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1. Introduction

Euler’s constant is defined by
1
v= 731—{20 (Z i logn) . (1)
k=1
There are many methods to calculate Euler’s constant with arbitrary precision. See, for
example, [3].
In this paper, we propose a new method to calculate Euler’s constant with arbitrary pre-
cision. Comparing its efficiency to other methods and its implimentation will be reported

llater. Our starting point is the following formula.

T1 et o0 1
v = —loga:—{—/ € dt - / € . (2)
0 t x t

This is well known, (See, [2]p.2 (1.1.3)). Changing the upper bound of its integral to z,

the formula immediately follows. Expanding e~? at ¢t = 0 and integrating it term by term,

the second term of (2) is

n-Hxn

Tloet . o (-1)
| = W= ®)

As explained in [2, Chapter 1], the third term can be calculated using the asymptotic ex-

pansion. Since calculation using asymptotic expansion has predicted accuracy in its nature,

we must choose large z to get larger precision. This produces to make the convergence of
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(3) slower. To avoid this, we adopt the idea of [1] using the orthogonal polynomials in the

interval [0, 1] (Legendre polynomials) to calculate asymptotic value of an integral. We put

o e—t
Flz) = / . @)
and
2 -t L g—z(14t)
G(z) = / S dt= / dt (5)
x t 0 t
We have
L—1
z) =Y G(2*z) + F(2"). (6)
k=0

Now, we introduce the orthogonal polynomials on the interval [0, 1].

Definition 1

For non-negative integer, we put

1 dn n = +k
Pulo) = g =M = o0 () (7 )t ™)
‘We put
P ; B le—x(1+t)pn(t)dt g
n(lf)——/0 T . (8)

For z > 0, the integral can be expressed as I,(z) = A,G(z) + Bn(z), where

menen=3 (7)) g

k=0 k

and B(z) is a function represented by e® and polynomials of z. If I,(x) is small and A, is

B, (z)
An,

can get a suitable approximate value of Euler’s constant.

rapidly increasing,

would be a good approximation of G(z). Combining to (6), we

2. Properties of Legendre Polynomials

In this section, we show some properties of the polynomials defined by (7) Usually,
Legendre polynomials are orthogonal polynomials on the interval [—1, 1], the properties of

our polynomials must be modified as ones in [8].

Theorem 2

The polynomials defined by (7) are satisfies the following properties.



Proceedings of the Risa Consortium 199x

1. We have
P (z) = (1 -22)P,_1(z) — 2nPn_1(x)

2. P,(z) satisfies the differential equation(Hypergeometric differential equation).

z(1 — 2)P!(z) + (1 — 22)P.(z) + n(n+ 1) Po(z) = 0
or equivalently,
(z(1 = )P (z)) + n(n + 1)Py(z) = 0.

3. We have

22(1 — 2)P(z) = (n + 1)(Pns1(z) = (1 — 22) Po(2))

= —n(Pa_1(z) — (1 — 22) P, (z)).
4. We have the following recurrence relation:
(n+ 1)Pays(z) — (20 + 1)(1 — 22) Po(z) + nPy_1(z) = 0.

5. On the interval [0,1], we have

| Pr(z)] < 1.
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(11)

(12)

(13)

(14)

(15)

Remark: Since our Legendre polynomials P, (z) are kind of hypergeometric function,

namely F(—n,n + 1;1;z), (11) is immediate result of the property of hypergeometric

functions.

Proof 1. Applying Leibnitz rule to

(% {(.’Itn(l —_ ;I;)n)}) — —(—-n_i_ﬁ {(1 . 2$)(wn—1(1 _ 111')”_1)} ,

we have
1 dr

P (z) = moDide

{(1-22)(@" (1 - 2)" 1)}

1 a1t

:(1—2x)——1——— {" 11 —2)"" 1}_2”(n~1)fd—x?:_{ "

(n — 1)l dem
This proves (10).
2. Applying Leibnitz rule directly to the n 4 1 st derivative of the function

(z(1 =) (z"}(1 — z)"" '), we have

n+1

— )"},

P,'L(m) = i—' (SC(]. — x)%—ﬁﬁ (.’En_l(l _ x)n—l) + (TL + 1)(1 N Qx)czz_nn (xn-1(1 . :L.)n—l)

—n(n+ 1)da::“1 (2" '(1 - x)”"‘l)>
n+1

1
= 11— 7
= nx( )P (z

(1 =22)F,_(z) = (n+ 1) Pps(z).
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Using (10) and rewriting n to n + 1, we we (11).
3. Differentiating the formula multiplying z(1 — z) to (10) and using (12), we have

—n(n+1)Py(z) = —22(1 — 2)P,_1(z) — (1 — 2x)n(n — 1) Pa_1(z)
—2nz(1 — 2)P,_,(z) — 2n(1 — 22) Pa_1 (x).
Hence, we have
(2n+2)z(1 — )P, (&) = n(n + 1)Py(z) — n(n + 1) P (x). (16)

Dividing the both sides by n + 1 and rewriting n to n + 1, we get the first relation of (13).
On the other hand, eliminating P _,(z) from (10) and (16), we have the second relation
of (13).

4. (14) is the immediate consequence of (13).

5. The maximum of |P,(z)| on the interval [0, 1] attains at the points £ = 0,1 or ones
where P, (z) = 0. We have P,(0) =1 and P,(1) = (—=1)"~! by (13). If P/(z) = 0, we also
get

(1 - 2)Po(z) = Pa_s(0)-

by (13). Hence we have |P,(z)| < 1 by induction.

3. Properties of A, and I,(z)

In this section, we prove some properties of A, and I,(z) defined by (9) and (8),
respectively. Most of properties of A, are already appeared in [6],[7].
Theorem 3

The sequence { Ay} defined by (9) satisfies the following properties:

1. {A,} satisfies the following recurrence relation:
nA, — (6n —3)Ap—1+(n—1)A,_2=0. (17)

o0
2. The generating function f(t) of {A,} defined by Z Apt™ is

n=0

ft) =1 —6t+t3)"12 (18)

3. For any positive €, there exists some constant C. such that A, satisfies the following
inequality:

An > C(3+2V/2)-om (19)
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Proof. 1. Since A, = P,(—1), this is the immediate consequence of (14).

2. Because -
F1) =D nAnt",

n=1

we have
o0 ) ’ _
S (n+ Ddniatn = HOZAL
n=0
-3 En 4 ) dnat” = —67(r) - LA,
n=0

n=0

(04 1At = £7(8) + (1)
Thus, we have |

F/(8) = Ay = 6t'(t) = 3(f(t) — Ao) +2f(t) +£() =0,
from (17). Since Ap = 1 and A; = 3, we get the differential equation of f(¢):

(t2 =6t + 1) f'(t) = —(t — 3)f(t).

1
This implies f(t) = ——————=, because f(0) = 1.
plies f(t) = ———— £0)
3. The nearest singularity to the origin of the generating function f(t) is 3 — 2v/2.
Hence
limsu 1 -—3—2\/5———1———
nsoo. AL/ 3122

This proves (19), because {A,} is monotone increasing.

Theorem 4

For any integer n and x > 0 we have

0 < [In(z)| < min ((\/§ —1)*log2, %—;) . (20)
e—-’l:
z
by parts n times to I,(z), we get

1 -
" d® /e z(14t) tn(l _ t)'n

Proof The inequality |1, (z)| <

is an immediate result of (15). To apply the integral
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Using Leibnitz rule to the above integrand, we have
&Y S () a0 b
dtm 1+t = k (1 + t)n—k-!—l

n ! -z t 1+t
= (~1) f1_+Lt)n:fe (H)Z___)l_.

Hence, we have
A= aiy s @0 +t
In(l‘) :/0 (1 —’rt n+1 Z

The integrand of this is non-negative and this produces the estimate

1
(1 — )
0< In(l') < /(; mdt

t(1 —t)

The function f(t) = T

has the maximum (\/§ —1)?att=—1+ /2 in the interval
[0,1]. This produces

Lin(1 —t)» bodt
Y At < _ 1)2n < _1\2n ]
/0 (1+t)”+1dt_(\/§ 1) /o T <(V2-1)"log?2

4. The Algorithm

Now, we propose the algorithm to calculate Euler’s constant up to NV digits.
e Stepl: Calculate (3) for z = 1 upto N + 2 digits.

e Step2: Choose L such that L satisfies the inequality =2 <10°N-1. [ = loga N +2

is sufficient to our purpose.

B, (2*
e Step3: Calculate G(2%) for k = 0,1,..., L upto N 42+ L/10 digits to calculate Ba(2%)

An
e (2 ‘“) 1
up to N+2+L/10 digits. Since and A, ~ (v2+1)?", we must
P /10 dig An (f +1)4, ( )
B, (2%
calculate (2°) upto N + 2+ L/10 digits, choosing N +2+ L/10 =~ 4nlog(v/2+1) =

An
1.53n.

To calculate B,(x), we remark that it consists of the terms

1 k -
1 k! kle—®
—x(+t)pk g0 M -2
/o € thdt = ;xk—jﬂ j!e + s
k .
L R e
= We 1-e Z - s (21)

=0 7'
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-

e
which is estimated trivially by ——. Their coefficients have absolute value not greater than
x

1. Hence, it is sufficient to caluculate (21) upto N +n/10 + 2 =~ 1.06 N digits. There are

some problems to culculate (21) because of cancellation. To consider the efficiency of our

method, we must analyze the order of (21) in details.
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