(x, ξ) is the return
function, Eξ denotes the expected value operator on ξ, gi(x, ξ) are stochastic
constraint functions, i = 1, 2, · · · , p, Pr{·} denotes the probability of the event
in {·} and α is a predetermined confidence level. So a point x is feasible if
and only if the probability measure of the set {ξ|gi(x, ξ) ≤ 0, i = 1, 2, · · · , p}
is at least α. In other words, the constraints will be violated at most (1− α)
of time.

The probabilistic constraints in CCP (4.1) are called joint chance con-
straints. Sometimes, the probabilistic constraints are separately considered
as

Pr{ξ | gi(x, ξ) ≤ 0} ≥ αi, i = 1, 2, · · · , p (4.2)

which are called separate chance constraints.

As an extension of chance constrained programming, chance constrained
multiobjective programming may be written as follows:




max [Eξf1(x, ξ), Eξf2(x, ξ), · · · , Eξfm(x, ξ)]

subject to:

Pr{ξ | gi(x, ξ) ≤ 0, i = 1, 2, · · · , p} ≥ α.

(4.3)
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We can also formulate our uncertain decision system as a chance con-
strained goal programming:




min
l∑

j=1
Pj

m∑
i=1

(uijd
+
i + vijd

−
i )

subject to:

Eξfi(x, ξ) + d−i − d+
i = bi, i = 1, 2, · · · , m

Pr{ξ | gj(x, ξ) ≤ 0} ≥ αj , j = 1, 2, · · · , p
d−i , d

+
i ≥ 0, i = 1, 2, · · · , m

(4.4)

where

Pj = the preemptive priority factor which expresses the relative importance
of various goals, Pj � Pj+1, for all j,

uij = weighting factor corresponding to positive deviation for goal i with
priority j assigned,

vij = weighting factor corresponding to negative deviation for goal i with
priority j assigned,

d+
i = positive deviation from the target of goal i,

d−i = negative deviation from the target of goal i,
x = n-dimensional decision vector,

fi = a function in goal constraints,

gj = a function in real constraints,

bi = the target value according to goal i,

ξ = stochastic vector of parameters,

l = number of priorities,

m = number of goal constraints,

p = number of real constraints.

4.2.1 Monte Carlo Simulation

When the constraints are easy to be handled, we can convert the probability
constraints to their deterministic equivalents. But if the constraints fail to be
regular or hard to be calculated, it is more convenient to check the feasibility
of a solution by a Monte Carlo method. Generally, let

G(x) = Pr {ξ | gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} (4.5)

where ξ = (ξ1, ξ2, · · · , ξt) is a t-dimensional stochastic vector, and each ξi
has a given distribution. For any given x, we use the following Monte Carlo
technique to estimate G(x). We generate N independent random vectors ξ(i) =

(ξ
(i)
1 , ξ

(i)
2 , · · · , ξ(i)

t ), i = 1, 2, · · · , N , from their probability distributions, where
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the generating methods have been well-discussed by numerous literatures and
summarized by Rubinstein[173]. Let N ′ be the number of occasions on which

gj(x, ξ
(i)) ≤ 0, j = 1, 2, · · · , p, i = 1, 2, · · · , N,

i.e., the number of random vectors satisfying the constraints. Then, by the
basic definition of probability, G(x) can be estimated by

G(x) =
N ′

N
. (4.6)

This means that a chance constraint Pr {ξ | gj(x, ξ) ≤ 0, j = 1, 2, · · · , p} ≥ α
holds if and only if N ′/N ≥ α. Certainly, this estimation is approximate and
may change from a simulation to another. But it is available to real practice
problem since the determination of the confidence level α itself is not precise.

4.2.2 A Genetic Algorithm

In this subsection we design a genetic algorithm to CCP. We will discuss the
initialization process, evaluation function, selection, crossover and mutation
operations in turn.

Initialization Process

At first, we will handle the constraints, i.e., eliminating the equalities presented
in the set of real constraints if they exist. It is clear that z equality constraints
imply that we can eliminate z variables in CCP by replacing them by the
representations of the remaining variables. Because one usually can solve the
system of equations such that z variables are represented by others. From now,
we suppose that we have finished it.

We use a vector V = (x1, x2, · · · , xn) as a chromosome to represent a so-
lution to CCP and define an integer pop size as the number of chromosomes.
pop size chromosomes will be randomly initialized by the following steps:

Step 1. Determine an interior point, denoted by V0, in the deterministic
constraint set.

Step 2. Select randomly a direction d in Rn and define a chromosome V
as V0 +M ·d if it is feasible, otherwise, we set M as a random number in [0,M ]
until V0 +M · d is feasible, where M is a large positive number which ensures
that all the genetic operators are probabilistically complete for the feasible
solutions.

Step 3. Repeat Step 2 pop size times and produce pop size initial feasible
solutions.
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Evaluation Function

At first, we rearrange these chromosomes in order. The single-objective chance
constrained programming is easy to be handled, the one with better objective
value has higher rank.

Let us consider the case of chance constrained goal programming. The
objective function of goal programming is

∑l
k=1

∑m
i=1 Pk(ukid

+
i + vkid

−
i ), where

Pk is the preemptive priority factor which expresses the relative importance of
various goals, Pk � Pk+1, for all k, but it is not suitable for the objective func-
tion to be as an evaluation function because that we have only the information
Pk � Pk+1 on the priority factors. In fact, we have the following order rela-
tionship for the chromosomes: for any two chromosomes, if the higher-priority
objectives are equal, then, in the current priority level, the one with minimal
objective value is better. This relationship is an order on the feasible set and
can rearrange these chromosomes in order. If two different chromosomes have
the same objective value, then we rearrange them randomly.

For multiobjective chance constrained programming, we can also arrange
these chromosomes if some information on weights is given.

We select the rank-based evaluation function because it ignores the infor-
mation about the relative evaluations of different chromosomes. Now let a
parameter a ∈ (0, 1) in the genetic system be given, then we can define the
rank-based evaluation function as follows:

eval(V ) = a(1− a)rank−1 (4.7)

where rank is the ordinal number of V in the rearranged series. We men-
tion that rank = 1 means the best individual, rank = pop size the worst
individual, and, of course,

pop size∑
j=1

eval(Vj) ≈ 1. (4.8)

Selection Operation

The selection process is based on spinning the roulette wheel pop size times,
each time we select a single chromosome for a new population in the following
way:

Step 1. Calculate a cumulative probability ai for each chromosome Vi,
(i = 1, 2, · · · , pop size).

Step 2. Generate a random real number r in [0, 1].
Step 3. If r ≤ a1, then select the first chromosome V1; otherwise select

the i-th chromosome Vi (2 ≤ i ≤ pop size) such that ai−1 < r ≤ ai.
Step 4. Repeat Steps 2 and 3 pop size times and obtain pop size copies

of chromosomes.
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In this process, the best chromosomes get more copies, the average stay
even, and the worst die off.

Crossover Operation

We define a parameter Pc of a genetic system as the probability of crossover.
This probability gives us the expected number Pc · pop size of chromosomes
which undergo the crossover operation.

Firstly we generate a random real number r in [0, 1]; secondly, we select
the given chromosome for crossover if r < Pc. Repeat this operation pop size
times and produce Pc · pop size parents, averagely. For each pair of parents
(vectors V1 and V2), the crossover operator on V1 and V2 will produce two
children as

V ′
1 = λ1 · V1 + λ2 · V2, V ′

2 = λ2 · V1 + λ1 · V2

where λ1, λ2 ≥ 0 and λ1 + λ2 = 1.
If the constraint set is convex, this arithmetical crossover operation ensures

that both children are feasible if both parents are. If not, we only replace the
parents by the feasible offsprings. We can produce offsprings several times by
selecting different sets of λ1 and λ2 such that the parents can be replaced by
their feasible offsprings as much as possible.

Mutation Operation

We define a parameter Pm of a genetic system as the probability of mutation.
This probability gives us the expected number Pm · pop size of chromosomes
which undergo the mutation operation.

Generating a random real number r in [0, 1], we select the given chro-
mosome for mutation if r < Pm. Let a parent for mutation, denoted by a
vector V = (x1, x2, · · · , xn), be selected. Assume that {j1, j2, · · · , jz} is a sub-
set of {1, 2, · · · , n}. We can use the procedure initialization to assign a new
chromosome V ′ = (x′1, x

′
2, · · · , x′n) except for the fact that all x′j = xj are pre-

determined for all j /∈ {j1, j2, · · · , jz}. Repeat this operation pop size times.

Following selection, crossover and mutation, the new population is ready
for its next evaluation. The algorithm will terminate after a given number of
cyclic repetitions of the above steps. The proposed genetic algorithm is shown
as follows:

Procedure Genetic Algorithm
Input parameters;
Initialize the solutions (chromosomes);
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REPEAT

Update the chromosomes by genetic operators;
Compute fitness of each chromosome by rank-based evalution

function;
Select the chromosomes by spinning the roulette wheel;

UNTIL(termination condition)

4.2.3 Numerical Examples

The computer code for the genetic algorithm to CCP has been written in C
language. To illustrate the effectiveness of genetic algorithm, a set of numeri-
cal examples has been done, and the results are successful. Here we give some
numerical examples which are all performed on NEC EWS4800/210II worksta-
tion with the following parameters: the population size is 30, the probability
of crossover Pc as 0.2, the probability of mutation Pm as 0.4, the parameter a
in the rank-based evaluation function as 0.1.

Production Process

This example is a modification of one in Kall and Wallace[109]. Let us consider
a weekly production process of a refinery relying on countries for the supply
of crude oil (raw1 and raw2, respectively), supplying on big company with
gasoline (prod1) for its distribution system of gas stations and another with
fuel oil (prod2) for its heating and/or power plants.

It is known that the productivities π(raw1, prod1) and π(raw2, prod2), i.e.,
the outputs of gas from raw1 and output of fuel from raw2 may change ran-
domly, whereas the other productivities are deterministic. They are assumed
to be

π(raw1, prod1) = 2 + η1, π(raw1, prod2) = 3,

π(raw2, prod1) = 6, π(raw2, prod2) = 3.4− η2

where η1 has a uniform distribution U [−0.8, 0.8], η2 has an exponential distri-
bution EXP(0.4).

The weekly demands of the clients, h1 for gas and h2 for fuel are also
varying randomly and represented by

h1 = 180 + ξ1, h2 = 162 + ξ2

where ξ1 and ξ2 have normal distributions N (0, 12) and N (0, 9), respectively.
The output of products per unit of the raw materials are c1 = 2 for raw1

and c2 = 3 for raw2, respectively. The total cost is thus 2x1 + 3x2.
The production capacity, i.e., the maximal total amount of raw materials

is assumed to be 100. Thus x1 + x2 ≤ 100.
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If the weekly production plan (x1, x2) has to be fixed in advance and can
not be changed during the week, and clients expect their actual demand to be
satisfied during the corresponding week. We hope that the total production
cost is as low as possible. Different from the method, i.e., stochastic program-
ming with recourse, employed in [109], we formulate a chance constrained
programming for this production process problem as follows:



min f(x) = 2x1 + 3x2

subject to:

Pr{(2 + η1)x1 + 6x2 ≥ 180 + ξ1} ≥ α1

Pr{3x1 + (3.4− η2)x2 ≥ 162 + ξ2} ≥ α2

x1 + x2 ≤ 100

x1, x2 ≥ 0.

(4.9)

When the confidence levels of α1 and α2 are assumed to be 0.8 and 0.7,
respectively, the optimal production plan is

(x1, x2) = (33.2, 22.1)

with cost 132.7 when we run our genetic algorithm with 500 generations.

Feed Mixture Problem

Van de Panne and Popp[195] presented a chance constrained programming for
feed mixture problem which is to select four materials to mix in order to design
a cattle feed mix subject to protein and fat constraints with the objective of
minimizing cost. That CCP may be written as follows:



min f(x) = 24.55x1 + 26.75x2 + 39.00x3 + 40.50x4

subject to:

x1 + x2 + x3 + x4 = 1

2.3x1 + 5.6x2 + 11.1x3 + 1.3x4 ≥ 5

Pr {η1x1 + η2x2 + η3x3 + η4x4 ≥ 21} ≥ α

x1, x2, x3, x4 ≥ 0

(4.10)

where η1, η2, η3 and η4 have normal distributionsN (12.0, 0.28092),N (11.9, 0.19362),
N (41.8, 20.252) and N (52.1, 0.62412), respectively.

When α is assigned to be 0.8, a run of our computer program with 1000
generations shows that the optimal solution is

(x1, x2, x3, x4) = (0.001, 0.739, 0.053, 0.199)

whose cost is 30.25 and the actual reliability is just 80%.
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Stochastic Resource Allocation

Let us consider a stochastic resource allocation problem in which there are mul-
tiple locations of resources and multiple users. The task of stochastic resource
allocation is to determine the outputs that result from various combinations of
resources such that the certain goal are achieved. As an example, our object of
study is assumed to be a water supply-allocation system in which there are 3
locations of water and 4 users. The scheme of water supply-allocation system
are shown by Figure 4.1.
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Figure 4.1: A Supply-Allocation System

In order to determine an optimal water allocation plan, we use 8 decision
variables x1, x2, · · · , x8 to represent an action, where x1, x2, x3 are quantities
ordered from input1 to outputs 1,2,3 respectively; x4, x5, x6 from input2 to
outputs 2,3,4 respectively; x7, x8 from input3 to outputs 3,4 respectively.

We mention that the inputs are available outside resources, they have their
own properties. For example, the maximum quantities supplied by the three
resources are marked by ξ1, ξ2, and ξ3 which have two-parameter lognormal dis-
tributions LOGN (1.56, 0.562), LOGN (1.36, 0.452), and LOGN (0.95, 0.382),
respectively. Thus at first we have the following constraint,

x1 + x2 + x3 ≤ ξ1, x4 + x5 + x6 ≤ ξ2, x7 + x8 ≤ ξ3. (4.11)

To handle the stochastic constraint (4.11), let α1 = 0.9, α2 = 0.7 and α3 = 0.8
be assigned as confidence levels of the three probabilistic constraints, respec-
tively. The other clear constraint is xi ≥ 0, i = 1, 2, · · · , 8 which represent
the quantities ordered from the resources are nonnegative.

The management goals are assumed to satisfy the demands of four users
which are 3, 1, 2 and 3 respectively. Then a chance constrained goal program-
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ming associated with this problem may be formulated as follows:


lexmin
{
d−1 , d

−
2 , d

−
3 , d

−
4

}
subject to:

x1 + d−1 − d+
1 = 3

x2 + x4 + d−2 − d+
2 = 1

x3 + x5 + x7 + d−3 − d+
3 = 2

x6 + x8 + d−4 − d+
4 = 3

Pr{x1 + x2 + x3 ≤ ξ1} ≥ 0.9

Pr{x4 + x5 + x6 ≤ ξ2} ≥ 0.7

Pr{x7 + x8 ≤ ξ3} ≥ 0.8

xi ≥ 0, i = 1, 2, · · · , 8.

(4.12)

A run of computer program with 3000 generations shows that the optimal
solution is

(x1, x2, x3, x4, x5, x6, x7, x8) = (3.01, 0.00, 0.07, 1.31, 0.99, 0.15, 0.47, 1.07)

which can satisfy the first two goals, but the negative deviations of the third
and fourth goals are 0.47 and 1.78, respectively.

An Abstract Example

Here we consider an abstract numerical example in which the objective function
is multimodal and highly nonlinear.



max [x1 sin(x1) + x2 sin(2x2) + x3 sin(3x3)]

subject to:

Pr {ξ1x1 + ξ2x2 + ξ3x3 ≤ 10} ≥ 0.70

Pr {η1x
2
1 + η2x

2
2 + η3x

2
3 ≤ 100} ≥ 0.80

x1, x2, x3 ≥ 0

(4.13)

where ξ1, ξ2, ξ3 are random parameters with uniform distributions U [0.8, 1.2],
U [1, 1.3], U [0.8, 1.0], respectively, η1 has normal distribution N (1, 0.5), η2 has
exponential distribution EXP(1.2), η3 has lognormal distribution LONG(0.8, 0.6).

We perform our computer program with 3000 generations and obtain the
optimal solution

(x1, x2, x3) = (7.8715, 0.9016, 0.6650)

with objective value 9.3537. The progress of evolution is shown in Figure 4.2.
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Figure 4.2: Progress of Evolution

4.2.4 Conclusion

The genetic algorithm provides an effective means to consider chance con-
strained programming, including chance constrained multiobjective program-
ming and chance constrained goal programming. An advantage of genetic
algorithm is to obtain the global optima fairly well, as well as the advantages
of other genetic algorithm for different problems with multimodal objective
functions. The other advantage is that we do not need to convert the stochas-
tic constraints into their deterministic equivalents, where the translation is
usually a hard task. This ensures that we can deal with more general chance
constrained programming. In the proposed genetic algorithm, Monte Carlo
simulation is also employed to check the feasibility of solutions. The effective-
ness of genetic algorithm has been illustrated by a set of test problems.

Appendix

A random variable x has a uniform distribution U [a, b] if its probability density
function is

f(x) =




1
b−a

, a ≤ x ≤ b

0, otherwise.

A random variable x has an exponential distribution EXP(β) if its probability
density function is

f(x) =




1
β
e−x/β, 0 ≤ x <∞, β > 0

0, otherwise.
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A random variable x has a normal distribution N (µ, σ2) if its probability den-
sity function is

f(x) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
, −∞ < x < +∞.

A random variable x has a two-parameter lognormal distribution LOGN (µ, σ2)
if its probability density function is

f(x) =




1√
2πσx

exp
[
− (ln(x)−µ)2

2σ2

]
, 0 < x <∞

0, otherwise.

4.3 Chance Constrained Integer Programming

Models for Capital Budgeting in Fuzzy En-

vironments

The original capital budgeting is concerned with maximizing the total net
profit subject to budget constraint by selecting appropriate combination of
projects. With the requirement of considering uncertainty of future demand
and multiple conflicting goals, chance constrained integer goal programming
was employed to model capital budgeting by Keown and Martin[111] in the
working capital management and by Keown and Taylor[112] in the production
area. In addition, De et al.[1] extended chance constrained goal programming
to the zero-one case and applied it to capital budgeting problems.

When some parameters of decision systems are fuzzy numbers rather than
stochastic variables, Liu and Iwamura[149] suggested the framework of chance
constrained programming as well as chance constrained multiobjective pro-
gramming and chance constrained goal programming in a fuzzy environment
based on possibility theory. In order to deal with the chance constraints (rep-
resented by possibility), a technique of fuzzy simulation was presented. A
fuzzy simulation based genetic algorithm was also designed for solving chance
constrained programming models with fuzzy parameters.

This section will extend chance constrained programming with fuzzy pa-
rameters to integer case and apply it to capital budgeting problems in fuzzy
environments. A fuzzy simulation based genetic algorithm is also designed for
solving chance constrained integer programming models with fuzzy parame-
ters. Finally, we presents some numerical examples to illustrate the models
and algorithms.

4.3.1 Capital Budgeting

Consider a company which has the opportunity to initiate the machines in a
plant. Suppose that there are n types of machines available. We use xi to
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denote the numbers of type i machines selected, i = 1, 2, · · · , n, respectively.
Then all the variables xi’s are nonnegative integers. Let ai be the level of
funds that needs to be allocated to type i machine and a be the total capital
available for distribution, then we have

a1x1 + a2x2 + · · ·+ anxn ≤ a, (4.14)

i.e., can not exceed the amount available.

The other constraint is the maximum space availability limitation for the
machines. Suppose that bi are the spaces used by per type i machine, i =
1, 2, · · · , n, respectively. If the total available space is b, then we have the
following constraint,

b1x1 + b2x2 + · · ·+ bnxn ≤ b. (4.15)

We suppose that different machines produce different products. Let ηi be
the production capacity of the type i machine for product i, then the total
products i are ηixi, i = 1, 2, · · · , n, respectively. We also assume that the
future demands for products i are ξi, i = 1, 2, · · · , n. Since the production
should satisfy the future demand, we have

ηixi ≥ ξi, i = 1, 2, · · · , n. (4.16)

If ci are the net profits per type i machine, i = 1, 2, · · · , n, then the total net
profit is c1x1 + c2x2 + · · ·+ cnxn. Our objective is to maximize the total net
profit, i.e.,

max c1x1 + c2x2 + · · ·+ cnxn. (4.17)

Thus we have a deterministic model for capital budgeting based on integer
programming,




max c1x1 + c2x2 + · · ·+ cnxn

subject to:

a1x1 + a2x2 + · · ·+ anxn ≤ a

b1x1 + b2x2 + · · ·+ bnxn ≤ b

ηixi ≥ ξi, i = 1, 2, · · · , n
xi, i = 1, 2, · · · , n, nonnegative integers.

(4.18)

The capital budgeting problem (4.18) is clearly a general case of the knapsack
problem which is concerned with trying to fill a knapsack to maximum total
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value, 


max c1x1 + c2x2 + · · ·+ cnxn

subject to:

a1x1 + a2x2 + · · ·+ anxn ≤ a

xi, i = 1, 2, · · · , n, nonnegative integers

(4.19)

where (c1, c2, · · · , cn) and (a1, a2, · · · , an) are the respective values and weights
of the n objects and a is the overall weight limitation.

Certainly, real capital budgeting problems are much more complex than
the above-mentioned model. However, it is enough for illustrating the chance
constrained integer programming with fuzzy parameters.

4.3.2 Chance Constrained Programming Models

Chance constrained programming was pioneered by Charnes and Cooper[18][19][20]
as a means of handling uncertainty by specifying a confidence level at which it
is desired that the uncertain constraint holds. In this subsection let us model
the capital budgeting problems by chance constrained integer programming
based on the works[111][112][1].

In practice, the production capacities ηi and future demands ξi are not nec-
essarily deterministic. Here we suppose that they are stochastic variables. Let
ψi and φi denote the probability density functions of ηi and ξi, i = 1, 2, · · · , n,
respectively. Then the constraints ηixi ≥ ξi are uncertain. Suppose that the
manager gives αi as the probabilities of meeting the demands of products i,
i = 1, 2, · · · , n, respectively. Then we have the following chance constraints,

Pr {ηixi ≥ ξi} ≥ αi, i = 1, 2, · · · , n (4.20)

where Pr{·} denotes the probability of the event {·}. Thus, a chance con-
strained integer programming is immediately formulated as follows,



max c1x1 + c2x2 + · · ·+ cnxn

subject to:

a1x1 + a2x2 + · · ·+ anxn ≤ a

b1x1 + b2x2 + · · ·+ bnxn ≤ b

Pr {ηixi ≥ ξi} ≥ αi, i = 1, 2, · · · , n
xi, i = 1, 2, · · · , n, nonnegative integers

(4.21)

where the separate chance constraints Pr {cixi ≥ di} ≥ αi, i = 1, 2, · · · , n may
be replaced by a joint form

Pr {ηixi ≥ ξi, i = 1, 2, · · · , n} ≥ α
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or some mixed forms.
Now we suppose that the following target levels and priority structure have

been set by the manager: Priority 1: Budget goal, i.e.,

a1x1 + a2x2 + · · ·+ anxn + d−1 − d+
1 = a

where d+
1 will be minimized. Priority 2: Space goal, i.e.,

b1x1 + b2x2 + · · ·+ bnxn + d−2 − d+
2 = b

where d+
2 will be minimized. Priority 3: Profit goal, i.e.,

c1x1 + c2x2 + · · ·+ cnxn + d−3 − d+
3 = c

where d−3 will be minimized. We also suppose that the probability of satisfying
the demand is at least α, i.e., Pr {ηixi ≥ ξi, i = 1, 2, · · · , n} ≥ α, and all the
variables xi, i = 1, 2, · · · , n are nonnegative integers. Then we have a chance
constrained goal programming as follows,



lexmin
{
d+

1 , d
+
2 , d

−
3

}
subject to:

a1x1 + a2x2 + · · ·+ anxn + d−1 − d+
1 = a

b1x1 + b2x2 + · · ·+ bnxn + d−2 − d+
2 = b

c1x1 + c2x2 + · · ·+ cnxn + d−3 − d+
3 = c

Pr {ηixi ≥ ξi, i = 1, 2, · · · , n} ≥ α

xi, i = 1, 2, · · · , n, nonnegative integers.

(4.22)

Chance constrained programming models can be converted into determinis-
tic equivalents when the random variables are normally distributed. However,
it is very difficult to transform them to deterministic forms if the distributions
of random variables belong to other classes. In order to solve general chance
constrained programming models, Iwamura and Liu[98] proposed a stochastic
simulation based genetic algorithm in which the stochastic simulation is used
to check the chance constraints.

4.3.3 Modelling Capital Budgeting in Fuzzy Environ-
ment

We have discussed the chance constraints

Pr {ηixi ≥ ξi} ≥ αi, i = 1, 2, · · · , n
where ηi and ξi are assumed random variables with known density functions
and αi are predetermined confidence levels. It is well-known that the density
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functions are generated by repetitions of experiments. However, in many cases,
we have no such an experiment when we initiate the machines in a plant.
Meanwhile, we have to regard ηi and ξi as fuzzy numbers and construct their
membership functions by some expert knowledge. In this paper, we assume
that the membership functions of ηi and ξi are all given. If we hope that
the possibility of satisfying the demands ξi are at least αi, i = 1, 2, · · · , n,
respectively, then we have chance constraints in a fuzzy environment as follows,

Pos {ηixi ≥ ξi} ≥ αi, i = 1, 2, · · · , n

where Pos represents the possibility. More generally, assume that we can
substitute some products for others, for example, we have p classes of demands
denoted by ξj, and the production capacities of the type i machines for the
product classes j are ηij , i = 1, 2, · · · , n, j = 1, 2, · · · , p, respectively, then the
chance constraints are written as

Pos {η1jx1 + η2jx2 + · · ·+ ηnjxn ≥ ξj} ≥ αi, j = 1, 2, · · · , p (4.23)

or written as a joint form

Pos {η1jx1 + η2jx2 + · · ·+ ηnjxn ≥ ξj , j = 1, 2, · · · , p} ≥ α (4.24)

where α is a predetermined confidence level. In some special cases, for ex-
ample, all fuzzy numbers are trapezoidal, the chance constraints (4.23) can
be converted to crisp equivalents. For detailed expositions, the readers may
consult Liu and Iwamura[149].

The simplest chance constrained integer programming with fuzzy parame-
ters for capital budgeting is




max c1x1 + c2x2 + · · ·+ cnxn

subject to:

a1x1 + a2x2 + · · ·+ anxn ≤ a

b1x1 + b2x2 + · · ·+ bnxn ≤ b

Pos {η1jx1 + η2jx2 + · · ·+ ηnjxn ≥ ξj, j = 1, 2, · · · , p} ≥ α

xi, i = 1, 2, · · · , n, nonnegative integers.

(4.25)

In order to balance the multiple conflicting objectives, capital budgeting
may be modelled by the following chance constrained goal programming with
fuzzy parameters according to the target levels and priority structure set by
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the decision maker,




lexmin
{
d+

1 , d
+
2 , d

−
3

}
subject to:

a1x1 + a2x2 + · · ·+ anxn + d−1 − d+
1 = a

b1x1 + b2x2 + · · ·+ bnxn + d−2 − d+
2 = b

c1x1 + c2x2 + · · ·+ cnxn + d−3 − d+
3 = c

Pos {η1jx1 + η2jx2 + · · ·+ ηnjxn ≥ ξj, j = 1, 2, · · · , p} ≥ α

xi, i = 1, 2, · · · , n, nonnegative integers.

(4.26)

4.3.4 Fuzzy Simulation Based Genetic Algorithm

Genetic algorithms are a stochastic search method for optimization problems
based on the mechanics of natural selection and natural genetics, i.e., the
principle of evolution—survival of the fittest. Genetic algorithms have demon-
strated considerable success in providing good solutions to many complex op-
timization problems and received more and more attentions during the past
three decades. When the objective functions to be optimized in the optimiza-
tion problems are multimodal or the search spaces are particularly irregular,
algorithms need to be highly robust in order to avoid getting stuck at local op-
timal solution. The advantage of genetic algorithms is just to obtain the global
optimal solution fairly. Genetic algorithms (including evolution program and
evolution strategies) have been well discussed and summarized by numerous
literatures, such as Goldberg[54], Michalewicz[156] and Fogel[34], and applied
to a wide variety of problems, such as optimal control problems, transporta-
tion problems, traveling salesman problems, drawing graphs, scheduling, group
technology, facility layout and location, as well as pattern recognition.

In this subsection, we design a fuzzy simulation based genetic algorithm
for chance constrained integer programming models with fuzzy parameters in
which the chance constraints are not assumed to have known crisp equivalent
forms. We will discuss representation structure, handling constraints, initial-
ization process, evaluation function, selection process, crossover operation and
mutation operation in turn.

Representation Structure

There are two ways to represent a solution of an optimization problem, binary
vector and floating vector. We can use a binary vector as a chromosome to
represent real value of decision variable, where the length of the vector de-
pends on the required precision. The necessity for binary codings has received
considerable criticism.
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An alternative approach to represent a solution is the floating point imple-
mentation in which each chromosome vector is coded as a vector of floating
numbers, of the same length as the solution vector. Here we use a vector
V = (x1, x2, · · · , xn) as a chromosome to represent a solution to the optimiza-
tion problem, where n is the dimension. Certainly, all variables xi’s will be
confined to integer values. In fact, if we code the algorithm by C language,
then we can ensure that the vector V is integer by defining it as an integer
array.

Fuzzy Simulation

Fuzzy simulation was proposed by Liu and Iwamura[149] as a means of han-
dling the possibility constraint Pos {ξ|gi(x, ξ) ≤ 0, i = 1, 2, · · · , k} ≥ α where
ξ is a vector of fuzzy numbers. Although this chance constraint can be repre-
sented as an explicit form for some special cases, we need a numerical method
for general cases. We will call the simulation to check the fuzzy constraints as
fuzzy simulation.

Here the key problem is to check whether the chance constraint

Pos {η1jx1 + η2jx2 + · · ·+ ηnjxn ≥ ξj , j = 1, 2, · · · , p} ≥ α (4.27)

holds or not. From the definition of operations over fuzzy numbers[203][29][30],
we say the chance constraint (4.27) holds for a given decision vector x =
(x1, x2, · · · , xn) if and only if there is a crisp array (η0

1j , η
0
2j, · · · , η0

nj, ξ
0
j )

p
j=1 such

that
η0

1jx1 + η0
2jx2 + · · ·+ η0

njxn ≥ ξ0
j , j = 1, 2, · · · , p (4.28)

with an inequality

min
1≤j≤p

{
min

{
µηkj

(η0
kj), k = 1, 2, · · · , n, µξj

(ξ0
j )

}}
≥ α. (4.29)

Thus, we can generate an array (η0
1j, η

0
2j , · · · , η0

nj, ξ
0
j )

p
j=1 uniformly from the α-

cut set of fuzzy array (η1j , η2j, · · · , ηnj, ξj)
p
j=1. If (η0

1j , η
0
2j , · · · , η0

nj, ξ
0
j )

p
j=1 satis-

fies the system of inequalities (4.28), then we can believe the chance constraint
(4.27). If not, we will re-generate an array

(η0
1j , η

0
2j, · · · , η0

nj, ξ
0
j )

p
j=1

uniformly from the α-cut set of fuzzy array (η1j , η2j, · · · , ηnj, ξj)
p
j=1 by that

way and check the constraint. After a given number of cycles, if no feasible
(η0

1j , η
0
2j , · · · , η0

nj , ξ
0
j )

p
j=1 is generated, then we say that the given chromosome

V = (x1, x2, · · · , xn) is infeasible. Now we summarize the above process as
follows.

Step 1. Generate (η0
1j , η

0
2j, · · · , η0

nj, ξ
0
j )

p
j=1 uniformly from the α-cut set of

the fuzzy array.
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Step 2. If (4.28) holds, return FEASIBLE.

Step 3. Repeat Steps 1 and 2 N times.

Step 4. Return INFEASIBLE.

Remark: If the α-level set of the fuzzy vector is too complex to determine,
we can sample a vector (η0

1j, η
0
2j , · · · , η0

nj, ξ
0
j )

p
j=1 from a hypercube Ω containing

the α-level set and then accept or reject it, depending on whether (4.28) holds
or not.

Initialization Process

We define an integer pop size as the number of chromosomes and initialize
pop size chromosomes randomly. Usually, it is difficult for complex optimiza-
tion problems to produce feasible chromosome explicitly. So we employ one of
the following two ways as the initialization process, depending on what kind
of information the decision maker can give.

First case is that the decision maker can determine an interior point, de-
noted by V0, in the constraint set. This is very possible for real decision
problems. We also need to define a large positive number M which ensures
that all the genetic operators are probabilitistically complete for the feasible
solutions. This number M is used for not only initialization process but also
mutation operation. The pop size chromosomes will be produced as follows.
We randomly select a direction d in �n and define a chromosome V as V0+M ·d
if it is feasible, otherwise, we set M by a random number between 0 and M
until V0 +M · d is feasible. We mention that a feasible solution can be found
in finite times by taking random number since V0 is an interior point. Re-
peat this process pop size times and produce pop size initial feasible solutions
V1, V2, · · · , Vpop size.

If the decision maker fails to give such an interior point, but can prede-
termine a region which contains the feasible set. Usually, this region will be
designed to have nice sharp, for example, an n-dimensional hypercube, be-
cause the computer can easily sample points from a hypercube. We generate a
random point from the hypercube and check the feasibility of this point by the
fuzzy simulation. If it is feasible, then it will be accepted as a chromosome. If
not, then re-generate a point from the hypercube randomly until a feasible one
is obtained. Repeat the above process pop size times, we can make pop size
initial feasible chromosomes V1, V2, · · · , Vpop size.

Evaluation Function

Evaluation function, denoted by eval(V ), is to assign a probability of repro-
duction to each chromosome V so that its likelihood of being selected is pro-
portional to its fitness relative to the other chromosomes in the population,
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that is, the chromosomes with higher fitness will have more chance to produce
offsprings by using roulette wheel selection.

Let V1, V2, · · · , Vpop size be the pop size chromosomes at the current gener-
ation. One well-known method is based on allocation of reproductive trials
according to rank rather than actual objective values. No matter what kind of
mathematical programming (single-objective, multiobjective or goal program-
ming), it is reasonable to assume that the decision maker can give an order
relationship among the pop size chromosomes V1, V2, · · · , Vpop size such that
the pop size chromosomes can be rearranged from good to bad, i.e., the better
the chromosome is, the smaller ordinal number it has. Now let a parameter
a ∈ (0, 1) in the genetic system be given, then we can define the so-called
rank-based evaluation function as follows,

eval(Vi) = a(1− a)i−1, i = 1, 2, · · · , pop size. (4.30)

We mention that i = 1 means the best individual, i = pop size the worst
individual.

Selection Process

The selection process is based on spinning the roulette wheel pop size times,
each time we select a single chromosome for a new population in the following
way:

Step 1. Calculate the cumulative probability qi for each chromosome Vi,

q0 = 0

qi =
i∑

j=1
eval(Vj), i = 1, 2, · · · , pop size.

(4.31)

Step 2. Generate a random real number r in [0, qpop size].
Step 3. Select the i-th chromosome Vi (1 ≤ i ≤ pop size) such that

qi−1 < r ≤ qi.
Step 4. Repeat steps 2 and 3 pop size times and obtain pop size copies

of chromosomes.

Crossover Operation

We define a parameter Pc of a genetic system as the probability of crossover.
This probability gives us the expected number Pc · pop size of chromosomes
which undergo the crossover operation.

In order to determine the parents for crossover operation, let us do the
following process repeatedly from i = 1 to pop size: generating a random real
number r from the interval [0, 1], the chromosome Vi is selected as a parent if
r < Pc.
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We denote the selected parents as V ′
1 , V

′
2 , V

′
3 , · · · and divide them to the

following pairs:
(V ′

1 , V
′
2), (V ′

3 , V
′
4), (V ′

5 , V
′
6), · · ·

Let us illustrate the crossover operator on each pair by (V ′
1 , V

′
2). At first,

generate a random number c from the open interval (0, 1), then the crossover
operator on V ′

1 and V ′
2 will produce two children X and Y as follows:

X = c · V ′
1 + (1− c) · V ′

2 & Y = (1− c) · V ′
1 + c · V ′

2 . (4.32)

If the feasible set is convex, this arithmetical crossover operation ensures that
both children are feasible if both parents are. However, in many cases, the
feasible set is not necessarily convex or hard to verify the convexity. So we
must check the feasibility of each child by fuzzy simulation. If both children
are feasible, then we replace the parents by them. If not, we keep the feasible
one if exists, and then re-do the crossover operator by regenerating the random
number c until two feasible children are obtained or a given number of cycles
is finished. In this case, we only replace the parents by the feasible children.

Mutation Operation

We define a parameter Pm of a genetic system as the probability of mutation.
This probability gives us the expected number of Pm ·pop size of chromosomes
which undergo the mutation operations.

Similar to the process of selecting parents for crossover operation, we repeat
the following steps from i = 1 to pop size: generating a random real number r
from the interval [0, 1], the chromosome Vi is selected as a parent for mutation
if r < Pm.

For each selected parent, denoted by V = (x1, x2, · · · , xn), we mutate it
by the following way. We choose a mutation direction d in �n randomly, if
V +M ·d is not feasible for the constraints, then we set M as a random number
between 0 andM until it is feasible, where M is a large positive number defined
in the subsection of Initialization Process. If the above process can not find
a feasible solution in a predetermined number of iterations, then sets M = 0.
We replace the parent V by the new chromosome

V ′ = V +M · d. (4.33)

Procedure Genetic Algorithm

Following selection, crossover and mutation, the new population is ready for its
next evaluation. The genetic algorithm will terminate after a given number of
cyclic repetitions of the above steps. We can summarize the genetic algorithm
for chance constrained programming with fuzzy parameters as follows.

Procedure Genetic Algorithm
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Input parameters: pop size, Pc, Pm;

Initialize the chromosomes by Initialization Process;

REPEAT

Update chromosomes by crossover and mutation operators;

Compute the evaluation function for all chromosomes;

Select chromosomes by sampling mechanism;

UNTIL(termination condition)

It is known that the best chromosome does not necessarily appear in the
last generation. So we have to keep the best one from the beginning. If we
find a better one in the new population, then replace the old one by it. This
chromosome will be reported as the solution after finishing the evolutions.

4.3.5 Numerical Examples

The computer code for the genetic algorithm to chance constrained integer
programming with fuzzy parameters has been written in C language. To il-
lustrate the effectiveness of genetic algorithm, a set of numerical examples has
been done, and the results are successful. Here we give some numerical exam-
ples which are all performed on a workstation with the following parameters:
the population size is 30, the probability of crossover Pc is 0.2, the probability
of mutation Pm is 0.4, the parameter a in the rank-based evaluation function
is 0.05.

Suppose that we have five types of machines. According to the discussion
in Section 4.3.3, when our objective is to maximize the total profit, the capital
budgeting model is formulated as follows,




max 3x1 + x2 + 2x3 + 3x4 + x5

subject to:

2x1 + x2 + 3x3 + 6x4 + 4x5 ≤ 50

7x1 + 6x2 + 4x3 + 8x4 + x5 ≤ 100

Pos

{
η11x1 + η21x2 + η31x3 ≥ ξ1
η32x3 + η42x4 + η52x5 ≥ ξ2

}
≥ 0.9

x1, x2, x3, x4, x5, nonnegative integers

where η11 is a triangular fuzzy number (13,14,15), η21 is a fuzzy number with
membership function

µη21(u) = exp
[
−(u− 8)2

]
,
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η31 is a fuzzy number with membership function

µη31(u) =




1

u− 9
, u ≥ 10

0, u < 10,

the demand of the first product ξ1 is a fuzzy number with membership function

µξ1(u) = exp [−|u− 50|] ,

η32 is a trapezoidal fuzzy number (8,9,10,11), η42 is a triangular fuzzy number
(10,11,12), η52 is a fuzzy number with membership function

µη52(u) = exp [−|u− 10|] ,

and the demand of the second product ξ2 is a triangular fuzzy number (30,40,50).
A run of the fuzzy simulation based genetic algorithm with 300 generations
shows that the optimal solution is

(x∗1, x
∗
2, x

∗
3, x

∗
4, x

∗
5) = (10, 0, 7, 0, 1)

whose total profit is 45.
If the goal hierarchy is (i) budget goal, (ii) space goal, and (iii) profit goal,

then we can model the capital budgeting problem by the following chance
constrained integer goal programming with fuzzy parameters,




lexmin
{
d+

1 , d
+
2 , d

−
3

}
subject to:

2x1 + x2 + 3x3 + 6x4 + 4x5 + d−1 − d+
1 = 50

7x1 + 6x2 + 4x3 + 8x4 + x5 + d−2 − d+
2 = 100

3x1 + x2 + 2x3 + 3x4 + x5 + d−3 − d+
3 = 50

Pos

{
η11x1 + η21x2 + η31x3 ≥ ξ1
η32x3 + η42x4 + η52x5 ≥ ξ2

}
≥ 0.9

x1, x2, x3, x4, x5, nonnegative integers

where the parameters are defined as above. A run of the computer program
with 400 generations shows that the optimal solution is

(x∗1, x
∗
2, x

∗
3, x

∗
4, x

∗
5) = (10, 0, 7, 0, 1)

which can satisfy the first two goals, but the negative deviation of the third
goal is 5.
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4.3.6 Conclusion

In this section we extended chance constrained programming with fuzzy pa-
rameters to integer case and applied to capital budgeting problems in fuzzy
environments. A fuzzy simulation based genetic algorithm was also designed
for solving chance constrained integer programming models with fuzzy pa-
rameters. The time complexity of chance constrained integer programming
with fuzzy parameters is the sum of the time spent for the fuzzy simulation
and the time spent for the genetic algorithm, where the computation time for
fuzzy simulation has to be spent since we have assumed that there is no direct
method to substitute for it.

4.4 Topological Optimization Models for Com-

munication Network with Multiple Relia-

bility Goals

An important problem appearing in computer-communication network is to
design an optimal topology for balancing system reliability and cost. When
the reliability of nodes and communication links of a network is given, the
system reliability is dependent on how nodes are connected by communication
links. There are mainly two types of way, one is to minimize the total cost
subject to a reliability constraint, while the other is to maximize the reliability
subject to a cost constraint, for example, Aggarwal et al. [2][3], Chopra et al.
[21].

Jan et al. [108] designed a branch-and-bound algorithm to minimize the
total cost subject to a reliability constraint. It has been proved that communi-
cation network reliability problems are NP-hard. So some heuristic algorithms
are designed to solve the problem of larger network. Chopra et al. [21] and
Aggarwal et al. [2][3] employed greedy heuristic approaches for maximizing
the overall and terminal reliability. Ravi et al. [171] designed a nonequilib-
rium simulated annealing algorithm. Painton and Campbell [168] presented a
genetic algorithm for optimizing the system reliability. Kumar et al. [131][132]
proposed a genetic algorithm for solving various network expansion problems,
such as minimizing diameter, minimizing average distance, and maximizing
computer-network reliability. Dengiz et al. [26] presented a genetic algorithm
for optimization of all-terminal reliable networks.

In practice, a large network consists of a backbone network and several
local access networks. This fact provides a motivation to develop topological
optimization models with multiple reliability goals. In this paper, we will also
design a stochastic simulation-based genetic algorithm for solving the proposed
models and illustrate its effectiveness by some numerical examples.
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4.4.1 Topological Models

Let G = (V, E, P) be a communication network in which V and E correspond to
terminals and links, and P is the set of reliabilities for the links E. If there are
n vertices (terminals), then the links E may also be represented by the link
topology of x = {xij : 1 ≤ i ≤ n − 1, i+ 1 ≤ j ≤ n}, where xij ∈ {0, 1}, and
xij = 1 means the link (i, j) is selected, 0 otherwise.

If we assume that the terminals are perfectly reliable and links fail s-
independently with known probabilities, then the success of communication
between terminals in subset K of V is a random event. The probability of this
event is called the K-terminal reliability denoted by R(K,x) when the link
topology is x. A network G is called K-connected if all the vertices in K are
connected in G. Thus the K-terminal reliability R(K,x) is Pr{G is K-connected
with respect to x}. Notice that when K ≡ V, then R(K,x) is the overall
reliability.

In addition, for each candidate link topology x, the overall cost should
be

∑n−1
i=1

∑n
j=i+1 cijxij , where cij is the cost of link (i, j), i = 1, 2, · · · , n − 1,

j = i+ 1, i+ 2, · · · , n, respectively.
If we want to minimize the total cost subject to multiple reliability con-

straints, then we have


min
n−1∑
i=1

n∑
j=i+1

cijxij

subject to:

R(Kk,x) ≥ Rk, k = 1, 2, · · · , m
(4.34)

where Kk are target sets of G, Rk are predetermined minimum reliabilities, k =
1, 2, · · · , m, respectively. This is a type of chance-constrained programming.

If we want to maximize the K-terminal reliability subject to a cost con-
straint, then we have the following dependent-chance programming model,




maxR(K,x)

subject to:
n−1∑
i=1

n∑
j=i+1

cijxij ≤ c0

(4.35)

where c0 is the maximum capital available.
Now we assume that K1, K2, · · ·, Km are m target sets of G, then we have

a dependent-chance multiobjective programming model,




max [R(K1,x), R(K2,x), · · · , R(Km,x)]

subject to:
n−1∑
i=1

n∑
j=i+1

cijxij ≤ c0.

(4.36)
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We can also formulate the topological optimization problem for communi-
cation network reliability as a dependent-chance goal programming according
to the priority structure and target levels set by the decision maker,



min
l∑

j=1
Pj

m∑
i=1

(uijd
+
i + vijd

−
i )

subject to:

R(Ki,x) + d−i − d+
i = Ri, i = 1, 2, · · · , m

n−1∑
i=1

n∑
j=i+1

cijxij ≤ c0

d−i , d
+
i ≥ 0, i = 1, 2, · · · , m

(4.37)

where Pj = the preemptive priority factor which expresses the relative impor-
tance of various goals, Pj � Pj+1, for all j, uij = weighting factor correspond-
ing to positive deviation for goal i with priority j assigned, vij = weighting
factor corresponding to negative deviation for goal i with priority j assigned,
d+

i = positive deviation from the target of goal i, d−i = negative deviation from
the target of goal i, Ri = the target reliability level of the set Ki, l = number
of priorities, m = number of goal constraints.

4.4.2 K-terminal Reliability

After a link topology x is given, we should estimate the K-terminal reliability
R(K,x) with respect to some prescribed target set K. Estimating K-terminal
reliability has received considerable attention during the past two decades. It
is almost impossible to design an algorithm to compute R(K,x) analytically.
In order to handle larger network, we may employ the stochastic simulation
(Monte Carlo simulation) which consists of repeating s-independently N times
trials.

Step 1. Set counter N ′ = 0;

Step 2. Randomly generate an operational link set E′ from the link topology
x according to P;

Step 3. If (V, E′) is K-connected, then N ′ + +;

Step 4. Repeat the second and third steps N times;

Step 5. R(K,x) = N ′/N .

4.4.3 Stochastic Simulation-based Genetic Algorithm

Genetic algorithms are a stochastic search method for optimization problems
based on the mechanics of natural selection and natural genetics. Genetic algo-
rithms have demonstrated considerable success in providing good solutions to
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many complex optimization problems and received more and more attentions
during the past three decades. When the objective functions to be optimized in
the optimization problems are multimodal or the search spaces are particularly
irregular, algorithms need to be highly robust in order to avoid getting stuck
at local optimal solution. The advantage of genetic algorithms is just to obtain
the global optimal solution fairly. Genetic algorithms (including evolution pro-
grams and evolution strategies) have been well documented in the literature,
such as in Holland [64], Goldberg [54] and Michalewicz [156], and applied to
a wide variety of optimization problems. Especially, for chance-constrained
programming, Iwamura and Liu [98] provided a stochastic simulation-based
genetic algorithm for stochastic case; Liu and Iwamura [149][150] provided a
fuzzy simulation-based genetic algorithm for fuzzy models. The dependent-
chance programming models have also been solved by the simulation-based
genetic algorithm for stochastic case [143][144] and for fuzzy case [145][146].
For detailed expositions, the reader may consult Liu [147].

In this subsection, we present a stochastic simulation-based genetic al-
gorithm for solving the topological optimization models for communication
network reliability.

Representation Structure

Now we use an n(n − 1)/2-dimensional vector V = (y1, y2, · · · , yn(n−1)/2) as a
chromosome to represent a candidate link topology x, where yi is taken as 0
or 1 for 1 ≤ i ≤ n(n − 1)/2. Then the relationship between a link topology
and a chromosome is

xij = y(2n−i)(i−1)/2+j−i, 1 ≤ i ≤ n− 1, i+ 1 ≤ j ≤ n. (4.38)

Initialization Process

We set yi as a random integer from {0, 1}, i = 1, 2, · · · , n(n − 1)/2, respec-
tively. If the generated chromosome V = (y1, y2, · · · , yn(n−1)/2) is proven to be
feasible, then it is accepted as a chromosome, otherwise we repeat the above
process until a feasible chromosome is obtained. We may generate pop size ini-
tial chromosomes V1, V2, · · · , Vpop size by repeating the above process pop size
times.

Evaluation Function

The evaluation function, denoted by eval(V ), assigns a probability of repro-
duction to each chromosome V so that its likelihood of being selected is propor-
tional to its fitness relative to the other chromosomes in the population, that
is, the chromosomes with higher fitness will have a greater chance of producing
offspring through roulette wheel selection.
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Let V1, V2, · · · , Vpop size be the pop size chromosomes in the current gener-
ation. At first we calculate the objective values of the chromosomes. According
to the objective values, we can rearrange these chromosomes V1, V2, · · · , Vpop size

from good to bad (i.e., the better the chromosome, the smaller the ordinal num-
ber). For the single-objective case, a chromosome with larger objective value
is better; for the multiobjective case, we may define a preference function to
evaluate the chromosomes; for the goal programming case, we have the fol-
lowing order relationship for the chromosomes: for any two chromosomes, if
the higher-priority objectives are equal, then, at the current priority level, the
one with a minimal objective value is better, and if two different chromosomes
have the same objective values at every level, then we are indifferent between
them. Now let a parameter a ∈ (0, 1) in the genetic system be given, then we
can define the so-called rank-based evaluation function as follows,

eval(Vi) = a(1− a)i−1, i = 1, 2, · · · , pop size. (4.39)

We mention that i = 1 means the best individual, i = pop size the worst
individual.

Selection Process

The selection process is based on spinning the roulette wheel pop size times,
each time we select a single chromosome for a new population in the following
way:

Step 1. Calculate the cumulative probability qi for each chromosome Vi,

q0 = 0,

qi =
i∑

j=1
eval(Vj), i = 1, 2, · · · , pop size. (4.40)

Step 2. Generate a random real number r in (0, qpop size].
Step 3. Select the ith chromosome Vi (1 ≤ i ≤ pop size) such that

qi−1 < r ≤ qi.
Step 4. Repeat the second and third steps for pop size times and obtain

pop size copies of chromosomes.

Crossover Operation

We define a parameter Pc of a genetic system as the probability of crossover.
In order to determine the parents for a crossover operation, let us repeat the
following process from i = 1 to pop size: Generate a random real number
r from the interval [0, 1], then the chromosome Vi is selected as a parent if
r < Pc.

We denote the selected parents as V ′
1 , V

′
2 , V

′
3 , · · · and split them into the

following pairs:
(V ′

1 , V
′
2), (V ′

3 , V
′
4), (V ′

5 , V
′
6), · · ·
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Let us illustrate the crossover operation on each pair by (V ′
1 , V

′
2). We denote

V ′
1 =

(
y

(1)
1 , y

(1)
2 , · · · , y(1)

n(n−1)/2

)
, V ′

2 =
(
y

(2)
1 , y

(2)
2 , · · · , y(2)

n(n−1)/2

)
.

First, we randomly generate two crossover positions n1 and n2 between 1 and
n(n − 1)/2 such that n1 < n2, and exchange the genes of V ′

1 and V ′
2 between

n1 and n2, thus produce two children by the crossover operation as follows,

V ′′
1 =

(
y

(1)
1 , · · · , y(1)

n1−1, y
(2)
n1
, · · · , y(2)

n2
, y

(1)
n2+1, · · · , y(1)

n(n−1)/2

)
,

V ′′
2 =

(
y

(2)
1 , · · · , y(2)

n1−1, y
(1)
n1
, · · · , y(1)

n2
, y

(2)
n2+1, · · · , y(2)

n(n−1)/2

)
.

We note that the two children are not necessarily feasible, thus we must check
the feasibility of each child and replace the parents with the feasible children.

Mutation Operation

We define a parameter Pm of a genetic system as the probability of mutation.
Similarly with the process of selecting parents for a crossover operation, we
repeat the following steps from i = 1 to pop size: Generate a random real
number r from the interval [0, 1], then the chromosome Vi is selected as a
parent for mutation if r < Pm.

For each selected parent, denoted by V = (y1, y2, · · · , yn(n−1)/2), we mutate
it in the following way. We randomly generate two mutation positions n1

and n2 between 1 and n(n − 1)/2 such that n1 < n2, and regenerate the
sequence {yn1, yn1+1, · · · , yn2} at random from {0, 1} to form a new sequence
{y′n1

, y′n1+1, · · · , y′n2
}. We thus obtain a new chromosome

V ′ = (y1, · · · , yn1−1, y
′
n1
, · · · , y′n2

, yn2+1, · · · , yn(n−1)/2).

Finally, we replace the parent V with the offspring V ′ if it is feasible. If it
is not feasible, we repeat the above process until a feasible chromosome V ′ is
obtained.

Genetic Algorithm Procedure

Following selection, crossover and mutation, the new population is ready for its
next evaluation. The genetic algorithm will terminate after a given number of
cyclic repetitions of the above steps. We now summarize the genetic algorithm
for solving the topological optimization models for the communication network
reliability as follows.

Input parameters: pop size, Pc, Pm;
Initialize pop size chromosomes with the Initialization Process;
REPEAT

Update chromosomes by crossover and mutation operators;
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Compute the evaluation function for all chromosomes;
Select chromosomes by the sampling mechanism;

UNTIL(termination condition)
Report the best chromosome as the optimal link topology.

4.4.4 Illustrative Examples

The computer code for the stochastic simulation-based genetic algorithm to
topological optimization models has been written in C language. In order to
illustrate the effectiveness of genetic algorithm, a lot of numerical experiments
have been done and the result is successful. Here we give two numerical ex-
amples performed on a personal computer with the following parameters: the
population size is 30, the probability of crossover Pc is 0.3, the probability of
mutation Pm is 0.2, the parameter a in the rank-based evaluation function is
0.05. Each simulation in the evolution process will be performed 2000 cycles.

Example 1. Let us consider a 10-node, fully-connected network. Suppose
that the cost matrix is

Nodes 1 2 3 4 5 6 7 8 9 10
1 -
2 30 -
3 43 26 -
4 45 76 38 -
5 50 45 17 35 -
6 62 25 30 28 15 -
7 25 46 30 16 25 38 -
8 15 45 13 20 37 40 36 -
9 51 15 45 10 34 10 46 42 -

10 45 25 45 15 37 40 16 24 45 -

We suppose that the total capital available is 250. Thus we have a con-
straint,

n−1∑
i=1

n∑
j=i+1

cijxij ≤ 250.

We also suppose that the reliabilities of all links are 0.9.
We may set the following target levels and priority structure:

Priority 1: For the subset of nodes K1 = (1, 3, 6, 7), the reliability level
R(K1,x) should achieve 99%,

R(K1,x) + d−1 − d+
1 = 99%

where d−1 will be minimized.
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Priority 2: For the subset of nodes K2 = (2, 4, 5, 9), the reliability level
R(K2,x) should achieve 95%,

R(K2,x) + d−2 − d+
2 = 95%

where d−2 will be minimized.

Priority 3: For the subset of nodes K3 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10), the relia-
bility level R(K3,x) (here the overall reliability) should achieve 90%,

R(K3,x) + d−3 − d+
3 = 90%

where d−3 will be minimized.

A run of stochastic simulation-based genetic algorithm with 100 generations
shows that the optimal link topology is

x∗ =




− 0 0 0 0 0 1 1 0 0
− 1 0 0 1 0 0 0 1
− 0 1 0 0 1 0 0
− 0 0 0 1 1 0
− 1 1 0 0 0
− 0 0 1 0
− 0 0 1
− 0 0
− 0
−




whose reliability levels are

R(K1,x
∗) = 0.991, R(K2,x

∗) = 0.956, R(K3,x
∗) = 0.938,

and the total cost is 242.
If the total capital available is 210, then the optimal link topology obtained

by the stochastic simulation-based genetic algorithm with 600 generations is

x∗ =




− 0 0 0 0 0 0 1 0 0
− 1 0 0 1 0 0 0 1
− 0 1 0 0 1 0 0
− 0 0 1 1 1 1
− 1 0 0 0 0
− 0 0 1 0
− 0 0 0
− 0 0
− 0
−



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which can satisfy the first goal, but the deviations of the second and third
goals are 0.08 and 0.15, respectively. In fact, the reliability levels are

R(K1,x
∗) = 0.99, R(K2,x

∗) = 0.87, R(K3,x
∗) = 0.75.

and the total cost is 207.

Example 2. Now we consider a 20-node, fully-connected network. Sup-
pose that the cost matrix is

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 -
2 30 -
3 43 26 -
4 45 76 38 -
5 50 45 17 35 -
6 62 25 30 28 15 -
7 25 46 30 16 25 38 -
8 15 45 13 20 37 40 36 -
9 51 15 45 10 34 10 46 42 -

10 45 25 45 15 37 40 16 24 45 -
11 10 35 35 35 16 30 17 35 33 31 -
12 55 35 35 30 35 37 15 38 35 24 15 -
13 10 40 10 40 15 34 35 10 47 45 35 35 -
14 50 19 40 65 45 30 35 35 10 42 30 37 40 -
15 45 16 40 10 45 37 10 35 35 45 30 40 40 25 -
16 15 45 15 47 20 30 45 35 23 45 36 35 15 45 45 -
17 30 40 25 48 20 25 36 15 25 49 10 25 25 37 35 25 -
18 50 10 45 10 50 30 15 35 40 15 40 30 40 18 15 40 40 -
19 30 40 25 43 20 25 35 25 25 46 10 25 27 35 35 25 55 40 -
20 25 40 25 45 25 30 47 10 25 45 10 38 20 43 40 42 10 45 18 -

We suppose that the total capital available is 600, thus we have the follow-
ing constraint,

n−1∑
i=1

n∑
j=i+1

cijxij ≤ 600.

We also suppose that the reliabilities of all links are 0.9.
We may set the following target levels and priority structure:

Priority 1: For the subset of nodes K1 = (3, 6, 7, 13, 17, 19), the reliability
level R(K1,x) should achieve 99%,

R(K1,x) + d−1 − d+
1 = 99%

where d−1 will be minimized.

Priority 2: For the subset of nodes K2 = (1, 2, 4, 5, 9, 11, 12, 14, 15, 18, 20),
the reliability level R(K2,x) should achieve 96%,

R(K2,x) + d−2 − d+
2 = 96%

where d−2 will be minimized.

Priority 3: For the set of all nodes K3 ≡ V, the reliability level R(K3,x) (here
the overall reliability) should achieve 95%,

R(K3,x) + d−3 − d+
3 = 95%

where d−3 will be minimized.
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A run of stochastic simulation-based genetic algorithm with 300 generations
shows that the optimal link topology is

x∗ =




− 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0
− 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1
− 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 0
− 0 0 1 0 1 0 0 0 0 0 1 1 0 1 0 0
− 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0
− 0 0 1 1 0 0 0 0 0 0 0 0 0 0
− 0 0 0 0 0 0 0 0 0 0 0 0 0
− 0 0 0 0 0 0 0 0 1 0 0 0
− 0 0 0 0 1 0 0 0 0 0 1
− 0 0 0 0 0 0 0 1 0 0
− 1 0 0 0 0 1 0 1 1
− 0 1 0 0 0 0 0 0
− 0 0 0 0 0 0 0
− 0 0 0 0 0 0
− 0 0 0 0 0
− 0 0 0 0
− 0 0 1
− 0 0
− 0
−




which can satisfy the three goals. Furthermore, the reliability levels are

R(K1,x
∗) = 0.993, R(K2,x

∗) = 0.971, R(K3,x
∗) = 0.953,

and the total cost is 594.





Chapter 5

Set Covering Problem and
Genetic Algorithm

About 30 to 20 years ago, there were some eager yet hard research activi-
ties in solving Set Covering problems and/or Set Partitioning problems. We
can see it well in C.E.Lemke, H.M.Salkin and K.Spielberg[138], H.M.Salkin
and R.Koncal[175, 176, 177], K.Iwamura[84, 85, 86, 88], R.S.Garfinkel and
G.L.Nemhauser[45][46], H.Konno and H.Suzuki[116],H.M.Salkin[174] and so
on. They used either cutting plane algorithm and /or branch and bound al-
gorithm and then found that these algorithms showed exponential and heavy
data dependent computing time, see K.Iwamura,Y.Deguchi and N.Okada[95],
K.Iwamura and N.Okada[105], H.Konno and H.Suzuki[116], G.L.Nemhauser
and L.A.Wolsey[165]. This fact coincides with the theoretical results of NP-
completeness in M.R.Garey and D.S.Johnson[44]. In recent years, we saw
some advancements in solving NP-complete problems in K.Tagawa, D.Okada,
Y.Kanzaki, K.Inoue and H.Haneda[191], and J.Xie and W.Xing[200]. They
showed and hinted that for NP-complete problems, genetic algorithm might
find a fairly good solutions. So, we thought that genetic algorithm withDomain
Specific Knowledge might enhance its computing efficiency , finding a good so-
lution at an early stage of computing process, keeping its computing time
stable/ controllable by setting the maximum generation number at some rea-
sonable value. Yes, about 20 years ago in Japan, there was a saying such
that when an integer programming problem could not be solved in a suitable
amount of time, then it wouldn’t be solved even if we used ten times greater
amount of computing time. Still, Set Covering and/or Set Partitioning prob-
lems have a wide range of applications, there should be some efforts to find
a more smart algorithm to solve some medium sized Set Covering and/or Set
Partitioning problems. So here, we carried out designing a genetic algorithm
to solve medium sized Set Covering problems using Domain Specific Knowledge
with computational experiences, where Domain Specific Knowledge means any
kinds of knowledge which we can get from input data information we have to
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solve.
As for the small sized ones, any algorithms including enumeration type

algorithms would be sufficient. For the big sized problems having more than
200 thousands columns, heuristic algorithms or artificial intelligence type algo-
rithms or some other technologies might be asked for, although exact problem
size would be affected by what kind of computers we could use. In the next
section, we will explain how we have designed our code to solve the medium
sized Set Covering problems.

5.1 Definitions and Domain Specific Knowl-

edge

Let m,n be natural numbers, cj be positive integers, i.e., costs, (1 ≤ j ≤ n)
and Let aij be 0 or 1 for 1 ≤ i ≤ m, 1 ≤ j ≤ n .

The following Integer Programming Problem,
minimize

cx =
n∑

j=1

cjxj (5.1)

subject to
n∑

j=1

aijxj ≥ 1 (1 ≤ i ≤ m) (5.2)

xj ∈ {0, 1} (5.3)

is called Set Covering problem.
For this Set Covering problem , we first see that

Theorem5. 1 Any basic feasible solution xj of the Linear Programming
Problem derived from the Set Covering problem satisfies

0 ≤ xj ≤ 1 for 1 ≤ j ≤ n (5.4)

Proof See R.S.Garfinkel and G.L.Nemhauser[46], H.M.Salkin[174], H.Konno
& H.Suzuki[116].

We call the linear programming problem (5.1),(5.2),(5.4) an LP(linear pro-
gramming) relaxed Set Covering problem and/or LP problem derived from the
Set Covering problem. Based on this , we propose Domain Specific Knowl-
edge 1 for the input data which has n/m greater than two or more, where
m = the number of rows, n = the number of the columns. For such input data
at least n −m column variables take value zeros in an optimal basic feasible
solution for the LP relaxed Set Covering problem. Hence modifying the LP
optimal basic feasible solution to create good zero-one solutions having nearly
equal objective values as itself would provide us some good chromosomes in
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the first starting generation in our genetic algorithm. Set the variables be zeros
or ones as they are zeros or ones in the LP relaxed optimal feasible solutions.
If xj has a fractional value between zero and one, round up or round down to
get a good feasible zero- one solution. Find any kind of smart heuristics to get
enough good feasible zero-one solutions from the LP relaxed optimal solution
and/or solutions.

We call a feasible solution of (5.1),(5.2),(5.3) a cover solution ,or a cover in
short. A cover x = (xj) is a prime cover if there exists no y = (yj) satisfying
(5.2),(5.3)
and

yj ≤ xj , y �= x (5.5)

We easily see that the optimal solution of (5.1),(5.2),(5.3) can be found in the
set of prime covers. So,to solve the Set Covering problem, we only have to take
the prime cover with minimum cx value. Therefore, solving (5.1),(5.2),(5.3) is
mathematically equal to finding all the prime covers. Yet, finding all the prime
covers are hard enough to solve the Set Covering problem itself. So, we do
not go in this way. M.Fushimi[42] used this , Domain Specific Knowledge
2, to get a good prime cover after sorting the columns with respect to cost
performance. His method at present gives us just two good prime covers.

Theorem5. 2 Any prime cover can be expressed as a basic feasible solution
of the linear programming problem obtained
by relaxing

x ∈ {0, 1}
into

0 ≤ xj ≤ 1

This theorem tells us that an optimal cover(solution) exists in the basic fea-
sible solutions of the LP relaxed Set Covering problem. But, an optimal basic
feasible solution of the LP relaxed Set Covering problem might not be zero-one.
If it is zero-one, then we are done, good luck! In case we have no good lucks,
we propose, Domain Specific Knowledge 3, to go like F.S.Hillier[60]. We
search for some adjacent integer vertices and put them in the first generation
of our genetic algorithm.

Theorem5. 3 Let x be any feasible solution of the relaxed linear program-
ming problem derived from (5.1),(5.2),(5.3) and set yj =< xj > , where < t >
takes the smallest integer greater than or equal to t . Then we have a cover
solution y of the Set Covering problem.

Proof yj ∈ {0, 1} and so y = (yj) satisfies (5.3) because 0 ≤ xj ≤ 1 .
Furthermore we have

n∑
j=1

aijyj ≥
n∑

j=1

aijxj ≥ 1. �
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After solving Linear Programming problem derived from the Set Covering
problem, we try to get as many optimal basic feasible solutions as possible
based on the optimal basic feasible LP tableau. If we find an all 0,1 among
them, then we are done. Good luck! In case all of them are fractional, using this
theorem, we get 0,1 feasible solutions for the Set Covering problem. Transform
them into prime cover solutions using the method of Fushimi[42] or any tricks.
These would provide us enough good covers to start in the first generation of
our genetic algorithm. We call it Domain Specific Knowledge 4.

Last but not least, taking probabilistic/statistical characteristics of genetic
algorithms, we propose Domain Specific Knowledge 5 as follows. Re-index
the columns after cost -performances cpj of the column j,where

cpj =
cj∑m

i=1 aij
(1 ≤ j ≤ n) (5.6)

, and just apply simple genetic algorithm in harmony with one point cross over
operation. This is just like J.F.Pierce and J.S.Lasky[170], but differs both in
its details and in its usages.

5.2 Handling Bitwise Operation and Storing

Coefficient Matrix Bitwise

We have stored zero-one information of each column in bitwise. We used

<
m

32
> (5.7)

words to store column wise zero-one information for each column in an array
form, i.e., in array G. So, for an m by n coefficient matrix, we needs

n× <
m

32
> (5.8)

words to store zero-one coefficient matrix information in G. To speed up feasi-
bility check for each chromosome, we used another array A. For an input data
with 640 rows × 2000 columns, we needed about 360Kbyte memory in all and
so all the crucial computations have been done in core. We made full use of
bitwise AND, OR, EXCLUSIVE OR operations in our C++ programs. These
bitwise operations co-worked well with our Genetic Algorithm.

5.3 A Genetic Algorithm

In this section we design a genetic algorithm to solve the Set Covering prob-
lem. We will discuss the initialization process, evaluation function, selection,
crossover and mutation operations in turn.
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5.3.1 Initialization Process

As usual in Genetic Algorithm, we generate pop size initial feasible chromo-
somes(solutions). Randomly generate integers between 1 and n, say, j1 and
set xj1 = 1. Continue randomly generating integers between 1 and n until
(xj1 = xj2 =, · · · , xjk

= 1) constitute a feasible solution, where k is the small-
est integer such that (xj1 = xj2 =, · · · , xjk

= 1) is a feasible solution. In this
way, randomly generate feasible pop size chromosomes(solutions) in total. Let
us call them Vi, (i = 1, 2, · · · , pop size).

5.3.2 Evaluation Function

For each chromosome in the population, we calculate its objective function and
set its fitness to be the inverse of the objective function, because the objective
function of any chromosome is always positive.

5.3.3 Selection Operation

The selection process is based on spinning the roulette wheel pop size times,
each time we select a single chromosome for a new population in the following
way:

Step 1. Calculate a cumulative probability ai for each chromosome Vi,
(i = 1, 2, · · · , pop size),where

ai =
i∑

j=1

pj , pi =
fi∑pop size

j=1 fj

(5.9)

and fi =the inverse value of the fitness of the chromosome Vi, (i = 1, 2, · · · , pop size).
Step 2. Generate a random real number r in [0, 1].
Step 3. If r ≤ a1, then select the first chromosome V1; otherwise select

the i-th chromosome Vi (2 ≤ i ≤ pop size) such that ai−1 < r ≤ ai.
Step 4. Repeat Steps 2 and 3 pop size times and obtain pop size copies

of chromosomes.
In this process, the best chromosomes get more copies, the average stay

even, and the worst die off.

5.3.4 Crossover Operation

We define a parameter Pc of a genetic system as the probability of crossover.
This probability gives us the expected number Pc · pop size of chromosomes
which undergo the crossover operation.

Firstly we generate a random real number r in [0, 1]; secondly, we select
the given chromosome for crossover if r < Pc. Repeat this operation pop size
times and produce Pc · pop size parents, averagely. For each pair of parents
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(vectors V1 = (x1, x2, · · · , xn) and V2 = (y1, y2, · · · , yn)), the crossover operator
on V1 and V2 will produce two children as

V ′
1 = (x1, · · · , xs, ys+1, · · · , yn), V ′

2 = (y1, · · · , ys, xs+1, · · · , xn)

, where s is randomly generated integer between 1 and n−1. If the two children
are feasible, then select the best two of the four. If either of the children is
infeasible, then correct it feasible by randomly adding value one variable step
by step. Then select the best two of the four into the population. If none of
the children are feasible, do the same as stated.

5.3.5 Mutation Operation

We define a parameter Pm of a genetic system as the probability of mutation.
This probability gives us the expected number Pm · pop size of chromosomes
which undergo the mutation operation.

Generating a random real number r in [0, 1], we select the given chromo-
some for mutation if r < Pm. Let a parent for mutation, denoted by a vector
V = (x1, x2, · · · , xn), be selected. Assume that {j1, j2, · · · , jz} is a randomly
generated subset of {1, 2, · · · , n}. Then set x′jt

= 1 − xjt(1 ≤ t ≤ z) to get a
new chromosome V ′ = (x′1, x

′
2, · · · , x′n) except for the fact that all x′j = xj are

predetermined for all j /∈ {j1, j2, · · · , jz}. If the chromosome V ′ is infeasible,
then modify it to a feasible one V ′′ using the same method as in Crossover
Operation. Repeat this operation pop size times.

Following selection, crossover and mutation, the new population is ready
for its next evaluation. The algorithm will terminate after a given number of
cyclic repetitions of the above steps. The proposed genetic algorithm is shown
as follows:

Procedure Genetic Algorithm

Input parameters;

Initialize the solutions (chromosomes);

REPEAT

Update the chromosomes by genetic operators;

Compute fitness of each chromosome by objective function;

Select the chromosomes by spinning the roulette wheel;

UNTIL(termination condition)
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5.4 Computational Results

Set Covering problem is an NP-complete problem. Computational experi-
ments have shown that its computing time is heavily input data dependent
and explodes as input problem data size goes up. So, we have applied our
genetic algorithm with Domain Specific Knowledge 5 to input problem
data A,C,G of H.Morohoshi and M.Fushimi[159], which are Real-World input
data. We have got chromosomes with fitness(objective function) value 13,13,4
for A,C,G , which are better or equal to 14,21,4 that have been obtained by
applying the algorithms of M.Fushimi[42]. We have made our program in C++
on Celeron 400 MHz with incore memory size 96MB. Its computing time is
just 1 to 2 seconds, while our rudimentary enumeration type algorithm took
10 to 15 minutes.

To see how our Domain Specific Knowledge affects the performance
of the original genetic algorithm, we have made additional two different Ini-
tialization Processes. First one is as follows: We randomly generated 15 bits
three integers and then concatenated them into one chromosome. We repeated
this process until we got pop size starting chromosomes. This way of getting
the chromosomes for the starting generation in our genetic algorithm is named
Method 1. In this paper throughout, we always uses Domain Specific
Knowledge 5. Second one is just the original Initialization Process in our
genetic algorithm which we call Method 2. The third one , Method 3, can
be fully illustrated as follows:

x1 x2 x3 x4 x5

1 1 0 1 0
0 1 0 0 1

aij = 1 1 0 1 0
0 0 1 0 1
0 1 1 0 0
1 0 0 1 0

hj = 3 4 2 3 2
cj = 2 3 2 4 4
cpj = 0.66 0.75 1.00 1.33 2.00

(5.10)

First, select the most cost-effective xj in the table, so set x1 = 1.From
top to bottom, search for an uncovered row. The 2-nd row is uncovered and
so select the most cost-effective column not picked up yet. So, we select the
2-nd column letting x2 = 1. Combining the column x1 and the column x2

,we see that the 4-th row is uncovered and so select the most cost-effective
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column not yet picked up. So, we select the 3-rd column setting x3 = 1. We
have got one feasible chromosome(solution) with x1 = x2 = x3 = 1, xj = 0
otherwise . Second select the next cost-effective column x2 and set x2 = 1.
The first uncovered row is the 4-th row. Then search for a new column from
left to right which first covers the 4-th row. Then we get the column x3 with
x3 = 1. Combining x2 = 1 and x3 = 1 , we see that the last row is not covered
and so finally we get x4. Setting x4 = 1, we get another feasible chromosome
with x2 = x3 = x4 = 1, xj = 0 otherwise.Third we get the third feasible
chromosome x3 = x1 = x2 = 1, xj = 0 otherwise, which is identical to the first
feasible chromosome. So, we drop it. But the 5 th feasible chromosome turns
out to be x5 = x1 = x2 = 1, xj = 0 otherwise, which is a new one.

In this way we get pop size feasible chromosomes with cost effective columns,
while maintaining statistical diversity of the starting population.

We have randomly generated Set Covering input data with unicost, density
about 10%, size 200 × 500. We have applied our Genetic Algorithm( Method
2 ) to this input data , where randomly set first GA parameters are as follows;

• Population size = 50,

• Cross over probability = 0.25,

• Mutation probability = 0.01,

• Final generation number = 1000

and its computational result is

• Best feasible fitness function obtained so far = 26

• Computing time 8 seconds(using floppy disk drive) .

We can see how these Domain Specific Knowledge affects the perfor-
mance in Figure 1, where the vertical axis is log measured. We can judge that
Method 1 is the worst , Method 2 the second best, Method 3 the best. We
observe that the finer Domain Specific Knowledge becomes, the better
final feasible function values we can get, which is what we have anticipated in
advance.

We have tested Method 2, Method 3 for a randomly generated Set Cov-
ering input data with unicost, density about 10% , size 640×2000 . The result
in Figure 2 shows that Method 3 is better than Method 2 , once again for
this input data. The parameter values are the same except mutation proba-
bility , which is set to 0.001 . Computing time has been just 20 seconds with
final objective function value 27, which is surprisingly small if one compares it
with that of some branch and bound type algorithms.

We have also carried out computational experiments to see how our Genetic
Algorithm with Method 3 works as the input problem size goes up. Below
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are the results, where each input problem data were randomly generated with
density nearly 3% and unicost objective coefficients. And still we have set
Population size=50, Crossover probability = 0.25, Mutation probability =
0.001, Final generation number = 1000.

Table 5.1: Computing Time when m Varies

Problem size Computing time
200 X 2000 15 seconds
300 X 2000 16 seconds
400 X 2000 17 seconds
500 X 2000 17 seconds
640 X 2000 18 seconds

Judging from this table, we can say that Computing time of our Genetic
Algorithm varies linearly in m = the number of rows in the input problem
data.

We have done the same computational experiments as above with just one
change. This time we have kept the number of rows at 640 and varied the
number of the columns n. Just below are the results.

Here, we can say that Computing time is linear up to problem size 640
× 2000. Concluding the two , we can say that our Genetic Algorithm works
linearly in input problem data size.

We have carried out additional computational experiments to see parame-
ter dependency of our Genetic Algorithm. We have randomly generated size
640 × 2000 , uni-cost , density 3% set covering input data, which we call

Table 5.2: Computing Time when n Varies

Problem size Computing time
640 X 500 9 seconds

640 X 1000 13 seconds
640 X 1500 16 seconds
640 X 2000 18 seconds
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2000N16C. This time we used NEC PC note PC-LM40H32D6 Celeron 400,
which is about 15% slower than the former one. Computational results appear
in Table 5.3, where ∗ denotes that we have tried 5 trials for the input data
2000N16C.Mean computing time and mean objective function values without
∗ denotes that we have tried 10 trials. The reason we halved the trials was the
fact that fluctuations in computing time was very small. For the most fluctu-
ated one with N = 800 , its computing time were 381,383,398,396,401with fluc-
tuations less than 6%. In the table, N stands for population size in our Genetic
Algorithm, pc: crossover probability, pm : mutation probability . Comparing
the first two lines, we see that letting the final generation number double makes
our GA ’s computing time about two times large with a little bit good objec-
tive function values. Comparing the first and the third , we see that changing
the values of pc and pm doesn’t affect our GA’s computing time, yet worsens
the objective function values. To see how our Genetic Algorithm works when
we change N with all other parameters fixed, i.e., pc = 0.25, pm = 0.001, final
generation number= 1000, we have got the results from the fourth line to the
last line. From these results we can say that computing time is proportional
to N and its objective function values improving a little bit.

Table 5.3: Parameter Dependency of our Genetic Algorithm

Final Objective function value Mean
N pc pm generation computing

number Best Worst Mean time

50 0.25 0.001 1000 64 67 65.4 23.6 sec
50 0.25 0.001 2000 64 66 64.2∗ ∗46.2 sec
50 0.50 0.100 1000 77 80 78.7 21.5 sec
25 0.25 0.001 1000 66 70 67.2 11.6 sec
75 0.25 0.001 1000 63 67 65.2 34.7 sec

100 0.25 0.001 1000 63 67 64.9 46.2 sec
200 0.25 0.001 1000 61 66 63.4∗ ∗93.2 sec
400 0.25 0.001 1000 63 66 64.0∗ ∗196.0 sec
800 0.25 0.001 1000 62 65 63.4∗ ∗391.8 sec

Finally, we would like to summarize our computational results. In addition
to small sized input data,we have carried out two randomly generated Set
Covering data of size 200 X 500, 640 X 2000 and have got very good near
optimal solutions to each of them. We have tried up to ten input parameters
for each Set Covering data. Ten is a small one because 640 X 2000 input
data uses just 20 seconds for one run of our genetic code with final generation



Chapter V Set Covering Problem and Genetic Algorithm 95

number 1000. We have shown how the performance of our genetic algorithm
improves as we take more care of creating first starting population. Applying
Method 3 for 200 X 500 input data, we have got a 0-1 feasible solution with its
objective function value 19 trying up to ten input parameters.We have applied
LINGO version 3 to the 200 X 500 Set Covering data using Celeron 400 to find
that it was unable to finish its computing in two weeks. We thought that it
would take another two weeks or more. Considering the fact that there exist
some Set Covering data for which there surely exists an optimal 0-1 feasible
solution, yet Branch and Bound type algorithm such as LINGO, LINDO and
MPS/X cannot find even a feasible integer solution in a reasonable amount of
time, we think our results would be useful for decision maker in the real world.
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Figure 5.1: Computational Result 200 × 500
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Figure 5.2: Computational Result 640 × 2000



Chapter 6

Conclusion

6.1 Discussion and Conclusion

In this final Chapter, I would like to overview Planning/Decision-Making Prob-
lems presented in the preceding Chapters.

First, Knapsack problem. Already in 1970s it was well recognized that
Knapsack problem was easily solved to real problem data. We imagined that
the situation was the same for knapsack typed integer programming prob-
lems(K.Iwamura [83](1972)). Its easiness contributed almost half of success
of H.Mukawa, J.Sensui, K.Iwamura and J.Kase[161](1971). Another half of it
was because Capacitated Facilities Location Programming Problem contained
a transportation problem as a subproblem. To solve a transportation problem
is much faster than to solve a general linear programming problem.

We find that S.Martello and P.Toth’s book ,Knapsack Problem, published
in 1990, is a fine one. They treat almost all types of knapsack problems.
But they don’t treat our Knapsack Typed integer programming. They equip
the book with some FORTRAN programs to solve some kinds of Knapsack
problems, although we can’t see whether personal computers other than IBM
PCs can read the programs. Using the terminology of S.Martello and P.Toth,
Knapsack Typed integer programming is called Unbounded Multiple Knap-
sack Problem. Finally it is author’s duty to ask the readers to take notice
that they say that they have some input data of some knapsack typed prob-
lems which they are not able to solve successfully. E.L. Lawler[1979] treated
Approximation Algorithms for Knapsack Problems. See also E.Horowitz and
S.Sahni[1978], K.Iwamura[1981], and R.Weismantel[1992]. We noticed the ex-
istence of Weismantel’s work through Internet. But we were not able to get
the full content of his work. We hope we will get it in the near future.

As for the research activities carried out by other Japanese, I think that
H.Suzuki and K.Iwamura[190](1979), H.Konno and H.Suzuki[116](1982) are

97
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still useful. In 1995, M.Futakawa et al.[43](Max-Min Knapsack Problem) re-
ported that their problem was able to be solved very quickly through their
heuristic algorithm and its error ratio got lesser and lesser down to 0.001 per-
cent as the problem size increased up to ten thousand. This fact was pointed
out already in 1972 by J.G.Lührs[152] for a simple Knapsack Problem. In
1970s researchers thought that knapsack problem was an easy one to devote
ourselves in. In fact, they are still fruitful as the piles of the computational
results in S.Martello and P.Toth[154](1990) show it to us. See also T.-C. Lai,
M.L.Brandeau and S.Chiu[134](1994) and Y.Hayashi[58](1995). Today, we can
say that we will find an optimal / a near optimal solution for a Real-World data
of Knapsack Problems by the Branch and Bound method within a reasonable
amount of time.

When we turn our attention to the Set-Covering and/or Set-Partitioning
problems, we realize they are far beyond our ability, particularly finding an
optimal solution for a real-world data of the Set Covering/Set-Partitioning
problems. Therefore the author thinks it’s beneficial to state an algorithmic
history of discrete optimization and integer programming.

The importance to solve the integer programming problems by computers
were well acknowledged by operations researchers late 1950s (G.B. Dantzig[24]
(1963)). R.E.Gomory’s “Outline of an Algorithm for Integer Solutions to Lin-
ear Programs” appeared in Bull. Amer. Math. Soc. in 1958. Gomory de-
veloped two algorithms to solve general linear integer programming problem.
They are called “Fractional integer programming algorithm” and “ All integer
algorithm”(T.C.Hu[66](1970)). In R.S.Garfinkel and G.L.Nemhauser[46](1972),
they are called “ the method of integer forms ” and “ dual all integer algo-
rithm”. In their book are showed Young’s primal all-integer algorithm, too.
These algorithms are all based on cutting plane methods because they add
a new cutting plane constraint from iteration to iteration. In the early 70s,
the author got a rumor that a cutting plane method generated so many cut
constraints that the algorithms based on it wasn’t able to go further because
of both storage and computing time limit. And so, practitioners thought that
a general algorithm to solve general integer linear programming problem was
useless and helpless. The rumor was in fact a truth. We were able to see it
at page 380 in Garfinkel and Nemhauser[46](1972), although there were some
problems and some problem instances that could be solved within a reasonable
time bound.

Then came a wave of research activities in integer programming(IP) by
the Branch and Bound method. This time, we picked up a specific inte-
ger programming problem such as Knapsack Problem, Travelling Salesman
Problem, Set Covering Problem, Vehicle Routing Problem, Set Partitioning
Problem and so on. We carried out computational experiments of the Set
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Partitioning Problem with three algorithms. The first one is from E.Balas
and M.W.Padberg[8](1972),[9](1975), the second one is from R.S.Garfinkel and
G.L.Nemhauser[45](1969), the third one is from J.F.Pierce and J.S.Lasky[170]
(1973). These were selected on the basis of their algorithmic efficiency , in-
dependently of implementation easiness of their algorithms. Furthermore we
gave every improvement to each of the three with as much programming tech-
niques as we were able to pay. To each problem instance, we applied MPS/X
to compare the efficiency of the three on a fare standpoint. Up to problem size
100 rows and 200 columns, densities varying from 68% to 3.4% every algorithm
was able to get an optimal solution to all problem instances on FACOM 230-
38S except E.Balas and M.W.Padberg’s one. But when we tried 200 rows and
2000 columns problem instance, then MPS/X stopped computing because it
had used up all the external memory. E.Balas and M.W.Padberg’s algorithm
was unsuccessful because it demanded too much memory size for its Column
Generating Procedure. This drawback was also observed by E.Balas’s student
Prof. Gerritssen. The most promising algorithm of J.F.Pierce and J.S.Lasky
continued computing for more than 70 hours, i.e., more than 7days, each day
with 10 hours. Finally we were asked to give up computing by our Univer-
sity Computing Center. So, we re-ran the same problem instance with a new
counter in the program to see how many subproblems it created. It was not a
million but more than a billion. But why so many? This is , still at present,
the computational difficulty every NP-Complete /NP-Hard Problem has. In
this case, we easily saw that even the computations like

z ← z + cj

and
z ← z − cj

were meaningless because single or double floating point numbers mechanism
could not maintain computational accuracy. Declaring z, cj real 8 byte isn’t
safe enough, i.e., one has to keep costs cj and z all in integers. Even if we
had improved the original algorithm so that it should re-calculate objective
function value each time it got a new feasible solution , it was still incapable
of treating an infeasible input problem data. At the worst we hoped that
J.F.Pierce and J.S.Lasky’s algorithm would over-perform the others, but in
fact , it wasn’t true. No algorithm showed such uniform efficiency over the
others. We were heavily shocked that we once more got the same result as in
the case of Travelling Salesman problem, that is to say,Exponential comput-
ing time and its heavy data dependency. In 1977, Garfinkel and Nemhauser
sent us a letter that they had no source program because they had a business
company make an assembler program and so they had no right to send us
a source program list. In their paper, they wrote that they made a source
program in FORTRAN! But we thought they were sincere, anyway they an-
swered us. N. Christofides[22](1974-75) just sent us his new coming book with
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no letter, no source program. In these cases, we offered them our source pro-
gram in exchange for theirs to solve the Set Partitioning Problem. E.Balas
also wrote to us to try some Set Partitioning data of low density, from 1.5%
down to 1%. Surprisingly enough, in Balas and Padberg’ paper “On the set
covering problem: II An algorithm for set partitioning”, Operations Research
23(1975),74-90, there appeared no sentences that their algorithm was devoted
to low density Set Partitioning problem data. We confirmed low density data
3.7% caused density 57% when their algorithm got to the Block Pivoting Pro-
cedure for the enlarged table. Devising a branch and bound algorithm enthusi-
astically to solve a specific IP problem lasted about 15 years. Some researchers
are still searching for good Branch and Bound type algorithm to solve some
NP hard problems for real-world large input data. Recently, M.Shindo and
E.Tomita[186](1988), E.Tomita et al.[193](1996) showed the same sort of dif-
ficulty to find a Maximum Clique with both worst-case time complexity and
experimental evaluations.

Through this kind of hardness in integer programming, researchers have
come to realize the importance of the work of S.A.Cook[23](1971). He has
found the problem classes such as P problems, NP-hard problems, NP complete
problems. NP-hard problems are also called as NP problems. R.M.Karp[110](1972)
then quickly found that lots of discrete planning problems in Operations Re-
search fell in NP complete ones. I noticed this fact in 1978. As for other notions
such as pseudo-polynomial time algorithm, number problem, NP complete in
the strong sense, polynomial time approximation scheme, fully polynomial time
approximation scheme, one can consult M.R.Gary and D.S.Johnson[44](1979).
Research subjects in these branches are called Complexity Theory. They are
still taking efforts to finally solve the P vs. NP problem which is an extremely
important open problem in both Computer Science and Operations Research.

For almost 25 years up to today, there appeared lots of theoretical pa-
pers on the Complexity Theory. As we have just stated in the preceed-
ing, we can see its developments in M.R.Garey and D.S.Johnson[44](1979),
A.V.Aho, J.E.Hopcroft and J.D.Ullman[4](1974) and T.Ibaraki[69](1994). Yet,
at present the author can not think that 1970’s Integer/Combinatorial pro-
gramming problems are completely analyzed and explained through the Tur-
ing Machine based Complexity Theory. But the results of M.Li and P.M.B.
Vitanyi[139](1989), Kobayashi[115](1992) coincide with the computational ex-
periences in the Integer/Combinatorial Programming. They say the following;

There is an input data distribution such that for any algorithm to solve a
specific NP-Complete problem, its mean time complexity and its worst time
complexity are of the same order.

So, there is a room for trying to devise some Non-Turing Machine based
algorithm for NP-hard Integer/Combinatorial Planning Problems. We have
carried out one such project in Chapter 5.
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If we limit ourselves to combinatorial optimization problems which have a
fine structure such as matroid and/or greedoid , then there are some problems
for which we can find a polynomial time algorithm. Minimum Spanning Tree,
Shortest Path, Flows in Network fall all in this class. See, R.S.Garfinkel and
G.L.Nemhauser[46](1972), M.Iri[76][77](1969), M.Iri et al.[80](1986).

So are optimization problems on Submodular Polyhedron/System. See
also K.Iwamura[92][93](1995), S.Fujishige[37](1984), [39](1991). We point out
that the theory of Submodular System can be traced back to the work of
M.Iri[79](1984),[78](1979), [76](1969),[75](1968). There appears the notion of
principal partitioning , some time apparently, some time veiled and unseen,
in the theory of Submodular System. The author would like to say that dual
supermodular polyhedron naturally comes out through principal partitioning
and submodular system’s poset. It’s also noteworthy that a primal-dual type
theorem independent from LP duality is a useful one in combinatorial opti-
mization. To see how Submodular Polyhedron came from network flow, the
reader would be advised to consult M.Iri,S.Fujishige and T.Ooyama[80](1986).
For much more developments of submodular functions, one can have a look at
K.Murota[162](1995), [163](1996)(convexity), S.Fujishige[39](1991)( network
flow) and M.Nakamura[164](1988)(principal partitioning).

The reference book[68](1981) written by T.Ibaraki is one of the best books
that treat structural classification of combinatorial optimization problems from
Dynamic Programming point of view. Dynamic Programming sometimes leads
to a polynomial time algorithm and so it is still important. Particularly se-
quential decision processes(sdp) is very important. S.Iwamoto[81](1987) and
M.Sniedovich[187](1992) will be eye-opening to those who want to know how
powerful Dynamic Programming is. One can catch the heart of the the-
ory through T.Ibaraki[67](1973), too. In K.Iwamura[91](1993), it is revealed
that greedy algorithm over a given greedoid can be captured within a frame-
work of sequential decision processes. And so, the author would like to re-
state here that the notion of greedoid is a very wonderful one . Today,
we can have its whole view in the book written by B.Korte, L.Lovász and
R.Schrader[129](1991).The author believes that greedoidal point of view would
let the researchers in combinatorial optimization have a clear and better un-
derstanding for their problems at hand with efficient algorithms.

Uncertain Programming treats Planning problems under uncertainty. It
has been developed by B.Liu and I. We treat almost all kinds of uncertainty;
probabilistic/stochastic, of fuzziness/possibility, of reliability, of accuracy and
so on. We think we can have much more achievements in this field(Zhao R.,
Iwamura K. and B.Liu[204][205],G.Wang and K.Iwamura[197]).
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After experiencing robust and efficient behavior of the Genetic Algorithm
in Uncertain Programming, we have carefully applied Genetic Algorithm to
the Set Covering Problem. We have succeeded in finding all the optimal solu-
tions for 3 input data of Fushimi and Morohoshi(see, Fushimi[42]). These data
have about 10 % density. We randomly generated two Set Covering input data
density about 10% with row and column size 200 × 500, 640 × 2000. Even for
640 × 2000 input data, our Algorithm have finished 1000 generation computa-
tion within 20 seconds through Celeron 400. We have applied LINGO Version
3 for the 200 × 500 input data. LINGO version 3 has found near optimal value
16 in about 3 minutes and then near optimal value 15 in about 90 minutes.
But it continued computing 14 days, getting its lower bound value 11.0985
and so we judged that it would take another 14 days or more because its first
LP optimal value was 8.67354. LINGO Version 3 iterated 236,430,233 using
36MB in-core memory. So, there might have happened the same problem as we
had reported in Iwamura and Okada[105](1999)(floating point number accu-
racy problem). Our Genetic Algorithm have found near optimal value 19 after
10 trials of 1000generation computation within 5 minutes. This is just 30%
worse than the one LINGO Version 3 had found. There are some Set Covering
input data for which Branch and Bound/Cut Algorithm cannot find even a
feasible solution within a suitable amount of time. So, our Algorithm will be
a nice substitute for such Set Covering input data. Additional computational
experiments tell us it is a robust algorithm. Furthermore our genetic algorithm
doesn’t have floating point accuracy problem at all. In case Branch and Bound
type algorithm cannot find a first feasible solution within a suitable amount of
time, our genetic algorithm can find a near optimal solution if the input data
is feasible. This is a good characteristic of Genetic Algorithm even if quality of
near optimal solutions is not guaranteed. Yet, it isn’t so bad. Therefore Our
Genetic Algorithm with Branch and Bound type Algorithm would be strong
means for practitioners who want to solve the Set Covering problem in the real
world(K.Iwamura, T.Sibahara, M.Fushimi and H. Morohoshi[106], [107]).

We have carried out a systematic computational study of the algorithm to
show its efficiency(N.Okada, K.Iwamura and Y.Deguchi[167]), where we have
made a computational comparison between the algorithm and the commercial
software code LINGO 4 concerning approximation ratio and computing time.
Through it, We can say that although our Genetic Algorithm cannot find
an optimal solution of the Set Covering problem, it can find an approximate
solution whose values are within about 30% worse of the objective function
value LINGO 4 finds. The greater the number of the integer variables of
the Set Covering problem, the easier can our GA find a good approximation
solution and so, more practical becomes our GA.

We have further investigated input data dependency of our Genetic Algo-
rithm, i.e.,dependency on costs and dependency on density(K.Iwamura, M.Horiike
and T. Sibahara[97]). We have found that although our Genetic Algorithm still
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cannot find an optimal solution of the Set Covering problem, for size 999×999
input data, it can find approximate solutions whose objective function val-
ues are, this time, within about 8% worse than the objective function values
LINGO 4 finds. We have found that for input problem data with density more
than or equal to 3%, our GA still keeps its practicality both in computing time
and approximation ratio. We have got two new computational results for our
GA and LINGO 4. Fist one is that we get a Set Covering input data 999×999
density 10% for which LINGO 4 is not able to find a first feasible solution in
one hour and twelve minutes, where we have used Gateway Select 800(Athlon
800 MHz). Second one is that for four input data sets 999× 999 with density
1%, LINGO 4 has defeated our GA. So, we have carried out another computa-
tional experiment to see whether this phenomenon still holds for much bigger
input data sets, say 2500×2500 density 2%, 1.5%, 1%, 0.7%, 0.5%, 0.2% and so
on.We will report it in the near future.

We see that in the U.S. lots of research activities on the Set Covering
and Set Partitioning problems have been carried out. In their papers , be-
sides Set Covering/Set partitioning problems they treat several other prob-
lems of Airline Scheduling. The interested readers are advised to see Vasquez-
Marquez[196](1991),Anbil et al.[5](1991), K.L.Hoffman and M.Padberg[63](1993),
R.E.Bixby and E.K.Lee[12](1998), R.Borndoerfer[15]([1998]), E.R.Butchers et
al.[17](2001).

In May 2001, E.Gunji et al.[57] have published “A Randomized and Genetic
Hybrid Algorithm for the Traveling Salesman Problem” in Japanese. In it, they
have carried out computational experiment for seven Traveling Salesman input
data taken from a set of benchmark test input data. Their hybrid algorithm
shows approximation ratios 0.78% at the worst. See also Y.Ymamoto and
M.Kubo[201](1997). The readers who are interested in Parallel Branch and
Bound are welcomed to see Y.Shinano[185](2000). M.X.Goemans and D.P.
Williamson[52](1994) gave a probabilistic argument to create 0.878-Approximation
Algorithm for MAX CUT and MAX 2SAT, which once more shows us the im-
portance of probabilistic/statistic/randomized algorithms to solve the basic
planning problems in Operations Research.
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