Proceedings of the Risa Consortium
1997 pp. 11- pp. 33

Factoring Polynomials over Algebraic Extension Fields

Masayuki Noro *

HPC Research Center, FUJITSU LABORATORIES LIMITED

Kazuhiro Yokoyama |

HPC Research Center, FUJITSU LABORATORIES LIMITED

(RECEIVED 1997/7/14 REVISED 1997/11/20)

1. Introduction

We give a new method for factoring polynomials over successive extension fields over the
field QQ of rational numbers based on factorization of the norms of polynomials originally
proposed by Trager [15], and apply it for computing the splitting fields of integral poly-
nomials. In [3] we showed that using non square-free norms of polynomials improves the
total efficiency of the factorizations, especially, in the computation of the splitting fields.
However, in this method we cannot avoid factoring square-free norms of polynomials to
guarantee the correctness of the computation, which often becomes the most dominant step
in the whole. Here, to improve the efficiency of factoring square-free norms, we generalize
a technique used for factoring polynomial over simple extension by Encarnacién [6, 7] to
work over successive extension fields. Moreover, we also extend the technique for factor-
ization of non-square-free norms of polynomials. Corhbining these two improvements and
other precise devices, we obtain a new method which seems practical for actual problems.

In more detail, in methods based on Trager’s algorithm, the factorization of a given
uni-variate polynomial f over an extension field K is reduced to the factorization of a

polynomial over Q which is the norm of a certain polynomial derived from f . However,
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it tends to be very hard to factorize this norm polynomial by the ordinary Berlekamp-
Hensel method, since the norm polynomial tends to have many modular factors, and thus
many candidates on combinations of modular factors to be tested by trial-division. (See
an estimation on the average number of modular factors of norm polynomials in [8].) To
resolve this combinatorial explosion, we provide an effective criterion for valid combinations
based on useful information on the decomposition of the residue class rings over the finite
field corresponding to the extension field K. In [6, 7], Encarnacién gave such a criterion
for square-free norms of polynomials over simple extension fields.

To obtain a practical method, we give a discussion on each part of the method and
we examine the quality of the method by experiment. Especially, for several algebraic
factorization problems related to splitting fields the new method can compute the results
much faster than the method in [3].

The paper is organized as follows. In Section 2 we provide mathematical basis on
algebraic factorization and its related subjects. In section 3 we show algorithms based on
criteria for valid combinations, and in Section 4 we give details on parts of algorithms. We
apply the method for computing splitting fields of polynomials in Section 5, and show its

efficiency by experiments on examples in Section 6. In Section 7, we discuss future works.

2. Mlathematical Background

We provide necessary notions and properties related to factorization of polynomials
over extension fields. Here we denote by (, Z and GF(p) the field of rational numbers,
the ring of rational integers and the finite field of order p, respectively. We denote by Z,
the ring of integers localized by a prime p, i.e. Z, = {a/b | a,b € Z, p J b}, and the
natural projection from Z, to GF(p) by ¢,. We use the same symbol ¢, for its extension
from polynomial rings over Z, to those over GF(p). For a finite extension of fields K/F,
we denote the norm of an element § in K and a polynomial f over K by Ng,z(0) and
Ng/r(f), respectively.

From now on, we express an extension field K over (Q as follows: Let oy, i =1,...,n,
be algebraic numbers such that K = Q(a1,...,ay) and let Ko = Q, K; = K;_1(o;) for
1<i<n. Then K; = Q(ai,--,01) and K = K,,. We assign each o; to a variable x; for
i =1,...,n. For simplicity, we write X; = {z;,...,z1} for i <n and X = {z,,...,21} .

Then K is represented by the residue class ring of the polynomial ring Q[ X] factored by the
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kernel M of a ring-epimorphism from QQ[X] to K which sends g(zn, ...,z1) to g(an, ..., o)
for each g in Q[X]. A successive extension representation of K uses the reduced Grébner
base of M with respect to the lexicographic order < such that z; < --- < z,. For each
@, its (monic) minimal polynomial mg ;(z) over K;_; can be treated as a polynomial in
z over Qa;_1,---,01] and so by replacing a; with z; for j =1,...,4— 1 and = with z;,,
we have a polynomial m;(z;,...,z1) over Q. Then {mi(z1),...,Mn(Tn,...,21)} is the

reduced Grobner base of M with respect to <, which we denote by G. And moreover,

K = Q[Xi]/(Mn Q[X3]),
M N @[Xz] = IdQ{X,](m“ cety ml),

where Idg(F') denotes the ideal generated by a set F'in aring R. Theset B = {zg---z* |0 <
e; < deg,,(m;)} is a linear base of the residue class ring K over Q and so [K : Q] =
[T, degz,(m;). The representative of each residue class is the unique normal form of ele-
ments in the class with respect to G. That is, for a polynomial g, its normal form NFg(g)
with respect to G represents the residue class containing g.

Now we fix a prime p such that every m; belongs to Z,[X]. We call such a prime
a lucky prime for M. Then the ideal Idgp(p)x)(#p(m1),...,dp(my)) is O-dimensional
and equal to ¢p(M N Z,[X]). (See [12] for details on the luckiness.) Here we write
M, = Ide[X](ml’ -++,my) and M = Idgr@)x) (71, - -, Mn). We denote by disc(h) the

discriminant of h for a univariate polynomial h.

2.1. lucky primes and minimal polynomials

First we give necessary notions and properties in a slightly general setting. (See [14]

and [17].) Let Z be a 0-dimensional ideal in F[X], where F' is a field.

Definition 1
For each g € F[X], the map Mgz which multiplies each element in F[X|/T by g is a
linear map on F[X|/Z. We call the minimal (characteristic) polynomial of My 7 the mini-
mal (characteristic) polynomial of g with respect to Z and denote it by Mingz (Chag 1)
(respectively).

Lemma 2

1) The set of all distinct irreducible factors of Min, 7 over F' coincides with that of Cha, 7.
g ¥ g y
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(2) If T is a radical ideal, then Ming 1 is square-free for every g € F[X]. Conversely, if
Ming, 1 is square-free for every x;, then I is a radical ideal.
(3) If T is a maximal ideal in F[X], then Ming 7 is irreducible over F for every g € F[X].

Thus, Chagy, 1 coincides with Ming 1 or its power.

Lemma 3

(Chinese remainder theorem) Suppose that Z is expressed as I = N:_,Z; for ideals Z; such
that 1d(Z;, Z;) = F|X] ifi # j. Then F[X]/T = &5_,F|X]/Z;. Consequently, for g € F[X],
Chagz = [[;-, Chagz, and Mingz = LCM(Mingz,, ..., Mingz,).

We return to our setting. Since the fixed prime p is a lucky prime, MNZ,[X] = M,, and
#p(My) = M. Moreover, since every m; € G belongs to Z,[X], NFg(g) belongs to Z,[X]
for every g(X) € Zp[X]. So, we have the natural embeddings: Z,[X]/M, c Q[X]/M.
(See details in [12].) We consider minimal polynomials of variables. From now on, we
write h; for Ming, am for 1 <4 < n. From the matrix representation of the map Mg, am
with respect to the linear base B, we can see that the representation is a matrix over Z,.
Thus, its minimal polynomial and its characteristic polynomial are polynomials over Z,

and hence h; € Z,[X]. Moreover, we have the following linear map on GF(p)[X]/M:

My, 1 : GF(9)[X)/M 3 § — 25 € GF(p)[X]/ M.
Proposition 4

If p /disc(h;(z)) for every i, then ¢,(h;) is the minimal polynomial of z; with respect to M

and it is square-free for every i. Consequently, M is a radical ideal.

Proof. Let M; be the matrix representation of the linear map My, am. Then h;(M;) = 0,
¢p(hs)(p(M;)) = 0 and ¢, (M;) coincides with the matrix representation of the map M, x
with respect to the same linear base B. From this, the minimal polynomial h; of Dp(M;)

is a factor of ¢p(h;). On the other hand,

Chag, m(t) = det(t — M;)
Chay, j1 = ¢p(Chag, m) = det(t] — ¢,(M;)).

From Lemma 2 (1), irreducible factors of ¢,(Chaz, pm) are also those of h;. Then, the

square-freeness of ¢,,(h;) implies h; = ¢p(hi). )
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Definition 5
If a lucky prime p satisfies the condition in Proposition 4, we say that p is radically lucky

for M.

From now on we suppose that the fixed prime p is radically lucky for M and that we have
the following prime decomposition:
We denote by L; the extension field GF(p)[X]/M; for each i. Let G; be the reduced
Grébner base of M with respect to the lexicographic order < for each j. Then

G = {mj1(21), -+, My (@n,y -, 21) }- (2)

For each i, GF(p)[Xi]/Idgrp)x:)(Mj,1,- - -, M) is an exfension field, over which M ;41

is an irreducible factor of ;1.

2.2. norms and characteristic polynomials
We recall relations between the norms of polynomials and the characteristic polynomi-
als. (We omit easy proofs.) Consider an element g in K. Here, by the expression of K, we

regard g as a polynomial g(x1,...,z,). Then,

NK/Q(g) = resg, (- - - resg, (g, mn) - - - m1),

where res; denotes the resultant with respect to z. This coincides with the constant term

of Chag . Moreover, Ming ap coincides with the minimal polynomial of g over Q, and

Ming am(g) = Chag m(g) = 0.
Next consider a polynomial g(y) over K monic with respect to y. Then g(y) is regarded

as a polynomial in Q[y, X] and

N, Q(9(¥)) = rese, (- 1ess, (9(y), mn) -+ -m1).

Let Z = Id@[y X] (M, g(y)). Then {m1,...,mp,g} is the reduced Grobner base of Z with

respect to the lexicographic order <, such that z; <, --- <y T, <, y and

NK/Q(g) = Chay,z.

Moreover, if g belongs to Z,[y, X], then p is a lucky prime for Z and the following decom-

position holds:
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where 7 = Idgp(p) (M, ¢p(g)) and Z; = Idgp(p)(/\;ii, ¢p(g)). By Lemma 3, we have

$p(N,l9)) = EC}‘%L = ENEi/GF(p)(%(Q))-

3. Factoring Polynomials over Extension Fields

Now we use the same notation as in Section 2. and consider a square-free polynomial
f(y,X) in y over K, which is monic with respect to y and belonging to Zy[y, X]. Let
I= Id@[y X] (M, f(y,X)). By Section 2.2., T is 0-dimensional and p is a lucky prime for

T. Moreover, we have

Lemma 6

T is a radical ideal.

Proof. We note that a O-dimensional ideal is a radical ideal if and only if the number
of distinct zeros of the ideal coincides with the linear dimension of the residue class ring
factored by the ideal. The number of distinct zeros of M coincides with dim@(Q{X J/M) =
T, deg,,(m;). Since M is a maximal ideal, each zero of M is conjugate to each other by
the action of the Galois group of the Galois closure of K over (9. From this and the square-
freeness of f(y, X) over Q[X]/M, f(y,B1,...,Bs) is square-free for any zero (Bi,...,On)
of M. Thus, the number of distinct zeros of Z coincides with deg, (f) [T, deg,,(m:) =
dimQ Q[y, X]/Z and so 7 is radical. B

3.1. separating elements and decomposition of ideals

Separating elements play important roles for factorization. (See [2] or [17].)
Definition 7 |
We call a polynomial g(y, X) € Q[y, X] a separating element for Z, if for any pair (3, 8')

of distinct zeros of I, g(B) # g(B'). Since T is a radical ideal, this condition is equivalent

to the condition that Mingz = Chay 1.

By [4], 9(y, X) is a separating element of 7 if and only if J = Id@[z v X] (Z,z—9g(y, X)) is

in normal position with respect to z.

Proposition 8

Suppose that Ming 1 is factorized over QasM ingz = H;l H;. Then,

T =Nisldgy, (@ Hile(y, X))).
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If g(y, X) is a separating element, the decomposition gives the prime decomposition of T.

Proof. We use similar arguments as in Lemma 8.5, 8.6 in [4]. It is clear that Z C
Ni—;1d(Z, H;(g)). Then we show the inverse inclusion. Suppose that h belongs to N[_;Id(Z, H;(g)).
Then, for each 7, h can be written as ¢; H;(g) + s; for some ¢; € Qy, X ] and s; € T and so
hH;(g) belongs to Z, where H; = Min, z/H;. Since Hy, ..., H, are pairwise prime univari-
ate polynomials, gcd(Hy, ..., H,) = 1 and there are univariate polynomials P, . .., P such
that 1 = P, H, +-- -+ P.H,. Therefore, we have h = P, (g)fh (g)h+-- -+Pr(g)}~fr(g)h, and
h belongs to Z. Next we show that if g is a separating element, then each Id@[y, X] (Z,Hi(g))
is a maximal ideal. Assume, to the contrary, that Id@[y’ X] (Z,H:(g)) has distinct prime
divisors. Then the minimal polynomial of ¢ with respect to each component must be a fac-
tor of H;. The fact that ¢ is a separating element implies that those minimal polynomials

differ from each other and contradicts the irreducibility of H;. g

The prime decomposition of Z corresponds to the factorization of f. Let Zy,...,7, be
prime divisors of Z. Since each Z; is a maximal ideal and Q[y, X]/Z; is an extension of K,
the reduced Groébner base of Z; with respect to <, consists of G and one polynomial, say
fi, which is monic with respect to y and irreducible over K. Considering zeros of f;, f; is
an irreducible factor of f over K. Conversely, the irreducibility of f; over K implies the

maximality of the ideal Id(@[y X] (Z, ;). Thus, we have

Lemma 9
There is a one to one correspondence between the set of all prime divisors of I and that

of all irreducible factors of f over K.

Since K (= Q[X]/M) can be embedded in Q[y, X]/Z and in each Q[X]/Z;, we have the
following on the GCD computation over K. Here we assume that GCDs of univariate
polynomials over fields are monic.
Lemma 10
For a univariate polynomial G(y) over Q,

GCD(f,G)over K = ][] fu

#G(y)eL;

Proof. Since 7 is a 0-dimensional radical ideal and each Z; is a maximal ideal, the ideal

IdQ M f(y, X),G(y)) is expressed as

Id(@[y,x] (Ma f(y> X), G(y)) = ﬂg:lld@[y,){] (Ii, G(y))
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Also by the maximality of each Z;, Id(@{y,x] (Z;,G(y)) =T, 1e. G(y) € Z;, or Id@[y,x](zi’ Gly)) =
Qly, X], i.e. G(y) € ;. Seeing the common roots between G(y) and f(y) over K and using
the irreducibility of each f; over K, G(y) € Z; if and only if f; divides GCD(f, G) over K.
As GCD(f, G) is a factor of f, we have GCD(f, G) = [I;.gyez, fi- )

3.2. factorization of f

Let F = NK/Q(f)’ that is, F'(y) = Chayz = resg, (---resg, (f(y, X),my) -+, m1).
Assume that y is a separating element for Z. Let F1,..., F,. be all the irreducible factors
of F over Q. Then for each F}, Id@[y, X] (Z, F;) is a maximal ideal. Therefore, by changing
indices, we can assume that Z; = Id(@[y’ x] (Z, F;), to which the irreducible factor f; of f

corresponds. By Lemma 10
fi = GCD(f(y), Fi(y)) over K.

When y is not a separating element, we search for a separating element as follows:

Proposition 11
(See details in [17].) For all but finitely many linear sums z = a121 + « - + anZn Wwith

ai,...,an € 2, y+ z are separating elements for T.
For each Z-linear sum z of X, we have
F.(y) =N, QU = 9) = Chaysz(v)
= resg, (- - -resg, (f(y — 2, X),mp) - - -, m1).

Then, y + 2 is a separating element if and only if F, is square-free. Suppose that F, is
square-free. Then each of its irreducible factors is the characteristic polynomial Chay+, 7,

of y + z with respect to some prime divisor Z,. By the argument as above, it follows that

fily — 2) = GCD(Chay4..,7,(y), f(y — 2)) over K.
This gives the theoretical base for factorization using norms proposed originally by Trager.

3.3. factorization of F

Without loss of generality, we assume that y is a separating element for Z. Usually we
use some method based on Berlekamp-Hensel algorithm to factorize F(= N K /@( 7)) over
Q, however, we often meet difficulty. Because deg(F) is much greater than deg(f) and F
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tends to have many modular factors. Thus, we provide an efficient criterion for detecting
invalid combinations of modular factors.

Fix a prime p which is radically lucky for Z. Then mi,...,mn, f € Z,ly, X] and
Gp(h1), ... dp(hyn), ¢p(F) are square-free.

Proposition 12

For each irreducible factor g(y) of f(y) over K, g(y, X) € Zy[y, X].

Proof. Since m; € Z,[X] for every i, there are algebraic integers 8;’s such that 3; = ko
for some integer k; 0 (mod p). Moreover, for each root v of g(y, a,...,a,), kv is an
algebraic integer for some integer £ # 0 (mod p). Then, it follows that for each coefficient
¢ of g(y, X), kec is an algebraic integer for some integer k. # 0 (mod p). Meanwhile, for

the ring R of algebraic integers in X,

RcC -Did-Z[ﬁl,...,ﬁn],

where D =[] N X, /Q(disc(ﬂ,-)) and some positive integer d. (Cf. Abbott [1] or Proposi-
tion 1 in [10].) Since the square-freeness of ¢,(h;) implies N /Q(disc(ai)) #0 (mod p),
NK‘/@(disc(ﬂi)) #0 (modp)and D#£0 (mod p). Thus, we have

1
R C —E-Z{Ctl, - ,C\en],

for some £ # 0 (mod p). Thus, for each coefficient ¢ of g(y,X), kec € Z,[X] and
cE Zp [X ] ) B
Proposition 12 holds for any prime g which is radically lucky for M and f € Z4[X].

Now we compute the prime decomposition of M and use the same notation as in Section
2.. (In Section 4., we will show details on the prime decomposition of M.) So we assume
the decomposition (1) and for each component M, its Grobner base G; with respect to <
is given as (2). Let Z = Idgp(p)[y,x](M, ¢p(f)) and L; = GF(p)/M; for each i. Regarding
¢p(f) as a polynomial over L;, we compute the norm Nz qp(p (¢5(f)) by

NZj/GF(p)(¢p(f)) = 1esy, (- 1e8z, (¢p(f), Myn) -+ Myj1)-

Next we factorize Ni_/cp(p) (#p(f)) over GF(p) and let F; be the set of all its irreducible

factors over GF(p) for each 4, 1 < i < 5. Since

¢p(F) = [ [Nz, /cr@m (@),

=1
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the set JF of all irreducible factors of ¢,(F) is expressed as the disjoint union F = F; U
U Fs.

Theorem 13

Let S be a subset of F. If the product of all elements in S is the modular image ¢,(G) of

some true factor G of F', then the following relation holds:

deg(G) g (g) = de}‘gﬂsd eg(9)
K.Q Y [L; : GF(p)]

where g = GCD(f, G) over K.

for1<j<s, (3)

Proof. From the relation G =N /Q(g), we have

¢p(G) = H Nii/Q(fﬁp(g))y

i=1

and so s

deg, (9)[K : Q] = deg(G) = Y _[L; : GF(p)] deg,(g)- )

i=1

Then, by the definition of F;, we have

f'
deg,(9)(Li : GF(p)) Z deg(q)- (5)
geFin
Combining Equations (4) and (5), we have Equation (3). ]

Theorem 13 gives a generalization of Encarnacién ’s criterion for successive extension

fields. Here we present an algorithm with the criterion.

Algorithm 1 [Factorization of norms of polynomials]
Inputs: A successive extension K/QQ, a square-free polynomial f(y) over K and the norm F =

Ng/o(f)-
Outputs: All irreducible factors of F over Q.

Assumption: K is given by a residue class ring Q[X]/M, where M is given by its Grébner

base G, and F is square-free.
(i) Choose a prime p radically lucky for Id@ (M .

(il) Compute the prime decomposition of M, where M=1dg Fp)x)(¢p(G)). Let M, i=1,...,s,

be prime divisors of M. ~
(iii) For each Mj, compute the set F; of all irreducible factors of N _ /P @) (@p(f)), where L; =

GF(p)|X]/M;.
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(iv) Find each irreducible factor of F by lifting up and trial-division only applying for the modular

factors which satisfy Equation (3).
(v) Return all irreducible factors of F found in (iv).

3.4. non-square-free norms and their factorization

Although the factorization of the norm of a non-separating element does not give the
prime decomposition of the ideal Z; it often gives some intermediate decomposition of 7
and some non-trivial factorization of f. Using these intermediate decompositions, we can
improve the total efficiency of the factorization. (See [3] and [11].) Here, we give a criterion
for valid combinations of modular factors of non-square-free norms. We assume that y is

not a separating element. Suppose that the norm F' = N X /Q( f) is factorized as

F= ﬁ[«’f".
g=1

where each Fj is an irreducible factor of F over Q. As T is a radical ideal and M iNy1 =
[1Ti—, Fi, we have
T =i, 1d(Z, Fi(y))

by Proposition 8. Let f; = GCD(F;, f) over K for each i. By Lemma 10, we have a

factorization of f, .
f= H fi
i=1
Now we show the procedure for this intermediate factorization. First we consider the
square-free decomposition:
F= ﬁ GE,
i=1
where F1 < --- < E, and G; is the product of factors of F' with multiplicity E; for each i.
Letting f; = GCD(G;, f) over K, the factorization of f is reduced to those of fi’s. In this
case, N /Qf fi) = G and deg(fi) = E; deg(G:)/ 1K : Q).
Considering each f; instead of f, we can assume that F = SZ with E > 0 without loss
of generality. Then S = Miny z(y) and Id(@[x](M’ £,8) =1
Now choose a prime p radically lucky for Z. This can be done by testing the square-
freeness of ¢p(h;), 1 < i < nand ¢p(S) for randomly generated primes p. Then Proposition

12 holds for p. Compute the prime decomposition of M:

M = ﬁg:lMia
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and let Ly = GF(p)[X]/M; for each i. Then we factorize N cp(y(¢p(f)) over GF(p)
for each i. Let F; be the set of all distinct irreducible factors of N _ 1GF(p)(@p(F)) for each
i. Since

$p(S)F = ¢p(F) = HNL/GF(p)(%(f))

i=1

the set F of all distinct irreducible factors of ¢,(f) is obtained by gathering distinct
factors from Fi,...,F,. For each § in F, we denote by e;(§) the multiplicity of g in
Nii/GF(p)(qbp(f)). Thus, e;(g) = 0 if g does not divide N ;g (¢p(f))-

Theorem 14

Let T be a subset of F. If the product of all elements in 7 is the modular image ¢,(T) of
some true factor T of S, then the following relation holds:

de_'j'ei(g) deg(g) _ E deg(T)
[Li : GF(p)] (& - Q)
and Edeg(T)/[K : Q] = deg, (GCD(T, f)). Moreover, for each g in T, % 1e:9) = E.

for1<i<s, (6)

Proof. It suffices to show the theorem for each irreducible factor T" of S. Let fi,..., f, be
all irreducible factors of f over . Since each Z; = Id(@[y’ X](M’ fi) is a maximal ideal,
the minimal polynomial Min, 7, is irreducible and the characteristic polynomial Chay,z;,
which coincides with N X /Q( fi), is equal to Miny 7, or its power. Thus, by changing
indices, we can assume that NK/Q(fi) =T¢%fori=1,...,u,u <7 and T does not divide

N[(/Q(fi) for u < i. Then e; deg(T) = deg(fi)[K : Q] for 1 <i < wu and

: u
Edeg(T) = [K : Q) ) deg, (fy). (7)
i=1
By seeing modular images,

¢p(T)* = H Nz./arw)(Pp(fi)
=1

$p(1)F = [ Nz, /ar@) (@p(f1) - Sp(fu))-

J=1
On the other hand, we have
Ni,/ar@(@e(H) = [ 7@
geF
and so
NL, arm 6o fu) = [] 3@ -
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Counting the degrees of both side of Equation (8), we obtain
[L;: GF(p Zdegy (i) = Z ¢;(9) deg(9)- (9)

Combining Equations (9) and (7), we obtain Equation (6). Since fi--- f, = GCD(T, f)
over K by considering common roots, we have E deg(T) = [K : Q)GCD(T, f). ]

Theorem 14 gives a criterion for valid combinations of modular factors for non-square-
free norms, by which we can suppress “combinatorial explosion” efficiently. When E =1,

Theorem 14 gives Theorem 13, because €;(§) = 1 or 0 and there is no common factor
between Nz cr() (6p(f)) and Nt /@) (9p(f)) for i # j.

Algorithm 2 [Factorization of norms of polynomials]
Inputs: A successive extension K/Q, a square-free polynomial f(y) over K and the square free

part S of F' = Ng,o(f)-
Outputs: All irreducible factors of F over Q.

Assumption: K is given by a residue class ring (Q[X]/M, where M is given by its Grobner

base G, and F' = SF.
(i) Choose a prime p radically lucky for Id@ M f,9).

(ii) Compute the prime decomposition of M, where M =1dgr@p)($p(G)) and let My, i=1,...,s,

be prime divisors of M.
(iif) For each M, compute the set S; of pairs of each irreducible factor and its multiplicity in

Nz,/6re)(9s(f)), where L; = GF(p)[X]/M;.
(iv) Find each irreducible factor of S by lifting up and trial-division only applying for the modular

factors which satisfy Equation (6).
(v) Return all irreducible factors of F' found in (iv).

Remark 1
If S is irreducible over (Q, the factorization of S means nothing, since it cannot say the
irreducibility of f. So it is desirable to check such a case before trial-division. The following

gives a quick-test for such a case.

Lemma 15

If some F; consists of one element, then S is irreducible.

Remark 2
The criteria given here may work efficiently when the norm F' has many modular factors
over GF(p), especially the number of irreducible factors of ¢,(F') is much greater than

deg, ( f). In this case, M has non-trivial prime decomposition. Let us consider an ideal
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case: F is irreducible but M has s prime divisors My, ..., Mg and each F; has t irreducible
factors. (Then ¢,(F) has st irreducible factors.) The number of combinations of modular
factors to be tested is 2!°~! without the criterion, which is reduced to 1/2(;C1° + --- +
:Ce1®) (< 2““”?) with the criterion. Such a case occurs in the computation of splitting
field of integral polynomials. (See Section 5. and examples in Section 6..)

However, when F' has a few modular factors or M is still a maximal ideal, the criteria do
not work well and the additional computation for the prime decomposition of M harm the
efficiency. Thus, for practical implementation, if the factorization problem is not related to
splitting field computation, it seems better to decide the usage of the criteria after counting

the number of modular factors.

4. Remarks on Other Steps

In Section 3. we give an improvement for factoring the norms of polynomials. However,
as pointed out in [3], to obtain practical implementation, we must improve the efficiency
of the steps; (a) the computation of the norm F' and (b) GCD(F;, f) for each irreducible
factors F; of F. Moreover, we have to give an efficient method for the decomposition of
the ideal M. Here we give brief discussion on those. (We use the same notations as in the

previous sections.)

4.1. computing the norms

When the extension degree'N = {K : Q] is large, interpolation techniques work quite
efficiently to compute F(y K /@ . We provide nN +1 integers ayg, - . ., an N, Where
n = deg, (f(y)), and compute

Flai) = Ny (f(ai)) = ress, (ma, - rese,, (ma, f(as)) - -)

for each a;. From {F(ao),...,F(ann)}, we construct F(y) by Chinese remainder theorem.
Moreover, by using enough numbers of primes, we can compute F(a;) by the modular
images ¢p(F(as)) = resg, (M1, --resy, (Mn, dp(flasi)))---). We will show some further

technique on interpolation for F' in Section 5.3..

4.2. GCD computation

There are efficient methods for GCD computation over extension fields based on modu-

lar technique ([10],[6]). In our case, since we can detect the luckiness of each prime from the
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degree of the modular GCD, we can take advantage of early detection. (For each irreducible
factor F; of F, we already know the degree of GCD(F;, f) from deg(F;).)

We use a method based on Grébner base with modular technique [12] in the imple-
mentation. As mentioned in Section 3.1., GCD(F;, f) over K appears as an element in the
Crébner base of I d@ly, X] (M, F;, f) with respect to <, and other elements are elements
of the given Grobner base of M. In the method, we execute similar computations as the
method in Langemyr [10] but we use “recover of rational numbers from their modular
residue,” (see [6]) without estimate on the size of coefficients. Although we do not provide
necessary number of primes in advance, it terminates at the step before the size of the

product of used primes exceeds the bound estimated in [10].

4.3. decomposition of ideals over finite fields

Here we give a concrete method used in our implementation. To take advantage of
the successive expression of extension fields, we employ “successive decomposition:” We
factorize 7, (x1) and then factorize ma(z2, 1) over extension fields obtained by irreducible
factors of m4(z1) and so on. By these recursive procedures, the problem is reduced to the
factorization of polynomials over extension fields. To simplify the implementation, we
change the expression of fields from successive one to simple one. This change does not
harm the efficiency, since there is no coefficient growth over finite fields. Then we apply an
efficient existing method for factoring polynomials over simple extension fields over finite
fields. Of course, we can also apply Berlekamp’s algorithm directly to the residue class ring
factored by the given ideal (see [13]).

We give more details. Suppose that M N GF(p)[X;] = ldere)x;) (M1, ..., M) is de-
composed as

MNGF@)X) = i, M9,
where Mgi) is a maximal ideal in GF(p)[X;] for each i. Then the decomposition of
é+1](M§i)7mi+l)7
which comes from the factorization of ;11 over GF(p)[X;]/ Mgz) To express GF(p)/ Mgi),

Idepp)Xis1) (M5 - - - Mit1) is reduced to that of each component Idgp(py(x

we employ a simple extension expression by its primitive element 3. Let g;(y) be the mini-
mal polynomial of 8 over GF(p). Then there are univariate polynomials Ay j,.. ., h; j such

that

M = GF(p)[Xi] N Idealgr @y, x (@1 = b1 (V) -, 7 — hij(©), 5 ()
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By replacing 1, ..., x; with hy;(y), ..., ks ;(y), respectively, m;.1 becomes a polynomial

in (GF(p)ly]/1d(g;(¥)))[zi+1]- The following gives the procedure in general setting:

Algorithm 3 [change of expression]
Input: an irreducible polynomial a(t) € GF(p)[t] and an irreducible polynomial b(s,t) €

GF(p)[t, s] over GF(p)[t]/Id(a(t)).
Qutput: an irreducible polynomial ¢ over GF(p) such that GF(p)[s,t]/Id(b(s,t),a(t)) =

GF(p)[u}/Id(c(u)) and expressions s = hs(u), t = hy(u) of s,t.
(1) Find an irreducible polynomial c(u) € GF(p)[u] such that deg(c) = deg,(b(s, t)) deg(a).

(2) Find a root h,(u) of a(t) over GF(p)[u]/(c(w)).

(3) Find a root hs(u) of b(s, he(u)) over GF(p)[ul/(c(u)).

In the current implementation, we find ¢ from randomly generated polynomials of the
specified degree. Of course, to improve efficiency, we can apply existing efficient methods.
(See a survey [9].) Since we find each root as a linear factor at Step 2 and 3, these steps

can be done efficiently.

By applying Algorithm 3 to “successive decomposition” recursively, we obtain the de-

composition of M after a number of algebraic factorizations over simple extension fields.

5. Computing Splitting Fields

As a special case of factorization of polynomials over extension fields, we consider the
splitting field of an integral polynomial. We consider the following. (See details in [3] and
(18].)

Let f(x) be a monic and irreducible integral polynomial of degree n and let a1, ..., ay,
be all roots of f. We denote the splitting field of f and the Gaiois group of f by Ky
and Gy, respectively. By assigning a variable x; to each ¢, there is the unique max-
imal ideal Mi of Q[X] such that K; = Q[X]/M and we identify K with Q[X]/M.
Thus, to compute the splitting field Ky is to compute a Groébner base of M. Espe-
cially, the reduced Grobner base G with respect to the lexicographic order < can be com-
puted by sequentially factoring polynomials over extension fields and G takes the form
of {fi(z1), fa(z2,71),- -+, fa(Tn,...,21)}. Then for each i, Q[X;]/M; = Q(au, ..., q;),
where M; = IdQ[ X,«]( fi,---, fi). We denote the extension field by K;. In more defail, fi=
f and each f;1 is the irreducible factor of g;+1 over K; such that fi11(air1,...,01) =0,

where g;11 is the irreducible factor of f(z)/((z — z1)---{(xz — z;—1)) over K;_1 such that
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Gir1 (g1, i1, ..., 00n) = 0.

5.1. lucky primes

In the computation of Ky, we factorize g;41 over K; successively from 7 = 1 to some
k until we have a complete factorization of f. In each i-th step, we consider the ideal
J = Id@{xiﬂ)(fl’ eovs fiy gir1(Tip1—2)) for some z = ¢y 21+ - -+c;x;, where ey, . .., ¢; € Z.
Since a prime p divides none of N K, /Q(disc(ai))’s if and only if p does not divide disc(f),

we have the following criterion for the luckiness of primes.

Lemma 16
A prime p is radically lucky for M; if and only if p does not divide disc(f). Moreover, if a
prime p is radically lucky for M, then p is also lucky for 7 and ldgpp) (¢p(f1), - - - ®p(fs), #p(92))

is radical.

Among all lucky primes, the following are useful for our computation; (1) primes p
such that ¢,(f) has small splitting field over GF(p) and (2) primes p such that ¢,(f) has
large splitting field over GF(p). Here, “small” means E << deg(f) and “large” means
E > deg(f), where E is the extension degree of the splitting field Ky () of ¢p(f). We
denote the set of primes in (1) by Po and that in (2) by P;. By Chebotarev’s density
theorem, the ratio of primes such that Ky, sy = GF(p) is 1/|G¢| and so the ratio of primes
in Py is at least 1/|Gy|, and that in P; is expected much larger than 1/|Gy| for many
cases. (But, P; can be empty.) Primes in Py seem useful for computation of the norms

and primes in P; seem useful for factoring the norms of polynomials.

5.2. efficiency of the criteria

First we explain the efficiency of the criteria. At each i-th step, we choose a radically
lucky prime p and decompose M; to ng;l/\;igi). Then each I:g.i) = GF(p)[Xi] /./\;lgz) is a
subfield of the splitting field Ky () of #,(f). On the other hand, Chevotarev’s density

theorem says the following:

Proposition 17
For a radically lucky prime p, the Galois group of ¢,(f) is isomorphic to a cyclic subgroup
of G - '

Thus, except the case where Gy is cyclic, there is a big difference between the order of G

and that of its cyclic subgroup, and so every Ey) tends to be small, which implies that M;
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tends to have many prime divisors.

Next we remark on the choice of p. The splitting field Ky 5y controls the number of
irreducible factors of ¢,(G), where G = NKi /@(9i+1(ﬁ3i+1 — z)). Because, the degree of
each irreducible factor of ¢,(G) coincides with the extension degree of the field obtained
by adjoining a root of ¢,(G) to GF(p), which is also a subfield of Ky (5. Therefore, to
make the number of irreducible factors of ¢,(G) smaller, we must choose p so that Ky (y)
has large extension degree. Although this may decrease the number of prime divisors of
M, it shall decrease the number of combinations of modular factors for trial-division in

total. So, we suggest to use primes in P; for factorization of G.

5.3. norm computation

We give a method for computing norms by using primes in Py, which seems suited for
our case. (The method is not used in the current implementation. So its practical efficiency
must be checked in the next work.)

Select k primes in Py. We write £ for the set of such primes. For each p € £ we have
¢p(f) =(z—ap1)--- (T —apn),

where ap1,...,0pn € Kg (). Let Jip = darp)xi1)(@p(f1)s - -+, Dp(fi), Pp(g2)), where
9z = Gi+1(Tiy1 — 2), and set Ry = {ap,1,...,apn}. Then we can show the following easily.
Lemma 18

The set Vi, of all zeros of the ideal J;, consists of all vectors (bi,...,bi+1), where
bi,...,biy1 € Ry, such that ¢p(f1)(b1) =0,...,dp(fi)(bsy...,b1) =0 and
#p(92)(bit1,-..,b1) = 0.

Let G = NKI/Q(QZ)' Then each root of ¢,(G) can be written as bit1 + ¢p(c1)by + -+ +
¢p(ci)bi, where (b1, ..., bis1) € Vip. As ¢p(G) = resq, (- - resq, (p(fi), ¢p(g2)) - ), &p(G)

coincides with

T @ = b = dpler)br — - = Gp(ci)ba).

(b1yesbit1)EVip

Let M = 2(1 + Z;=1 lei)maz{|cal, ..., |anl}, N; = [K; : Q] and m = deg,,,,(9:) =
deg,. +1(gi+1). By the relation between coefficients and roots, the absolute value of each

coefficient of G is bounded by M™™. Then,
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Lemma 19
By choosing L such that [[,c.p > 2M™™, we can construct G from {¢,(G) | p € L} by
Chinese remainder theorem.
Remark 3
Using Py, we can compute ¢,(GCD(H, g,)) for each factor H of G over Q as follows: Let
Wap = {(b1,-..,bip1) € Vip | H(big1 + ¢p(c1)br + -+ + ¢p(ci)b;) = 0}. By counting
number of zeros, we can show that there exists a vector C = (ck,,... k, +1)0<k; <njil<j<itl
over GF(p) uniquely such that for every (b1,...,bi11) € Whp

bl + > Gl D1 - B = 0,

0<k; <nji1<j<itl

and we can compute C by solving linear equations. (Here, we set n; = deg, (f;) forj <1

and nyy1 = deg(GCD(H, g.)) tentatively.) Then,

¢»(GCD(H, g-))

oM ks kit
=Ty Tt 5 Chiyeonskiga T 7 Tyg -
0<k;<nj;1<5<i+1

Hence, by computing ¢,(GCD(H, g,)) for enough number of primes in Py, we can construct
GCD(H, g.) by Chinese remainder theorem. Since we do not have a good coefficient bound

for factors of g, over K;, it seems better to make good use of trial division. For a method

using Hensel construction, see Section 5.3 in [18].

6. Experiments and Remarks

We tested the efficiency of the proposed method for several examples where we met
heavy combinatorial explosion in our previous experiments. We implemented the method
on a computer algebra system Risa/Asir [11] and compared the timings on those examples
on a PC with P6-200MHz CPU. First we show two typical examples, where the criteria

worked very efficiently.

Example 1 (computation of splitting field)

Consider f = 27 — 7z + 3 whose Galois group is isomorphic to PSL(2,3), a simple group
of order 168. In the authors’ previous method in [3], which uses a simple criterion hint on
the degrees of candidates, the whole computation took 1060 seconds. But it took 287.5

seconds by the new method.
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In [3], the most time-consuming step was verification of the irreducibility of a polynomial
of degree 4 over K = (a1, as), where fa(z) = f(2)/(z — 1), f(a1) = 0 and fao(aa) = 0.
This is checked by testing the irreducibility of the norm F(z) = N /Q( fl@+ a2 = 2a1))
over (), whose degree is 168. Although F is irreducible, F' has many modular factors and
so we meet combinatorial explosion in ordinary Berlekamp-Hensel algorithms. ¢s(F) has
24 irreducible factors of degree 7 and we have to check 22% combinations for trial division
and also check 1.4 x 105 combinations even with hint criterion ([3]). However, the ideal
Id(ép(f1), ¢p(f2)) has 6 prime divisors, each of which gives an extension field of degree 7,
and 24 factors of F' are divided to 6 subsets consisting of 4 factors. With the criterion in
Theorem 13, we have only to check 4C$ + 4C§ (about 50,000) combinations. Thus, on a
PC, this step was completed in 92 seconds by the new method. Since the author’s previous
method took 852 seconds for this step, we succeeded in making the computation 9 times

faster.

Example 2 (coincidence of two splitting fields given by Prof. McKay)

Let f = 2% +22% + 32* + 423 + 522 + 62 + 7 and g = z° — 3z* — 228 — 12222 + 325z + 577.
(See [5] for f.) Both have the Galois group isomorphic to Ss. To prove that the splitting
field Ky of f coincides with that K, of g, we factorize f over K into linear factors. Since
deg(g) = 5, the splitting field K, is easily expressed as Q(ay,...,a1), where ay,...,a,
are distinct 4 roots of g. In the experiment, the complete factorization of f over K, was
completed in 700 seconds.

First we factorize f over a subfield L = Q(as, a2, 7). The norm NKQ/Q(f(a: — o3 —
ag + 1)) is the square of a polynomial F; of degree 180. By the factorization with the
criterion in Theorem 14, F} has divided two irreducible factors Fy, F3, where deg(Fs) = 60
and deg(F3) = 120. Then by GCD with f over L, f divided to two factors f2 and f3,
where deg(f2) = 2 and deg(f3) = 4.

Then we factorize fs over L. The norm N 5 /Q( falz — ag + az — a1)) is square-free
factorized as FZFs, where deg(Fy) = 60 and deg(Fs) = 120, which give a non-trivial
factorization fs = f4fs over L, where deg(fs) = deg(fs) = 2. Thus, we have 3 factors
f2, f4, f5 of degree 2 over L.

Finally we factorize them over K. Then for ¢ = 2,4,5, the norm N K, /Q( filz —aq —
az+as+ar)) is square-free factorized as hiihz’i, where deg(h1,;) = 60 and deg(hz ;) = 120.

As [Kg: @] = 120, we can conclude that fa, f4, f5 are factorized to linear factors over K, g
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Thus, f is split over Kg, which implies that Ky = K.

For factoring Fy, we choose 11 as a lucky prime. Then ¢1; (F}) has 30 irreducible factors
of degree 6 and the modular image of the maximal ideal has 11 prime divisors, from which
we can construct 9 extension fields of extension degree 6 and two of extension degree 3.
Without the criterion in Theorem 14, even if we know the degrees of irreducible factors, we
have to check 30C1o (more than 3 x 107) combinations for finding F» in the worst case, and
even if we change the shift to have a square-free norm and factorize it with the criterion
in Theorem 13, we have to check §C53% (more than 3 x 10'!) combinations in the worst
case, which implies that the factorization is very hard on a computer. However, with the
criterion in Theorem 14, we have only to check ¢C432 (less than 500,000) combinations for

trial-division. Thus the computation was completed in 181 seconds.

Next we give a brief comparison with the method by Weinberger & Rothschild [16].
With respect to finding valid combinations of modular factors, the criterion by Encarnacién
has heavy relation to their method; there is one to one correspondence between modular
factors handled by the method by Trager with Encarnacién’s criterion and those by the
method by Weinberger & Rothschild in factorization over a simple extension field. If
we extend Weinberger & Rothschild’s method to successive extension case, the criterion
in Theorem 13 shall correspond to this extended method. However, its description and
estimations on the size of coefficients of true factors shall be much complicated. Moreover,
the criterion in Theorem 14 for non square-free norms cannot be applied to the extended
method. These points support certain superiority of the method proposed here. Detailed

comparison, both in theory and in practice, should be done in the next study.

7. Conclusion

In the paper, we propose a new method for factoring polynomials over successive exten-
sion fields over (Q based on factorization of the norms of polynomials originally proposed by
Trager, and apply it for computing the splitting fields of integral polynomials. To improve
the efficiency of factoring square-free norms, we generalize a technique used for factoring
polynomial over simple extension by Encarnacién and we also extend the technique for
factorization of non-square-free norms of polynomials. Combining these two improvements
and other precise devices, we obtain a new method which seems practical for actual prob-

lems. By experiments on typical examples, the quality/ability of the method is examined.
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Finally, we mention future works. Since the criteria require additional computation for
prime decomposition of ideals over finite fields, we need further experiment to find a smart
decision on whether we use the criteria and execute additional computation for practical
implementation. And study on practical efficiency of methods using the LLL algorithm for
factoring norms is also important. Moreover, there are two additional works:

(1) The problem discussed here can be considered as a special case of prime decomposition
of 0-dimensional radical ideals over (Q, where all computations are done with respect to
the lexicographic order. In [13], the authors had generalized Encarnacién’s criterion for
ideals with respect to block orderings in theory. So, the practical efficiency of the criterion
for prime decomposition should be tested.

(2) For computing the splitting fields efficiently, it is better to combine the information
of their Galois groups, and conversely, certain algebraic factorizations are required for
computing the Galois groups. (See [3] and [18].) Thus, for practical implementation,
integration of different approaches (methods) is quite important. Since the criteria work

quite efficiently in the case, it should contribute to practically best integration.
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