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Abstract. In this paper we give an answer and a correction by a more elementary
method to the inverse problem stated in [2]. This method naturally leads us to concrete
information about the moduli space of the polynomial maps of degree 4: for example, a
defining equation of the singular part, called symmetry locus is obtained directly.

1. Introduction

Doing the same as the case of cubic polynomials (see [4]), we discussed about the
geometry and topology of the polynomial maps of degree n ([2]). In this paper, we restrict
our study to the case of degree 4, and supplement some results by a more elementary
method than by one stated in Section 4.4 of [2].

We depend our calculations mainly on “Grobner basis”of Risa/Asir, an experimental
computer algebra system developed at FUJITSU LABORATORIES LIMITED.

First we must prepare some notations.

Let Poly,(C) be the space of all polynomial maps of degree 4 from C to itself. The
group 2A(C) of all affine transformations acts on Poly,(C) by conjugation:

gopog~t € Poly,(C) for geA(C), p € Poly,(C).

Two maps p1,p2 € Poly,(C) are holomorphically conjugate, denoted by p; ~ pa, if

1

and only if there exists g € 2(C) with g o p; 0 g7! = ps. The quotient space of Poly,(C)
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under this action will be denoted by M4(C), and called the moduli space of holomorphic
conjugacy classes (p).

Let P1(4) be an affine space of all monic centered polynomials of degree 4 with coordi-
nate (co, c1,C2):

p(z) = 2* + 2% +e12t + .

Under conjugacy of the action of 2(C), we can take an element p of P;(4) as a represen-
tative of a class (p). We note that p is determined up to the action of the group G(3)
of cubic roots of unity, where each n € G(3) acts on p € Poly,(C) by the transformation
p(z) = p(nz)/n. Therefore the following three monic and centered polynomials belong to
the same conjugacy class:

2 +az?+bz+c

24+ awz? + bz + cw?

24+ aw?2? + bz + cw
where w is a cubic root of unity.

We have a three-to-one canonical projection
D Pi(4) — My(C).

Thus we can use P1(4) or {(cp,c1,c2)} as coordinates, called coefficients’ coordinates for
M4(C) though there remains the ambiguity up to the group G(3). On the other hand, we
intended to introduce other coordinate, called multipliers’ coordinates, in M4(C) which is
“smaller” than P1(4) ([5]) ([2]): for each p(z) € Poly,(C), let z1, -+, 24, 25(= 00) be the
fixed points of p and p; the multipliers of z;; p; = p'(2;) (1 <14 < 4), and pus = 0. Consider

the elementary symmetric functions in the four multipliers,

o1 = {1+ po + 43+ pa,

Op = pijo + i3 + pijes + pop3 + pople + U3k
03 = piflopts + papofia + H1p3 e -+ o3 g,

04 = [yfhopb3ilg

0520.

Note that these are well-defined on the moduli space M, (C), since u;’s are invariant by

affine conjugacy. Applying the Fatou index theorem, we have a linear relation ([5]):

4 — 301+ 209 — o3 =0. (1)
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Let X(4) be an affine space with coordinates (o1, 02, 04), so-called multipliers’ coordinates.

We have a natural projection:

T : My(C) — (4).

2. Inverse Problem

To serve £(4) as good coordinates of M4(C), we must investigate that the composition
map ¥ o @ is surjective or not. In this section, we shall give an answer to this problem via
the following Proposition. This method is simpler and more clear than one shown in [2].

And we coorect a statement in Section 4.4 of [2].

Proposition 1
(transformation formula) Between the spaces P1(4) = {z* + c22% + c12 + ¢}, and $(4) =

{(o1,02,04)}, there is a following transformation formula:

o1 = —8c; +12 : (2)
o9 = 4¢3 — 16coco + 18¢% — 60cy + 48 (3)
o4 = 16c0c§ + (—~4c§ + 8cl)c% — 1280(2)03 + (144coc% — 288cpcy + 128¢g)c2

—27¢} + 108¢ — 144¢% + 64ey + 256¢5. (4)

Proof. Let p be p(z) = 2% + ca2? + c12 + ¢ and four finite fixed points z; (0 < i < 3).
By computing the symmetric function in four multipliers p; = p'(%;) (0 <1 < 3), we get
the relation (2),(3),(4). ' i

The practical procedures on using symbolic and algebraic computation systems are

based on Grobner basis with respect to lexical order,
m0>mi>m2>m3>z0>z1>z2>23>s4>s2>s1>c2>c1>c0.

We can get the o; (0 <4 < 3) as the function in ¢; (0 <4 < 2) variables.

We remark that by this procedure, eleven Grobner basis are obtained but only three of
them correspond to the transformation formula.

Now, we shall give a complete answer of the “inverse problem”. Namely, for any
(01,02,04) given, there exists (co,c1,c2) satisfying the transformation formula or not. A
proof given below is more elementary than one stated in [2]. The result of the following

proposition is due to the referee.
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Proposition 2
The composition

Tod : Py(d) — S(4)

is not surjective: this map has no inverse image for any point on the curves £, except the

only one point (4,6,1):

S

E: o = 4,

oy = %(0%—80;y+16)

Proof. Fix a point (01,09,04) € £(4). The following equation is obtained by substituting

the equation (2) to (3) of transformation formula:

9 3 3
4¢3 — 16cocg = —02 — 5-2-0% —301ts5 (5)
Let V be the value of the right hand of the relation (5):
1
V = = (~3202 + 90? + 2407 — 48) (6)

First we start the case of V = 0. We put ¢; = Q'Sl‘-’l and cp = 0. Then ¢g is a one of

the solutions of the equation given by (4):
1048576¢5 — 409604 — 2707 + 43205 — 14400% + 179207 — 768 = 0.

Second, we assume that V s 0. From the relation (5), we have c; # 0. Therefore

dividing (3) by ¢z, and substituting it into (4) we obtain the following equation:
A+ B +C=0 (7)

where

A = 262144(0; — 4)?,
B = 1024(1280% + (—1440% + 38407 — 256)05 — 51204 + 2705 — 57607 + 12800, — 768),
C = — (3209 — 90% ~ 2407 + 48)3.

Now we note that C = (32V)% # 0.

Here, we make sure easily that the above equation (7) have solution(s) cs in cases
where A ¢ 0 or B # 0. Suppose, A = 0 and B = 0, equivalently that o1 = 4 and
o4 = (0% — 802 + 16)/4. We denote this curve on the plane oy = 4 by .

Substituting these conditions into the transformation formula, we have a new relation

4co — c3 = 0 by using Risa/Asir. Practical procedures are given in the boxed item (inverse
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problem). As this relation is a factor of the left hand of the equation (5), it contradicts
to the condition C # 0. Hence for this case: A = 0 ,B = 0 and C = (32V)3 # 0,
corresponding solutions cp and ¢y can not exist.

We remark that for the case: A =0, B =0 and C = (32V)® = 0; namely (4,6,1) €
¥(4), there are infinitely many inverse solutions.

Therefore the equation (7) has solution(s) ¢y for any point in 3(4) except the curve
&\ (4,6,1).

Once there exists ¢z, substituting these ¢ to (3), ¢o is also obtained. The parameter ¢;
depends only on o1. Now, ¢p, ¢1, ¢2 are the coefficients of a monic and centered polynomial,
therefore we can calculate fixed points, multipliers and its elementary symmetric functions
from these coefficients. We remark that these elementary symmetric functions return to
the initial values oy, 02, 04.

For example, polynomials with degree 4 do not correspond to points (4,0.4), (4,4,0) €
E.

2.1. real inverse problem

Now we consider “real inverse problem”, namely for any (o1,02,04) € R? given,
whether there exists (co, c1,¢2) € R® satisfying the transformation formula or not.

Let Poly,(R) be the set of real polynomials of degree 4. Then we note that the param-
eters o; (1 <7 <4) are all real.

Fix any (01,02,04) € Rg, For the case V = 0 it is clear from a proof above that there
exists (co,c1,c2) € R

In the case of V # 0, put ¢§ = t. If the discriminant D = B? — 4AC of the quadratic
equation (7) of ¢ is negative, then the roots are not real numbers .

Here,

D = 5403 — 27(309 + 04 + 5)0f + 36(02 — 4oz — 28)0% + 4(—03 + 9003 + (3604 + T44) 09
+1440y + 1048)0? + 32(—503 — 6802 + (—1204 — 200)0y — 4004 — 168)0,

+16(03 + 2805 + (—804 + 136)0% + (1604 + 240)02 + 16073 + 4804 + 144)

Therefore, for oy << —1 this discriminant is negative and ¢, € C\R. Hence we conclude
that for suitable (01, 09,04) € Rg, we can not find a real polynomial corresponding to this
coordinate.

See a boxed item named (real inverse problem).



6 Proceedings of the Risa Consortium 1997

-~ Procedure for computing (by Risa/Asir):(inverse problem) practical procedure No.1 ~

[0] S1=-8*c1-s1+12$

[1] S2=-4%c2"3+16+cO*c2-18%c1"2+60%c1+s2-488

[2] S4=16%cO*c2 4+ (~4%c1™2+8%c1)*c2"3-128%c0™2%c2 2+

(144%c0%c172-288*c0*c1+128*c0) %c2-27*c1"4+108*c1"3
~144%c1"2+64%c1+256%c0"3-s4%

%k if c2 1= 0

[3] Ctmpl=subst(84,c0, (-18%c1"2+60*c1-4*c2"3+52-48)/(-16%c2))$

[4] Ctmp2=nm(red(Ctmp1))$

[8] Ctmp3=subst(Ctmp2,cl,(12-s1)/8)$

[9] fctr(Ctmp3);
[[1/524288,1], [-729%s1"6-5832%s1"5
+(~27648%c2"3+7776%52-3888) *s1"4+(41472%52+48384) xs1"3
+(~262144%c276+(147456%s2+589824) *c2"3-27648%s2"2
-27648%s2+20736) *s1~2+(2097152%c2"6+(~-393216*s2-1310720) *c2"3
-73728%s272-221184%52-165888) *s1-4194304%c2"6
+(-131072%s8272+262144*s2+524288*s4+786432) #c2"3+32768%s2"3
+147456%s272+221184*s2+110592,1]1

[10] CC=car(car(cdr(e@)))$

[12] fctr(coef(CC,6,c2));
[[-262144,1], [s1-4,2]1]

[15] fctr(coef(CC,3,c2));
[[1024,1], [-27*s1"4+(144+s2+576)*s1"2
+(-384%s52-1280) #s1-128*s2"2+256%s52+512*s4+768,1]]

[16] fctr(coef(CC,2,c2));
[[0,111

[17] fctr(coef(CC,1,c2));
[[0,1]]

[18] fctr(coef(CC,0,c2));
[[1,1],[-9%s172-24%51+32%s2+48,3] ]
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[21] fctr(subst(coef (CC,3,¢2),51,4));
[[131072,1],
[-82"2+8*s2+4%*s4-16,1]]
%% Hence, if coef(CC,6,c2)=0 and coef(CC,3,c2)=0
%% then si=4 and s4=(s2"2-8%s2+16)/4..... (*)
%% Since si1=4 <=> ci=1.
[22] SF2=subst(82,cl1,1);
-4%c2"3+16%c0*c2+s2-6
[23] SF4=subst(S4,c1,1);
16%c0*c274+4%c273-128%c0"2%c272-16%c0*c2+256%c0~3-s4+1
%% substitute these two relation to (x)
[24] fctr((-(~4%c273+16*%c0%c2-6)) "2-8* (= (-4+c2"3+16*c0*c2-6))+16
-4% (16%c0*c2"4+4%c2"3~128%c0"2kc2"2-16#c0*c2+256%c0"3+1) ) ;
[[-16,1], [-c2"2+4%c0,3]]

-~ Procedure for computing (by Risa/Asir):(inverse problem) practical procedure No.2 ~N

e Procedure for computing (by Risa/Asir): (real inverse problem)
[0] A=-262144%s1"2+2097152%s1-4194304%
[1] B=-27648*s1"4+(147456%s2+589824) %51~ 2+(~393216%52-1310720) *s1
-131072+8272+262144%52+524288%s4+786432$
[2] C=-729%s1"6-5832%s1"5+(7776%s2-3888) *s1~4+(41472%s2+48384)*s1"3
+(~27648%5272-27648%s2+20736) *s1"2
+(-73728%52°2~221184*52-165888) *s1+32768%52"3+147456%s2"2
+221184*s2+110592$
[3] D=B~2-4%A*C$
[4] fctr(D);
[[1073741824,1]1,
[54%s1~5+(-81*s2-27*s4~135) *s174+(36+s2"2-144%s2-1008) *s1"3
+(~4%52"3+360%52" 2+ (144*s4+2976) *s2+576+s4+4192) *s172
+(-160%*52"3-2176%52" 2+ (~384*54-6400) #s2-1280%s4~5376) *s1
+16%5274+448%52" 3+ (-128%s4+2176) *s2" 2+ (256 *s54+3840) *s2+256%s4"2

+768*54+2304,1]]
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3. Symmetry locus

Next, we study the singular locus in the moduli space M, (C). By an automorphism of
a polynomial map p we will mean an affine transformation g that commutes with p. The
collection Aut(p) of all automorphisms of p forms a finite group. The following character-
ization is given in [2]: polynomial map of degree n has a non-trivial automorphism if and

only if it is conjugate to a map in the unique normal form

z2" 4+ Z A(kp)z*P*! + Bz
klln—1),k#n—1
1 <p< [n/k]

where A(kp) are parameters in C.

Let S, (C M,,), called symmetry locus, be the set consisting of all conjugacy classes
{p) of polynomial maps admitting non-trivial automorphisms.

For the case of n = 4, we gave a defining equation of S, as Proposition 6 in [2]. We shall
give here another elementary proof, directly applying the transformation formula obtained

above. Practical procedure is shown in a boxed item named symmetry locus.

Proposition 3

The symmetry locus Sy is in M4(C) forms the following algebraic curve;

g1 =S8
o2 = 3(3s — 4)(s +4)/32
o4 = —(3s — 4)3(s — 12) /4096

Proof. The normal form of Sy is
{z4 -+ az}a .

Hence substituting the relations ¢y = 0, ¢; = a, ¢s = 0 into the transformation formula and

removing the parameter a from these equations, we obtain the following two equations:

902 + 2407 — 3205 — 48 =0
—2701 + 43203 — 144007 + 179207 — 409604 — 768 = 0.

A defining equation of the symmetry locus is given by the intersection of these two equa-

tions. B
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-~ Procedure for computing (by Risa/Asir): symmetry locus
[0] S1=-8xcl-s1+12$
[1] S2=4%c27°3-16*c0*c2+18*c1"2-60*c1-s2+48$
[2] S4=164c0*c2”4+(~4*c1”2+8%c1)*c2"3-128%c0"2*c2 2+
V (144%c0*c172-288*cO*c1+128*c0)*c2-27*c1"4+108%c1"3-
144%c172+64%c1+256%c0"3-s4$

[3] Syﬁ1=subst(81,c1,a);
~-8*a-s1+12

[4] Sym2=subst(82,¢0,0,c1,a,c2,0);
18*a"2-60*a-s2+48

[6] Sym4=subst(S4,c0,0,c1,a,c2,0);
-27%a"4+108%a~3-144*a"2+64*a-s4

[6] Surfi=subst(Sym2,a,(12-s1)/8);

9/32%s5172+3/4%s1~-52-3/2

[7] fctr(Surfl);

[[1/32,1],
[9%s1°2+24%s51~32%52~48,1]]

[8] Surf2=subst(Sym4,a,(12-s1)/8);

-27/4096%s1~4+27/256%s1"3~-45/128%s1"2+7/16%s1-s4-3/16
[9] fctr(Surf2);

[[1/4096,11,
[-27*s174+432%5173-1440%s172+1792*s1~-4096+s4-768,1]]
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