Proceedings of the Risa Consortium
1997 pp. 53— pp. 68

Implementation and Experiments of Faster Algorithms

for Integer GCD’s in Risa/Asir

Hirokazu MURAO*

Computer Centre, The University of Tokyo

(RECEIVED 1997/5/30)

Abstract. Some new algorithms for integer GCD’s have been implemented in
Risa/Asir to improve the efficiency of the existing function of an Euclidean algorithm.
The implementation includes the latest algorithm by Jebelean or Weber, which is recog-
nized as most efficient in practice. In this paper, we shall give a brief review of the existing
algorithms and describe the details of our implementation. Also reported are the timings
measured using various sample problems, result of which indicates that the newly imple-
mented algorithms are considerably faster than the original implementation, and that the
latest algorithm is most efficient in practice especially when very long integers are treated.
Based on this fact, we suggést changing the default algorithm in Risa/Asir.

1. Introduction

Algorithms and computing methods for various basic calculations, e.g., polynomial arith-
metics, have been being revisited and reconsidered these days, mainly aiming at application
of parallel processing to algebraic computation. As one such subject, the problem of GCD
calculation of long integers has been being extensively studied in the last several years
by Tudor Jebelean [3] and by Kenneth Weber [15]. Stimulated by their work, the author
has been working on implementing and testing some of the new algorithms in Risa/Asir

[9]. The mathematical background and the structures of the existing algorithms are very

*Has been supported in part by Grant-in-Aid for Scientific Research from The Ministry of Education,
Science, Sports and Culture, Japan under Grant (C) 07680337. murao@cc.u-tokyo.ac.jp

53



54 Proceedings of the Risa Consortium 1997

simple and similar to each other. However, our new implementation, even of a limited
number of algorithms, has revealed much improvement in speed to the original implemen-
tation in Risa/Asir. This improvement heavily depends on the implementation techniques
enabled by the difference of the algorithmic nature. In this paper, we shall describe our
new implementation in some details and report the results obtained so far. In particular,
the implementation of the latest algorithms, called the generalized-binary algorithm by
Jebelean and the accelerated algorithm by Weber and recognized as most efficient, has
been completed since the last report by the author [5], and this report includes also this
latest and the most successful result.

This paper is organized as follows. In the next section, we shall extensively review the
known algorithms on a publication basis, and give a summary of each algorithm. Section 3.
is devoted to describe the details of our new implementation, e.g., the techniques used and
the specification of user interface. Section 4. gives timings taken on two different kinds of
processors using various sample problems, including the application to the Grébner basis

calculation. Finally, Section 5. concludes this report.

2. Existing algorithms

In this section, we give a brief review of the known algorithms. In the following, let X and

Y be two given integers where X > Y, and we consider the computation of G = ged(X,Y).

2.1. Classical algorithms

In his famous textbook, Knuth describes the following three algorithms, the latter two

of which are suited for long integers.
Euclid’s algorithm :
Letting Ap = X and A; =Y initially, compute the following remainder sequence
Qi <= |Ai_1/Ad, (1)
A1 = A1 — Qi Ay = A1 mod A 2)
for i =1,2,...,n until we obtain 4,41 = 0. The required GCD is given by G = A,,.
We consider the sequence of cofactors U; and V; defined by Uy = V; =1, Uy = Vp = 0, and

U; Ui U;
1) oo . i=1,2,...,n—1. (3)
VL+1 Viml V;.



Proceedings of the Risa Consortium 1997 55

Then, as is well known, the following equation holds:
Ay =U; Ao+ Vi Ay (4)
Here, we notice

e that the cofactor sequence is determined only from the sequence @;, and

e that the exact calculation of the sequences of (); and of the cofactors is not essential to

the calculation of ged(X,Y). -

These facts are utilized in Lehmer’s improved algorithm [4] designed for long integers

(bignums) by possible elimination of their exact divisions.

Lehmer’s algorithm : Suppose that X and Y are long integers. Then, in Eq.’s (1) and
(2), the calculations of (); and A; are supposed to be exact and to be performed with full

precisions. However, these exact calculations are not mandatory, as described below.

e Assume that the lengths (the numbers of words) of A;_; and A; are equal, and let
a; denote the most significant word of A;. Then, the following inequality holds:

Gi—1 _ ;-1 +1
qi [ai+1J Qi< [ o J

Therefore, if ¢; and §; are equal, then it is equal to Q;.

e Notice that both ¢; and g; can be obtained by calculations with single words.

o Therefore, while g; and g; are equal, the remainder sequence calculation with a;
corresponding to Eq.’s (1) and (2), which can be done only with operations on single
words, exactly reflects the calculation of the Q; sequence.

e At the time when ¢ # Gk, the exact A of required precisions can be recovered by

(4) using the cofactor sequence (3).

For the formulation of the algorithm, refer to the textbook.

Note that the above value sequences obtained via division are not mandatory yet for the
ged(X,Y) calculation but its giving a method for the purpose below is the point. The
essence of any algorithm for integer GCD’s is the generation of a new pair {C1,Cs} from

a pair {B1, By} of positive integers satisfying the conditions

[ ng(Bl, Bg) = ng(Cl, Cz), and

e min(By, Bz) > min(Cy, C>) for termination,



56 Proceedings of the Risa Consortium 1997

and the continuability of this generation until ged(X,Y’) is obtained. Assume B; > Bj
and let t <= Bj; mod Bs. Then, the above Euclidean algorithms yield a new pair by
{C1,Co} <= {Bs,t}. Alternatively, one may set {C;,C2} < {t,Bz —t}. The simplest

method satisfying the above conditions will be to let
{01102} ¢{min(Bl?B2), IBI "BQ l}; (5)
which gives the binary algorithm developed by Stein [12].

The binary GCD algorithm : Notice that in Eq. (5), if B; and By are odd, the differ-
ence By — By is even. If ged(B1, Bs) is known to be odd, then we can remove 2’s factor
from the difference without violating the former condition, by simply right-shifting the
difference, and the convergence to the GCD will be speeded. Namely, the subtraction
and the subsequent shift operations, in place of the costly division operation in the
Euclidean algorithm, suffice to yield a new pair with an integer of reduced magnitude.

There follows a description of the right-shift binary algorithm.

(1) Remove 2’s factors from given two integers X and Y, and let X = 2F1B;
and Y = 2F2 B, where B; and B are odd.
(2) While (w < By — By) # 0, do the following:
(2.1) remove 2’s factor from w: w = 2%¢;
(2.2) if t > 0, let By <= t, and otherwise let By <= —t.
(3) Finally, we obtain ged(X,Y) = gmin(kikz) B,

Stein also proposed a left-shift algorithm. Assume B; > Bs. The algorithm obtains
t = 2°Bj such that ¢t < By < 2t by left-shifting, and uses {Bs, min(B; — t,2t — By)} as a

new pair.

2.2. Recent developments

In the last several years, the algorithms for integer GCD’s have been evolved to use gen-
eral methods to make a new pair. Most of the newly developed algorithms are characterized

by the following two features.

e Generalization of the binary algorithm to K-ary ones. Let K = 2™ be the magnitude of
a single word composing long integers (K need not be a power of 2 and can be a power
of 10 as in some implementations). The intermediate expressions of the sequence are

reduced by K-ary right-shift. For example, if we have a = B;/Bs mod 2™, By — aBy



Proceedings of the Risa Consortium 1997 57

MODIV algorithm by Jebelean [1]

Input: integers Uy, V, N and a radix 8 (normally = 2™), where ged(V, 8) = 1.
Output: W = Up/V mod V.
)W «=0; w<Vmodf; a <w !mod}p;
(1)for i=0to N —1do
b; < o’ (U; mod B) mod B;
W =W + b,
Uir1 < (Ui — bV) mod 8N~/
(2) return W;

Fig. 1. division mod gV

is divisible by 2™ and (B; — aB3)/2™ obtained by 2™-ary right-shift is to be used to

replace B; to make a new pair.

e Use of the following generalized formula as a sequence, instead of the exact remainder
sequence (2),

Cit1 < 0;Cim1 —a;C; | /5™ (6)

Notice that the final result is a multiple of the true GCD and may contain a spurious

factor.
In the following, we summarize the recently developed algorithms.

Jebelean (1993) [1]

e A method to determine the quotient of an exact division of long integers from the least
significant side is developed, and the similar method is applied to the GCD calculations
to make an K-ary algorithm as explained next.

e The algorithm MODIV of Figure 1 presents a general method to perform division mod
BY, and is applied to the computation of the reciprocal mod 3 of the least significant
word of a divisor to be used in a new K-ary algorithm, called EDGCD. This mod gV

division algorithm is faster than the well-known Euclidean algorithm in general, and



58 Proceedings of the Risa Consortium 1997

serves as a fast method to compute ¢/a mod 2V for one-word integers ¢ and a when
used with 8 = 2 and realized with bit manipulations.
e It is claimed based on the experimental results that the new EDGCD algorithm is not

better than Lehmer-Euclid’s algorithm.
Sorensen (1994) [11]

e K-ary left- and right-shift algorithms are proposed, and at the same time, the gener-
alized formula (6) is used.
e A simple method for parallelization is also presented, and the complexity analysis is

made.

The algorithms seem not practical, compared with the following two similar algorithms,
because of the use of tables for computing a; and b; of (6) and because the removal of
spurious factor is done by trial divisions by prime factors of a;’s and b;’s accumulated

during the intermediate calculations.

Jebelean (1994) [2] presented a generalized binary algorithm using (6). Let d; denote
the bit width of Cj, i.e., d; = [log, C;]. The algorithm performs the elimination of less
significant bits in two ways depending on the difference of the magnitudes of a pair as

follows.

e When d = d;—1 — d; is not small, e.g., > 8 for the bit width m = 32 of a single word,

do the same elimination as in [1]:
a; < (C;_1 mod 2%)/(C; mod 2¢) mod 2, (7N
CH-I < (C,;._l — a; Ci)/zd. (8)
More concretely,
(1) apply the MODIV algorithm with Uy = 1, V = C; mod 2™, N =m, 3 = 2
to obtain w = V! mod 2™ (equivalent to Weber’s method [16, Figure 5.]).

(2) letting C < C;_1, repeat the following calculation until C' becomes suffi-
ciently small (until C gets < 0 in the EDGCD algorithm):

C« (C—-aC;)/2™, where a=(C mod 2™)w.

After each iteration step, the bit width of C is reduced by m.



Proceedings of the Risa Consortium 1997 59

(i) MODIV /bmod operation when [log, C;—1] — [log, C;] > m

m bits
e e, — (msb)

Q _———{ = i-l/Cé mod 2™
aC; W—Q—#——————{

Il because a C; = C;_; mod 2™
e N

T e e

Cj-{—] == ‘U’
laC; — Ci—q | _ﬁ*—’

(i) MODIV/bmod operation when d = [log, C;—1] — [log, C;] <m

d bits
N

a b———{ = C,;_l/ci mod 2d+1
aC; P*‘%————l

[—
I (d + 1)-bits are equal

——
Ci1 h*%—————l
(d+1)
Cipr = — I

|aC¢—~Cz~ﬁ1{ ***————i

(iii) generalized formula (6)

i—1 h**—{—————i
S S S e — S— —

I because b; Ci—1 = a; C; mod 22m

€ e ——————————

Cit1= 4
| b: Cic1 —a; Cy | M*_—I

Fig. 2. Elimination of less significant bits




60 Proceedings of the Risa Consortium 1997

e Otherwise, use the generalized formula (6) with b; and a; chosen such that
b (Ciz1 mod 2°™) = a; (C; mod 2°™) mod 2°™, 0 < by, | a; |< 2™ 9)

e The spurious factor possibly contained in the final C,, is removed by the GCD calcu-

lation G = ged(ged(X mod Cp,Cy), Y mod Cp).

Weber (1995) [16] independently developed the same algorithm as the previous one and

named it the accelerated algorithm.

e Detailed descriptions of the methods for required calculations are given, including the
one for a; and b; which uses Wang’s method [13] for a rational number reconstruction
from two modular numbers.

e The dmod operation, which is equivalent to the calculation of C in the previous algo-
rithm, is defined as

| v — (u/v mod ,Blgﬁ(“>~lg,,(v)+1) vl

dmod(u, v, ) =
mod(u, v, ) 2,018, w1

b

where 1gg(U) denotes the required number of words of magnitude § to represent a
long integer U. In particular, the dmod operation when 38 = 2 is called bmod (bit-
modulus), and is equivalent to the calculation of (7) and (8).

e There is also a reference to the bmod algorithm (Ci+1 < dmod(C;-1, C;,2)), which is
equivalent to Jebelean’s EDGCD algorithm, and it is used for the GCD calculation of
spurious factor removal.

e In [14], Weber parallelized his algorithm using a shared-memory multiprocessor sys-

tem.
Figure 2 depicts how less significant bits are eliminated by the above operations.

Jebelean (1995) (3] suggested a few methods to improve Lehmer’s algorithm.

e In Lehmer’s algorithm, having pointed out that magnitudes of cofactors are of half-
word size in most cases and that the calculation of Ay with multiple precisions via
(4) is costly, Jebelean developed a method to perform the calculation in each step
with double words. The empirical results indicate that this improvement is not very
effective.

e The required condition to proceed the cosequence calculation is relaxed.

e A new algorithm adopting these two improvements is proposed.



Proceedings of the Risa Consortium 1997 61

3. Implementation in Risa/Asir

The original implementation in Risa/Asir for integer GCD calculation (igcd) uses Euclid’s

algorithm. In addition to the original, the following three algorithms are implemented in

C:
o right-shift binary algorithm,
e bmod algorithm,

e accelerated (generalized binary) algorithm.

As can be seen later, Euclid’s algorithm is sometimes most efficient when the lengths
of two integer arguments are very different. This is because the longer argument can be
reduced and shortened very much by the initial division. ‘To treat such cases, we added a
simple functionality to perform division onto initial arguments depending on the difference
of their lengths to the above three algorithms. Note that in any of the above, 2’s factors
are treated separately and removed from the initial arguments.

The bmod algorithm is used to remove a spurious factor in the accelerated algorithm
by computing

ged(ged(X, Cn), Y)

for the final C,,. If the initial remainder calculation Z < X mod Y is performed, where
X >V, this Z is used in the above GCD calculation instead of Y. The initial remainder

calculation may be performed also in these GCD calculations.

3.1. Technicalities for faster execution

In order to make the implemented code execute as fast as possible, various techniques

are investigated and actually used. They are as follows.

e Memory space for working area to be used for storing intermediate expressions is al-
located at the invocation time of each algorithm and is recycled. Localized memory

access can expect the effect of memory caching.

e Following Weber’s implementation [16}, the sequence of multiplication by single-word
integers, addition or subtraction and shifting of long integers is realized by one-time scan
of the words of long integers in order to reduce the number of slow memory accesses,
except when the result of the subtraction turned out to be negative, in which case once

more scan of the result is required for negation.



62 Proceedings of the Risa Consortium 1997

e In every algorithm, the right-shift binary algorithm is used after a pair of integers are

both reduced to within the magnitude of double-words.

e In the binary algorithm, the difference calculation of two long integers begins with the
equality check starting from the most significant words, and at the time when unequal
words are found and the sign of the result is fixed, changes into the true subtraction
operation starting from the léast significant words. Therefore, in contrast to the notice
made by Jebelean at the beginning of [2], this calculation can be done only with one

time scan.

e As mentioned earlier, u/v mod 2™ can be calculated in two ways; application of the
MODIV algorithm with 3 = 2 and the calculation of the remainder sequence of 2 and
v. Both algorithms are tested on processors with (PowerPC) and without (SuperSparc)
instructions for integer multiplication and division. Our test result indicates that the
former is slightly faster than the latter, which agrees with Jebelean’s result [1], on both

processors. However, this difference is negligible when very long integers are treated.

3.2. User interface

The following igcdzrz functions are implemented, in addition to the original igcd.

function name algorithm used

igcdeuc Euclid’s algorithm, Risa/Asir’s original implementation
igcdbin right-shift binary algorithm

igcdbmod bmod algorithm

igcdacc accelerated (generalized-binary) algorithm

Furthermore, in order to give a facility to switch the choice of an algorithm when called
via the original igcd function or internally from Risa, three internal variables are prepared
and a control function igedentl([n]), which performs assignment to those variables, is

implemented. Its specification follows®).

DThe name of the function is changed from igcdhow and more functionalities are added since the report

(5]-



Proceedings of the Risa Consortium 1997 63

argument functionality

"euc" or 0 specifies the use of Euclid’s algorithm.
"bin" or 1 specifies the use of the right-shift binary algorithm.
"bmod" or 2 | specifies the use of the bmod algorithm.

"acc" or 3, ... | specifies the use of the accelerated algorithm.

none returns the current choice of an algorithm as one of the above

integer values.

(— div given negative integer assigns each of the following thresholds
when # 0:
—10000  acc) div:  threshold for the initial remainder calculation; if the ra-

tio of the lengths (the number of words) of two argu-
ments is > div, the initial remainder calculation is to be

performed.
acc:  threshold used in the accelerated algorithm to switch the

elimination method; if the difference of the bit lengths
of two integers is > acc, the bmod operation is used
instead of (6).

The default values of div and acc are 50 and 10, respectively.

1 returns an integer — div — 10000 * acc for the current values of div

and acc.

4. Empirical studies

Our new implementation is tested on the following two platforms.

e SparcStation 20 model 61 (SuperSparc@60MHz. SPECint92: 98.2) + SunOS 4.1.4 +
gee-2.7.2 (-02) ‘

e IBM RS6000 43P /133 (PowerPC 604@133MHz. SPECint92: 176.4 and SPECint95:
4.72) + AIX 4.1 + cc (-03)

While the former processor does not implement instructions for integer multiplication and
division, the latter does. To see the effect of this difference and to compare the algorithms,
we have tested various sample problems. The integers used are the products of random
numbers generated by the random() function, each of which fits in 27-bit width, the word

size in Risa/Asir. Tables below summarizes the average timings (in milliseconds, except



64 Proceedings of the Risa Consortium 1997

Lin 5 10 20 50 100 200 500 1000 2000
lin 1.006 1.563 3.196  9.295  21.34  48.86 143.7 323 713
N 10000 10000 10000 10000 1000 1000 100 50 10

SparcStation 20/61

Euclid 1.089 2974 9212 47.755 17855 680.61 4,177.6 16,378.0 62,518
binary 0.196 0418 1.117 4.962 17.96 66.82 397.0 1,536.8 6,072
bmod 0.263 0.652 1.659 6.437 21.04 74.60 426.0 1,644.0 6,424
acc= 6 0.265 0.517 1.123 3.475 10.29 34.26 190.9 731.8 2,862
acc = 10 0.313 0.524 1.113 3.542 10.39 34.30 189.3 722.8 2,849
acc=20 || 0.297 0.552 1.157 3.670 10.59 35.27 193.2 736.8 2,885
IBM RS6000 43P/133

FEuclid 0.515 1.386  4.183 20.943 75.71 286.64 1,720.3 6,720.4 26,814
binary 0.125 0.251 0.593 2.326 7.65 26.49 150.9 571.0 2,462
bmod 0.158 0.317 0.788 2.908 8.80 30.36 170.8 649.0 2,583
acc= 6 0.166  0.257  0.566 1.635 4.36 14.04 - 73.8 275.8 1,096
acc=10 || 0.158 0.337 0.595 1.693 4.33 13.79 71.6 273.4 1,089
acc = 20 0.192 0.337  0.600 1.675 4.58 13.82 74.1 276.6 1,102

Table 1. Timings when two arguments are of equivalent lengths

when noted otherwise) of N-times calls to igcdzae, and the following notations are used

in the tables.

Lin: the number of random numbers used to make one argument
~ the number of words of an argument

lin:  the average number of words of argument(s) after 2’s factors are
removed, almost 90% of L;,

lg:  the average number of words of the GCD

N: the number of samples tried
4.1. Dependence on the lengths of bignum arguments

Cases of arguments with equivalent lengths

The first examples are with two arguments of equivalent lengths. Table 1 summarizes the
timings. With the accelerated algorithm, timings are taken for three different values of
acce to see the dependence of computing times on ace, but no particular difference can be

observed. Also, the table indicates that the accelerated algorithm is most efficient.

Cases of arguments with different lengths

Table 2 shows the timings when the lengths of two arguments are different. We have mea-



Proceedings of the Risa Consortium 1997 65

sured the cases with and without initial remainder calculation for every sample problem,
and the table contains the timings of both cases in each row of an algorithm; the upper is
without division while the lower is with division. The accelerated algorithm is used with

acc = 10 (default). Our observation follows.

e When the lengths of two arguments are different, the use of the binary algorithm should

be preceded by the initial remainder calculation between them.

e The timings of the bmod algorithm with and without initial remainder calculation indi-
cates that, as is concerned with the implementation in Risa/Asir, the bmod operation
is slightly faster than the remainder calculation when the lengths of arguments are not

very different (ratio <10, despite their similarity.

o We may observe a similar tendency with the accelerated algorithm also using the bmod
operation without the initial remainder calculation. Recall that the remainder calcula-
tion affects on the speed of the post-GCD calculation for spurious factor removal, which
explains why the bmod algorithm is faster than the accelerated one if the remainder

calculation is not performed initially.

4.2. Application to more practical problems

As pointed out by Neun and Melenk [6], it is very often with Grobner basis calculation
for solving a system of algebraic equations that coeflicients of the intermediate expressions
grow enormously and most of the computing times are spent by the calculations of integer
coefficients. Although the recent development of the modular plus trace-lifting algorithm
has improved the Grobner basis calculation very much, the computation of long integers,
especially in the reductions to normal forms, can still be a neck of computation, as was
reported by Noro and Yokoyama [10]. To see how our implementation affects on or improves
the efficiency of this type of calculation, we have tested the following problem of more

practical significance.

dp_gr_flags(["Multiple",2]);
dp_gr_main( cyclic(n), [c0,cl,...,cp-11,1,1,0);

(DRL order with homogenization and calculation with the modular images)v

Because in the last report [5], there can be observed no particular distinction in timings

among the different algorithms when n = 5 and n = 6, we have tried only the case when n =



66 Proceedings of the Risa Consortium 1997

(1) Cases when one of the arguments is the product of 10 random numbers

Lin 20 50 100 200 500 1000 2000
lin 9.682 9.682  9.681 9.681 9.67 9.68 9.7
18.725 45976 91.456 182.438 455.19 909.99  1819.3
g 2.082 2615  2.988 3.349 3.84 4.22 4.7
N 20000 20000 20000 10000 2000 1000 200

SparcStation 20/61

Euclid 3.165  3.622  4.528 6.531  12.07  21.32 40.2
binary 0.821  2.682  8.195  27.555 154.37 594.54 2,316.6
0.653 1.167 2.635 3.770 8.92 17.28 33.9
bmod 0.722 0998 1.394 2.866  11.60  39.68 145.2
0909  1.387  2.236 3.955 8.85  17.20 34.4
acc 0.655  0.997 1923 4625 2149  76.67 288.8
0.913 1.566 2.381 4.059 9.08 17.05 33.9
IBM RS6000 43P /133

Euclid 0.530 0.616 0.707 1.061 1.73 3.11 5.6
binary 0.389 1.191 3.700 12.526 69.15 264.33 1,034.3
0.315 0.417 0.641 1.067 2.23 4.01 6.8
bmod 0.189  0.304 0.469 1.037 441  15.23 58.1
0.415 0499  0.665 0.969 1.82 3.45 6.6
acc 0.232 0.360 0.644 1.589 7.83 28.49 109.1
0.376  0.483  0.680 1.105 2.12 3.67 6.9
(ii) Cases when one of the arguments is the product of 100, (iii) 200 and (iv) 1000 random numbers
Lin 100 200 1000
200 500 1000 2000 500 1000 2000 2000
Iin 91.44 91.42 91.50 91.4 | 182.3 1824 182.6 910.5
182.41 455.16 910.07 1819.5 | 455.3 909.6  1819.3 | 1819.3
e 2779 3346  37.39 41.1 | 651 739 81.4 394
N 1000 1000. 1000 100 200 100 100 20

SparcStation 20/61
Fuclid || 175.45 185.15 206.59 257.5 | 676.8 6974 771.6 | 14,914
binary 4722  206.02 695.57 2,540.8 | 260.0 807.3 2,762.3 4,393
22.75 37.18 62.31 113.0 90.6 133.1 220.5 1,814
bmod 24.20 40.44 80.78 217.7 96.5 150.2 311.2 1,937
25.22 39.70 64.91 115.9 97.4 139.0 225.9 1,907
acc 16.41 43.66 117.44 372.0 73.0 167.2 461.8 1,336
16.66 31.94 57.09 107.5 624 1074 195.3 1,083
IBM RS6000 43P /133
Euclid 74.62 77.40 84.62 100.3 | 282.5 2923 318.3 6,395
binary 19.60 86.46 299.91 1,108.5 | 103.7 335.0 1,179.8 1,766
9.31 14.31 23.08 404 35.9 51.8 85.7 703
bmod 10.11 16.57 32.47 85.2 38.7 59.5 122.9 774
10.28 15.70 24.09 41.0 39.3 55.9 88.8 776
acc 7.03 17.75 46.95 146.9 28.9 65.7 181.9 518
6.77 11.77 20.50 38.6 24.3 40.9 75.1 433

Table 2. Timings when the lengths of two arguments are different



Proceedings of the Risa Consortium 1997 67

7. The following table shows the timings (in seconds) measured on IBM RS6000 43P /133.

algorithm used | div | CPU time + GC
Euclid - 8046 +  980.2
binary 50 14940 4+  988.5
| 1 7698 +  960.5
bmod 50 7474+ 993.7
acc 50 7525 -+ 1051.0
2 7527 4+ 1003.0

We can observe a little bit improvement. More successful result is reported by Noro and
McKay [8]. They applied our new implementation to the integer content removal in the
calculation of normal forms for a large-scale Grobner basis, and our implementation has had
a big effect on the improvement of the computing time in cooperation with their improved

method for integer contents [7].

5. Conclusion

With our new implementation in Risa/Asir, we have tested some of the algorithms newer
than the Euclidean. When integer arguments are lengthy and of equivalent lengths, the
latest algorithm, called accelerated or generalized binary, using a generalized sequence
(6) is most efficient in pracﬁce, which agrees with the previous empirical results by the
developers of the algorithm. Even in the cases that the lengths are very different, we
can make the arguments have equivalent lengths by initially performing the remainder
calculation between them, and then apply any of the newer algorithms if the reduced
arguments are still lengthy, for speed. For more general cases, it is difficult to determine
the most efficient way, e.g., how large or how different the lengths of arguments should be
to perform the initial remainder calculation, although computing times will fluctuate very
little in most cases, as practical applications are concerned.

Anyway, the improvement due to our new implementation of the newer algorithms is
clear, and the aim of our attempt has been successfully achieved. Finally, the author
would like to stress the need for the use of the latest algorithm, e.g., bmod or accelerated,

as default.



68

(1]

(14]
(15]

[16]

Proceedings of the Risa Consortium 1997

References

Jebelean, T.: An algorithm for exact division, Journal of Symbolic Computation, 15(2), 1993,
169-180.

Jebelean, T.: A generalization of the binary GCD algorithm, Proceedings of ISSAC 9
(von zur Gathen, J. and Giesbrecht, M., eds.), Oxford, England, 1994, 111-116.

Jebelean, T.: A double-digit Lehmer-Euclid algorithm for finding the GCD of long integers,
Journal of Symbolic Computation, 19(1-3), 1995, 145-157.

Lehmer, D. H.: Euclid’s algorithm for large numbers, American Mathematical Monthly, 45,
1938, 227-233.

Murao, H.: Improving the integer GCD calculation in Risa/Asir, (in Japanese). Workshop
on Computer Algebra system and its application (2nd Risa Consortium held at Ehime U. on
Mar. 14~16, 1996).

Neun, W. and Melenk, H.: Very large Grobner basis calculations, CAP '90: Computer Algebra
and Parallelism, Second International Workshop Proceedings (Zippel, R. E., ed.), LNCS, 584,
Ithaca, USA, Springer-Verlag, 1990, 89-99.

Noro, M.: Efficient removal of the content of an integral vector and its application, (in these
proceedings).

Noro, M. and McKay, J.: Computation of replicable functions on Risa/Asir, (to appear in
PASCO97), 1997.

Noro, M. and Takeshima, T.: Risa/Asir — a computer algebra system, Proceedings of IS-
SAC ’92 (Wang, P. S., ed.), Berkeley, CA, 1992, 387-396.

Noro, M. and Yokoyama, K.: New methods for the change-of-ordering in Grébner basis
computation, Technical report, Institute for Social Information Science, Fujitsu Laboratories
Ltd., 1995.

Sorenson, J.: Two fast GCD algorithms, Journal of Algorithms, 16, 1994, 110-144.

Stein, J.: Computational problems associated with Racah algebra, Journal of Computational
Physics, 1, 1967, 397-405.

Wang, P. S.: A p-adic algorithm for univariate partial fractions, Proceedings of the 1981 ACM
Symposium on Symbolic and Algebraic Computation (Wang, P. S., ed.), Snowbird, Utah, 1981,
212-217.

Weber, K.: Parallel implementation of the accelerated integer GCD algorithm, Proceedings
of PASCO 94 (Hong, H., ed.), Linz, Austria, 1994, 405-411.

Weber, K.: Parallel integer GCD algorithms and their application to polynomial GCD, PhD
thesis, Dept. of Mathematics and Computer Science, Kent State Univ., Ohio, 1994.

Weber, K.: The accelerated integer GCD algorithm, ACM Transactions on Mathematical
Software, 21(1), 1995, 111-122.



