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1 Quadratic rational maps

1.1 Moduli space of quadratic rational maps

Let C he the Riemann sphete and Raty(C) the space of all quadratic rational
maps from C to itself. The group PSLy(C) of Mohius transformations acts on the
space Rat,(C) by conjugation,

go f Og"1 € R.atz(C) for g€ PSLQ(C), f € R&EQ(_C).

Two maps fi, f» € Raty(C) are holomorphically conjugate, denoted by fi ~ fo,
if and only if there exists g € PSLy(C) with go f; 0g™! = f,. The quotient space of
Rat,(C) under this action will be denoted by M»(C), and called the moduli space
of holomorphic conjugacy classes (f) of quadratic rational maps f.

Milnor introduced in [Mil92] coordinates in My(C) as follows; for cach f €
Raty(C), let 2y, 29, 23 be the fixed points of f and p; the multipliers of z; u; =
fi(z) (1 < i < 3). Consider the elementary symmetric functions of the three

multipliers,

01 = [y + Jig + [t3, T2 = [ifle + [oft3 + pi3ply, 03 = [iflafl3.
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These three multipliers determine f up to holomorphic conjugacy, and are subject
ouly to the restriction that

03‘—‘0’1-—2.

Hence the moduli space My(C) is canonically isomorphic to C? with coordinates
oy and 0, (Lemma 3.1 in [Mil92]).

By an automorphism of a quadratic rational map f, we will mean g € PSLy(C)
which commutes with f. The collection Aut(f) of all automorphisms of f forms a
finite group. It is clear that Aut(f) is isomorphic to Aut(f) for any f € (f).

The set

S ={(f); Aut(f) is non-trivial} C My(C)

is called the symmetry locus.

For each p € C let Per,(u) be the set of all conjugacy classes (f) of maps f
which having a periodic point of period n and multiplier .
Each of Pery (i) and Perg(p) forms a straight lines as follows:

Pery(p) = {(f) € Ma(C)sor=(p+p o = (4 +2p7")}
Pery(i) = {(f) € Ma(C);00 = =201 + i},

(Lemmas 3.4 and 3.6 in [Mil92}).

Proposition 1 The symmetry locus S is defined by an irreducible algebraic curve
in My(C) as follows;

S(o1,09) = 203 + 0%02 - (7% - 40% — 80109 + 1201 + 1209 — 36 = 0. (1)
We give an proof in [FN], [FN2].

Corollary 1 T he symmetry locus S is the envelope of the family of the lines
Pery ().

Milnor describes the curve (1) implicitly (compare Figure 15 in [Mil92]). Here

we can give a defining equation (1) of this cubic curve.
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1.2 Real moduli space

Let Raty(R) be the set of real quadratic rational maps. Then the parameters
o; (1 < i < 3) are all real, because the three fixed points and the correspond-
ing multipliers are either all real or one real and a pair of complex conjugate
numbers. According to J. Milnor, we define the real moduli space My(R) for
Raty(R) to be simply the real (0, 09)-plane. This notation needs some care when
used: if we put Sg = S N My(R), and denote by ( )y the real conjugacy class,
then (Raty(R)/PSLo(R)) \ {(a(z + 1)) g - (alx = 1)) g}, cgx is canonically iso-
morphic to RQ\SR, whereas there is a canonical two-to-one correspondence between
{<a($ + é)>}aERx and SR.

2 A quadratic rational family with non-monotone
bifurcations

let {fx}a be a one-parameter family of discrete dynamical systems on R where A
is an interval of R. As the parameter increased, a parameter value )¢ is called
orbit creating if, at Ay, new periodic orbits are created and no periodic orbits are
annihilated; A is called orbit annihilating if periodic orbits are annihilated and
no new periodic orbits are created; Ag is called neutral if no periodic orbits are
annihilated and no periodic orbits are created.

Y ’
""""""
s s
°® %o
°
oooo
®

--------

--------

°
o, o®
o, °®
v ®
2, o?
° 0t
.....

Figure 3: Regular period-doubling (-halving) bifurcations and irregular period-
doubling (-halving) bifurcations.

A family {f,} is said to be monotone increasing (resp. decreasing) if every
parameter value in A is neutral or orbit creating (resp. annihilating). A family {fy}4
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is called non-monotone if A contains both orbit creating and orbit annihilating
parameter values.

Note that the sign of Schwarzian derivative Sf = f"()/ f'(z) -5 (f"(z)/ f(x))
determines the type of local bifurcation: For a family of maps with negative Schwarzian
derivative, a period-doubling bifurcation necessarily involves only an attracting (reg-
ular) orbit of period two, and not the reverse one which involves a repelling (irreg-
ular) orbit of period two ([?]). See Figure 3.

Now, we investigate the dynamics of a certain real 2-parameter family given by
M. Bier and T. C. Bountis [BB84] and rewritten by H. E. Nusse and J. A. Yorke
(INY88]):

T
mpelL)=m\T+ )} .
{f ’ ( ) ( 1+ z? (m,r)GRQ

We note that quadratic rational maps have negative Schwarzian derivatives.
Hence, only regular period-doubling (or -halving) bifurcations may occur in this
family.

Since the maps f,,, and f,, . are conjugate to each other for any r, it suffices
to consider the case r > 0.

Since My(C) is isomorphic to C? with coordinate o; and o9, there is a natural
compactification My(C) = CP2, consisting of My(C) together with a 2-sphere
of ideal points at infinity. Elements of this 2-sphere can be thought as limits of
quadratic rational maps which degenerate towards a fractional linear or constant
map ( [Mil92]). Therefore for the case m = 0 of this family f,, ., it makes sense that
we should consider it as a degenerated limit.

Theorem 1 In My(R)R, the one parameter family {fn.(z)},, for each fixed

m

r (r > 0) lies exactly on an irreducible algebraic curve:
For r # %, 0, this curve is of degree 4 defied by the equation

Hy(oy,09) = —roy+ (81 = 2)a} + (8 — 1)op — 128r* + 8* + 1)0?
+((=32r% + 8) + 5121* — 96r% — 12)0 + (—167% + 4)03
+(512r* — 9672 — 12)0y — 40967° 4 15367 — 1447 + 36 = 0. (2)

Forr= %—, the corresponding curve is of degree 3, i.e.,

Hi(o1,09) = =03 — 207 + (409 — 24)01 + 803 — 64 = 0. (3)
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For r = 0, the corresponding curve is also of degree 3, i.e.,
Hy(o1,09) = 20‘:15 + 0%02 - Uf - 403 — 80109 + 120 + 1209 — 36 = 0. (4)

Proof. The three fixed points 21, 29, 23 of f,, are the roots of the equation

2 —mrz? +(1-m)z~mr =0,

ie.,
21 + 29 -+ 23 = mr,
2129 + 2923 + 2321 = 1- m,
212923 = M.

The multiplier p; of each fixed point z; is given by

22 -1

fllz)=pm= 772m (1=1,2,3).

By using ”Grobner basis of Risa/Asir, Symbolic and algebraic computation
system by FUJITSU, we can obtain the coordinates o1(= p1 + 1o + p3) and oq(=
ft1ptg + folis + pape) as functions of m and r:

dm*rt—m? + (o1 +2)m -4 =0 .
{ —4mirt + (m* — 12m3 — 8m?)r? 4 2m® + (09 — 5)m? +4m — 4 =0. (5)
Using ” Grébner basis again, we can remove m from (5) for each fixed r,and get the
defining equation (2). We can check easily that (2)is irreducible if and only if r # £,
from which follows the first and the last cases. In the case of 7 = Z, substituting
r =3 in (5) directory, then we obtain (3), which is clearly irreducible.

Conversely, to see any point on the curve H.(oy,09) = 0 comes from an f,,, for
some m, observe carefully the process that m is removed from (5). Thus we can
see that, except for finite number of points which annihilates the leading coefficients
of some polynomial in m appearing in the course of the procedure, every point on
the curve corresponds to an f,, , for some m. Then so does any point on the whole

curve due to the continuity of the solution of (5), when regarded as equation of m.
|

Remark 1~ The equation of ¢y in (5) is obtained by the following Program 2,
which is suggested us by Takeshi Shimoyama, advaced researcher of ISIS, FUJITSU
LABORATORIES LTD.
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- Program 2 N
if (vtype(gr)!=3) load("gr")$$
extern Ord$
def moduliS1()
{
Si=nm(m*((z1°2-1)/(z1"2+1)"2
+(22°2-1)/(z2°2+1)"2+(23°2-1) /(2372+1) "2)-s1) ;
X=z1+z2+23-m*r;
Y=z1%z2+z2%z3+23*z1~1+m;
Z=z1%z2%z3-m*r;
Ord=2;
G=gr([s1,X,Y,2],[z1,22,z3,m,r,s81]);
for (I=length(G)-1;I>=0;I--){
E=G[I];
if (vars(E)==[r,m,s1])
break;
}
return E;
}
end$
. J

To say superfluously, the required equation (2) is obtained from following com-
mand of Risa/Asir.

Command of Risa/Asir

gr ([4+m™2%r"2-m"2+(s1+2) *m-4-4*m~4*1"4,
+(m~4-12#m"~3-8*m"2) *r~2+2*m" 3+ (82-5) *m~2+4*m-4] , [m,r]) ;
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Figure 4: Non-monotone bifur- Figure 5: Algebraic curve of degree

cation; =250 < m < 4 and cubic curve in the moduli
50, =30 <z < 10, r = space. In the case of r = 0.54.
0.54.

)

Figure 6: Period-bubbling bifurca- Figure 7: Algebraic curves of degree

tion: -100<m<1, =-2< 4 in the “classified” moduli space.

z < 0.2, Parameter r = 0.58. Thick curve corresponds with r =
0.58, thin curve corresponds with
r=0.7.
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Example 1 ~ Non-monotone bifurcation can occur at r = 0.54, See Figure 4. And
its charasteristic curve is Figure 5.

We can analyze the non-monotone bifurcation by overwriting the algebraic curve
of degree 4 on the M,y(R).

Example 2 One parameter family {f., 053} has non-monotone (period-bubbling)
bifurcation. See Figure 6.

In Figure 7, the thick line indicates this family, and the gray belt is the region
on which each map has attracting period 2 cycle. When algebraic curve of degree 4
through this gray belt, period-doubling bifurcation occurs. In this case, the curve
intersects the gray belt (period-doubling occurs) and intersects again the period
1 region (period-halving occurs). Hence period-bubbling bifurcation occurs, as in
Figure 6.

Theorem 2  For a fixed parameter r, there are following three possibilities;
1. various bifurcations occur if 0 < r < %,
2. non-monotone bifurcations occur if 5 <1 < 3?, or
3. any bifurcation can’t occur if —3—%3 <r.

A’oof is given in ([FN] and [FN2]).
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