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Pion photoproduction and yN<>4 amplitudes

Satoshi Nozawa*

Abstract
We review a dynamical model for the pion photoproduction on the
nucleon. With the model, we explore sensitivities of observables to the E2
multipole amplitude in the yN< 4 transition. It will be demonstrated that
the cross section with polarized photons has a significant sensitivity to the

E2 amplitude.
1. Introduction

Study of the M1 and E2 amplitudes of the y/N<>4 transition has been done by many
authors both experimentally and theoretically. It has been known that the tensor interac-
tion between quarks gives the D-state admixture in the predominant S-state wave func-
tions of the nucleon and the 4. Non-vanishing E2 amplitude is one of the signals of the
D-state admixture. Therefore it is extremely important to determine the size of the E2
amplitude 1in order to test quark model predictions. However, it is extremely difficult to
determine the E2 amplitude accurately. The main reason is that the E2 amplitude is very
small compared with the predominant M1 amplitude. Second, a model dependence is un-
avoidable in separating the background amplitude to extract the resonance amplitude. In
this paper, we would like to address two questions. (i) What is model dependent and
what is model independent ? (11) What is the most sensitive observable to the E2 ampli-
tude ? In section 2, we derive the Watson theorem. A dynamical model of Nozawa Blan-
kleider Lee (the NBL model) will be introduced in section 3. Numerical results for the
M1 and E2 amplitudes will be presented in section 4. In section 5, the E2/M1 sensitivity

will be explored with polarized photon cross sections.
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2. The Watson Theorem

Let us first derive the Watson theorem, It requires (1) the unitarity of the S-matrix
and (11) the time-reversal invariance of the T-matrix. The unitarity condition for each
partial wave implies

SISt =1, (1)
where [ = Ly, denotes the partial wave (Pw, etc.) and [ is the unit matrix. The T-matrix
is defined by

St=1-2mipT", (2)

where o is the phase space factor, and S'and 7" are

gio (sfm si,) e (t’m tL) )
St S/ -
Here nz, 7y, y7m and 77 denote zN — nN, N — yN, yN — zlN and yN — 7N, respectively.
Inserting egs. (2) and (3) into eq. (1), one obtains four coupled equations. The relevant
piece for the photoproduction is
th, —to, = = 2miO(to by, + L)), (4)
Assuming the time-reversal invariance of the T-matrix, i.e. t,, =t.. and dropping the sec-
ond term of RHS which is suppressed by a factor a(:ié—7>’ eq. (4) is simplified.
t.= (1~ 2miptl, )t == t,. (5)
Multiplying ¢, to eq. (5), one finally obtains the statement of the Watson theorem.
te =t le™. (6)
Namely, the pion photoproduction amplitude has the same phase e®* as the 7N scatter-
ing. It is important to note that the Watson theorem is model independent.
Let us now consider a case that the amplitude contains resonance (R) and back-
ground (B) components, for example, Ps, The T-matrices are decomposed into
bee = U0 LD (7.2)
b=ty (7.b)
Note that superscript [ has been dropped in eq. (7). Inserting eq. (7) into eq. (4), one
finds that the background amplitude is unitary, whereas the resonance amplitude is not.

The background amplitude is expressed by

2 =1t8

7T

el(?u R (8)

where 05 1s the background z/N phase shift. Now, question is how to unitarize RHS of eq.
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(7.b). In fact, the unitarization method is not unique. For example, Olsson® introduced
the following method. (i) First assume that the resonance amplitude is modified by a

multiplicative phase factor ¢”, i.e.

gt _M)’td

et e, (9)
where .. is the unitary J-resonance amplitude. (ii) Then impose the Watson theorem to
determine ¢. This implies the following condition.

[l = 12 |00 1 |2 o (10)

where Ops 1s the Py zN phase shift. The parameter ¢ is determined as follows.
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sin ¢ = sin (8pw— 6p) (11.a)

Sin(&’ag +¢— 513)

{tml = lt”‘ sin(Spy — 6)

(11.b)

Note that |¢2] in eq. (11) is in general |t/ as shown in Refs. 3 and 4. It is important to
note that eq. (11) has been derived with the assumption of eq. (9). We will compare this

unitarization method with the coupled channel approach in the next section.

3. The NBL Model

We will briefly describe a dynamical model of Nozawa, Blankleider and Lee®, There
exists other dynamical models by Tanabe and Ohta® and by Yang® which were con-
structed in the same spirit. The model starts with the coupled channel Lippmann-
Schwinger equation.

T=V+TGV, (12)

where G, is a free 7N propagator. The potential V is given by

=) a
Inserting egs. (3) and (13) into eq. (12), one obtains the following equations.
tr = Use + Lz GoUse. (14.2)
be = Uyt Loz GoUsa. (14.b)
bty = Uy 1 Goyar. (14.c)

In deriving eq. (14), we have dropped terms suppressed by a factor a. Solving the
integral equation of eq. (14.a) for a given v.., one obtains t... Inserting this into eq.

(14.b) and integrating over intermediate 7N states, the pion photoproduction ¢, matrix
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is obtained. Similarly, the Compton scattering T-matrix is derived by eq. (14.c).

Let us now consider the Py partial wave. The amplitude is decomposed into
resonance and background components as shown in eq. (7). The background £, matrix
satisfies

ty. = v+t Govf,. (15)
It is therefore separately unitary (see eq. (8)). Furthermore the resonance amplitude £
has two components.
b=ttt (16)
The first term ty is the unitary d-amplitude, i.e.
e = |5l e, an
It should be emphasized that that the yINJ-vertex has the bare coupling constants Gy and
Gy, whereas the the zNd-vertex and the d-propagator are all dressed. The second term
/¥ is the rescattering amplitude which gives dressing of the yNd-vertex. We call it the
vertex renormalization (VR) amplitude. Equation (7.b) now becomes
=t A+t . (18)
It 1s important to note that eq. (18) is a general consequence of the present approach
based on the coupled channel Lippmann-Schwinger equation. Comparing eq. (18) with
RHS of eq. (10), it is clear that ¢, is the dynamical origin of the parameter ¢ introduced
in Olsson’s unitarization method. It should be noted that the additive ¢, amplitude modi-
fies the d-amplitude, whereas a multiplicative phase ¢ does in eq. (10). In the coupled
channel approach, the unitarity is guaranteed by the .. term. The parameter ¢ is no
longer necessary. However, this approach requires the knowledge of the half-off-shell t..
matrix, where the model dependence does come in.

The construction of the NBL model is as follows. (1) The model assumes separable
forms for the zN potential v.., This has an advantage that the integral equation (14.a)
can be solved analytically and therefore the zN T-matrix t.. has the analytic form. For P,
and Py partial waves, the potential consists from resonance and background terms,
whereas other partial waves are parameterized in terms of 2-term separable potentials.
All parameters in thepotential are fix by fitting 7N phase shift data up to the pion kinetic
energy Eu., =500 MeV. (i1) The pion photoproduction potential v, is the Born amplitude
with the pseudovector zN Lagrangian plus p- and w-exchange diagrams. It should be

noted that the model satisfies the gauge invariance. The yN4d-vertex has two coupling

constants for the real photon case, 1.e. Gy and Gz, They are called the magnetic dipole
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(M1) and the electric quadrupole (E2) coupling constants, respectively. In the NBL model,
they are treated as free parameters. The model has the third parameter A by introduc-

ing a cut-off form factor

Fcut(k):m% (19)

in eq. (14.b) in order to make the integral over the momentum & converge.
4. M1 and E2 Amplitudes

The three parameters Gu, Gz and A are determined by the following manner. For a
given /A, we determine Gy and Gg to give a best fit to the M1 and E2 amplitudes. We
obtained the following results. (i) For A=350 MeV/c, G»=2.80 and G»=0.05. (ii) For
A=650 MeV/c, Gy=2.28 and G:=0.07. (111) For A=900 MeV/c, G»x=2.30 and Gz=0.08. The
ratios of the E2 and M1 amplitudes correspond to (1) E2/M1=-1.8%, (ii) E2/M1=-3.1%
and (i11) E2/M1=-3.5%, respectively. These three cases give equally good fit to the M1
and E2 amplitudes. However, the case (i1) was found to give an over-all best agreement
for differential cross section data. In Fig. 1, we display the result of the M1 and E2
multipoles for the case (11) E2/M1=-3.1%.

The solid curve is the full amplitude ¢,.. The dashed curve, dot-dashed curve and

VR

dot-dot-dashed curve are extractions of the ., to and t. +t. amplitudes, respectively.

The circle, triangle and square correspond to the result of the multipole analyses by
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Fig.1 M1l and E2 multipole amplitudes
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Refs. 7, 8 and 9, respectively. The background amplitude t7 has a smooth energy depen-
dence as expected. The values of t2, agree with the result of Refs. 12 and 13 in Ref. 10.
The background amplitude is significantly large for the E2 amplitude. The resonance-

like energy dependence of the dot-dot-dashed curve is due to the vertex renormalization

VR
Tt

amplitude ¢

Let us now compare the obtained result E2/M1=-3.1%® with the literature. The
values are E2/M1=—(0.59%£1.01)% to —(2.25£1.02)% "V, —(1.5%£0.72)9% 19, —49%©® 09?
and +49%“. The following comment should be noted. The K-matrix formalism was used
in Ref. 11. Although the K-matrix K. contains a background contribution, the resulted
T-matrix t.. contains no background ¢” . According to these E2/M1 values, it is clear that
there is a significant model dependence the extraction. This might be due to the follow-
ing reasons. (i) Different unitarization methods used. As mentioned earlier, Refs. 5 and
10 gave a similar background ¢, contribution. Therefore the difference must come from
t%, namely due to different unitarization methods. Olsson’s method and its variations
were used in Refs. 3 and 10—12, whereas the coupled channel method with dynamical
models was used in Refs. 4—6. It is also evident that there is a significant model depen-
dence among the dynamical models?®®_ (ii) This will be probably due to different half-
off-shell 7N T-matrices. As far as the present situation is concerned, all we can say

about the E2/M1 ratio is that it is small, a few percent with probably a negative sign.

5. Sensitivity of the E2 Amplitude

Various predictions of the NBL model for differential cross sections and asymme-
tries have been given in Ref. 5. In this paper, special attention will be payed to the differ-
ential cross sections for unpolarized photons (Ou.), for photons polarized parallel to the
production plane (0.) and for photons polarized perpendicular to the production plane
(0.), Here Oup 1s the average of 0. and .. Note that the cross sections Ouya, 0. and 0.
become identical at =0 and 7, where they are equally sensitive to the E2 amplitude.
However, it i1s difficult to detect pions at the forward and backward angles and no data
are presently available there. We therefore study the cross sections near 6’2—75—, which is
preferred experimentally.

Keeping S, P and D-wave multipoles, one can write the cross sections at 9:% as
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_ k 2 2
*&Q——”Zq“EO'_D'} +|P. 1"} (20.a)
w(3) 4
—dg—:‘@{iEo:—DnVﬂRV}, (20.b)

where £ and w, are the pion momentum and the photon energy in the CM system. In
eq. (20), E,. is the S-wave amplitude, and P. and P.-are P-wave amplitudes given by
P.=2M, +M, and P.=3E,. —M,. + M, .. Similarly, D. and D. are D-wave amplitudes. It is
evident that at 6’=—72T—, 0. has a maximum sensitivity to E2, whereas ¢. has no sensitivity.
We define R. by the ratio of the cross sections with and without the resonance E2 ampli-
tude. Here a denotes unpol, L and Il. The numerical results for R. are shown in Fig. 2.
For E2/M1=-3.1%, R, is increased by 15% at 9:%, whereas Ruw and R. have much

smaller effects. The measurement of 0. will be therefore a sensitive observable of the

resonance E2 amplitude.
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Fig. 2 Calculated ratios R:, R, and Runpa at £,=350 MeV

In summary, we have reviewed the coupled channel method with a dynamical model
of the pion photoproduction. A detailed comparison has been made between the coupled
channel approach and Olsson’s unitarization method. A sensitivity study has been also

made for the E2 amplitude using cross sections with polarized photons.
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